Effects of Planting Methods on the Establishment, Yield, and Nutritional Composition of Hybrid Grass Cuba OM-22 in the Dry Tropics of Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of the Research Area
2.2. Experimental Design
2.3. Establishment of the Experimental Area
2.4. Evaluation of Indicators
2.4.1. Establishment Rate
2.4.2. Plant Height and Number of Tillers
2.4.3. Yield
2.4.4. Nutritional Composition
2.5. Statistical Analysis
3. Results
3.1. Establishment Rate
3.2. Plant Height and Number of Tillers
3.3. Yield
3.4. Nutritional Composition
3.5. Correlation of Agronomic and Nutritional Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rout, P.K.; Behera, B.K. Sustainable Livestock Farming. In Sustainability in Ruminant Livestock: Management and Marketing; Springer: Singapore, 2021; pp. 137–170. [Google Scholar] [CrossRef]
- Ghahremaninejad, F.; Hoseini, E.; Jalali, S. The cultivation and domestication of wheat and barley in Iran: Brief review of a long history. Bot. Rev. 2021, 87, 1–22. [Google Scholar] [CrossRef]
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). La Producción Mundial y Nacional de Carne Vacuna y sus Perspectivas. Available online: https://cdn.www.gob.pe/uploads/document/file/7161113/5063792-nota-tecnica-n-024-la-producion-mundial-y-nacional-de-carne-vacuna-y-sus-perspectivas.pdf?v=1730415681 (accessed on 18 September 2025).
- Ministerio de Desarrollo Agrario y Riego (MIDAGRI). Perfil Competitivo de las Principales Especies y Productos Pecuarios. Available online: https://app.powerbi.com/view?r=eyJrIjoiYWM0MDIwYTktNTk3MS00OTc3LThiZTgtZjRmN2ZhMmZlNjVlIiwidCI6IjdmMDg0NjI3LTdmNDAtNDg3OS04OTE3LTk0Yjg2ZmQzNWYzZiJ9&pageName=ReportSection (accessed on 18 September 2025).
- Islam, M.R.; Garcia, S.C.; Islam, M.A.; Bashar, M.K.; Roy, A.; Roy, B.K.; Sarker, N.R.; Clark, C.E.F. Ruminant Production from Napier Grass (Pennisetum purpureum Schum): A Review. Animals 2024, 14, 467. [Google Scholar] [CrossRef] [PubMed]
- Salas-Reyes, I.G.; Estrada-Flores, J.G.; Arriaga-Jordán, C.M.; García-Martínez, A.; Castro-Montoya, J.; Albarrán-Portillo, B. Productive performance of lactating Brown Swiss cows grazing on an agrosilvopastoral system in a dry tropical region in central Mexico: Contribution of grass, herbaceous and woody species. Agroforest. Syst. 2023, 97, 223–233. [Google Scholar] [CrossRef]
- Islam, M.R.; Garcia, S.C.; Sarker, N.R.; Islam, M.A.; Clark, C.E.F. Napier grass (Pennisetum purpureum Schum) management strategies for dairy and meat production in the tropics and subtropics: Yield and nutritive value. Front. Plant Sci. 2023, 14, 1269976. [Google Scholar] [CrossRef] [PubMed]
- Spain, J.M. Forage potential of allic soils of the humid lowland tropics of Latin America. In Tropical Forage in Livestock Production Systems, Proceedings of the Annual Meetings of the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Las Vegas, NV, USA, November 1973; Doll, E.C., Mott, G.O., Eds.; American Society of Agronomy: Madison WI, USA; pp. 1–8.
- Slayi, M.; Zhou, L.; Dzvene, A.R.; Mpanyaro, Z. Drivers and Consequences of Land Degradation on Livestock Productivity in Sub-Saharan Africa: A Systematic Literature Review. Land 2024, 13, 1402. [Google Scholar] [CrossRef]
- Alimi, N.; Assani, A.S.; Sanni Worogo, H.; Baco, N.M.; Traoré, I.A. Livestock feed resources used as alternatives during feed shortages and their impact on the environment and ruminant performance in West Africa: A systematic review. Front. Vet. Sci. 2024, 11, 1352235. [Google Scholar] [CrossRef]
- Seehaus, T.; Malz, P.; Sommer, C.; Lippl, S.; Cochachin, A.; Braun, M. Changes of the tropical glaciers throughout Peru between 2000 and 2016: Mass balance and area fluctuations. Cryosphere 2019, 13, 2537–2556. [Google Scholar] [CrossRef]
- Tito, R.; Vasconcelos, H.L.; Feeley, K.J. Global climate change increases risk of crop yield losses and food insecurity in the tropical Andes. Glob. Chang. Biol. 2018, 24, e592–e602. [Google Scholar] [CrossRef]
- Gomes, V.C.; Meirelles, P.R.L.; Costa, C.; Barros, J.S.; Castilhos, A.M.; Souza, D.M.; Pariz, C.M. Production and quality of corn silage with forage and pigeon peas in a crop–livestock system. Semin. Ciências Agrárias 2021, 42, 861–876. [Google Scholar] [CrossRef]
- Cañete, D.C.; Alvarez, T.S. Commercialization of green corn-based silage production for dairy in Cagayan Valley: Profitability and viability assessment. Univers. J. Agric. Res. 2021, 9, 79–90. [Google Scholar] [CrossRef]
- Thomasz, E.; Pérez-Franco, I.; García-García, A. The Economic Impact of Climate Risk on Extensive Livestock: The Case of Lamb Production in Extremadura, Spain. Sustainability 2020, 12, 7254. [Google Scholar] [CrossRef]
- Alvarez-García, W.; Muñoz-Vílchez, Y.; Figueroa, D.; Estrada, R.; Quilcate, C. A review of sustainable cattle genetic improvement in the Peruvian Highlands. Vet. Anim. Sci. 2025, 27, 100427. [Google Scholar] [CrossRef]
- Gilardino, A.; Quispe, I.; Pacheco, M.; Bartl, K. Comparison of different methods for consideration of multifunctionality of Peruvian dairy cattle in Life Cycle Assessment. Livest. Sci. 2020, 240, 104151. [Google Scholar] [CrossRef]
- Paul, B.K.; Koge, J.; Maass, B.L.; Notenbaert, A.; Peters, M.; Groot, J.C.J.; Tittonell, P. Tropical forage technologies can deliver multiple benefits in Sub-Saharan Africa: A meta-analysis. Agron. Sustain. Dev. 2020, 40, 22. [Google Scholar] [CrossRef]
- Jin, Y.; Luo, J.; Yang, Y.; Jia, J.; Sun, M.; Wang, X.; Khan, I.; Huang, D.; Huang, L. The evolution and expansion of RWP-RK gene family improve the heat adaptability of elephant grass (Pennisetum purpureum Schum.). BMC Genom. 2023, 24, 510. [Google Scholar] [CrossRef] [PubMed]
- Nunes, J.D.; Azevedo, A.L.; Pereira, A.V.; Paula, C.M.; Campos, J.M.; Lédo, F.J.; Santos, V.B. DNA elimination in embryogenic development of Pennisetum glaucum × Pennisetum purpureum (Poaceae) hybrids. Genet. Mol. Res. 2013, 12, 4817–4826. [Google Scholar] [CrossRef]
- Maldonado-Peralta, M.Á.; Rojas-García, A.R.; Sánchez-Santillán, P.; Bottini-Luzardo, M.B.; Torres-Salado, N.; Ventura-Ríos, J.; Joaquín-Cancino, S.; Luna-Guerrero, M.J. Análisis de crecimiento del pasto Cuba OM-22 (Pennisetum purpureum × Pennisetum glaucum) en el trópico seco. Agro Product. 2019, 12, 17–22. [Google Scholar] [CrossRef]
- Huang, Z.; Zhu, J.; Mu, X.; Lin, J. Pollen dispersion, pollen viability and pistil receptivity in Leymus chinensis. Ann. Bot. 2004, 93, 295–301. [Google Scholar] [CrossRef]
- Fisher, W.D.; Bashaw, E.C.; Holt, E.C. Evidence for apomixis in Pennisetum ciliare and Cenchrus setigerus. Agron. J. 1954, 46, 401–404. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Influences of clonality on plant sexual reproduction. Proc. Natl. Acad. Sci. USA 2015, 112, 8859–8866. [Google Scholar] [CrossRef]
- Khosa, J.; Bellinazzo, F.; Kamenetsky Goldstein, R.; Macknight, R.; Immink, R.G.H. Phosphatidylethanolamine-binding proteins: The conductors of dual reproduction in plants with vegetative storage organs. J. Exp. Bot. 2021, 72, 2845–2856. [Google Scholar] [CrossRef] [PubMed]
- López-Corona, B.E.; Mondaca-Fernández, I.; Gortáres-Moroyoqui, P.; Meza-Montenegro, M.M.; de Jesús Balderas-Cortés, B.; Ruiz-Alvarado, C.; Rueda-Puente, E.O. Rooting of plant cuttings of Salicornia bigelovii (Torr.) by chitosan as a bioproduct of marine origin. Rev. Terra Latinoam. 2019, 37, 361–369. [Google Scholar] [CrossRef]
- Knoll, J.E.; Anderson, W.F. Vegetative propagation of napiergrass and energycane for biomass production in the southeastern United States. Agron. J. 2012, 104, 518–522. [Google Scholar] [CrossRef]
- Cerdas-Ramírez, R.; Vidal-Vega, E.; Vargas-Rojas, J.C. Productividad del pasto Cuba OM-22 (Pennisetum purpureum × Pennisetum glaucum) con distintas dosis de fertilización nitrogenada. InterSedes 2021, 22, 136–161. [Google Scholar] [CrossRef]
- Martínez, R.O.; González, C. Evaluation of varieties and hybrids of elephant grass Pennisetum purpureum and Pennisetum purpureum × Pennisetum glaucum for forage production. Cuba. J. Agric. Sci. 2017, 51, 477–487. Available online: https://cjascience.com/index.php/CJAS/article/view/749/771 (accessed on 18 October 2025).
- Miranda-Leyva, M.; Ayala-Yera, J.R.; Diez-Núñez, J. Evaluación agroproductiva de ‘Cuba OM-22’ (Pennisetum purpureum × Pennisetum glaucum) en un suelo pardo grisáceo ócrico durante el período poco lluvioso en Las Tunas. Obs. Econ. Latinoam. 2012, 167. Available online: https://ideas.repec.org/a/erv/observ/y2012i16724.html (accessed on 27 October 2025).
- Druege, U. Overcoming Physiological Bottlenecks of Leaf Vitality and Root Development in Cuttings: A Systemic Perspective. Front. Plant Sci. 2020, 11, 907. [Google Scholar] [CrossRef]
- Ramadhan, A.; Njunie, M.N.; Lewa, K.K. Effect of planting material and variety on productivity and survival of Napier grass (Pennisetum purpureum Schumach.) in the coastal lowlands of Kenya. East. Afr. Agric. For. J. 2015, 81, 40–45. [Google Scholar] [CrossRef]
- Fanindi, A.; Sutedi, E.; Sajimin; Herdiawan, I.; Harmini; Pamungkas, F.A.; Kusumaningrum, D.A.; Baehaki; Karya; Setiawan, A. Productivity of elephant grass pakchong (Pennisetum purpureum cv. Pakchong) and elephant grass taiwan (Pennisetum purpureum cv. Taiwan) cultivated based on different stem cutting sizes. IOP Conf. Ser. Earth Environ. Sci. 2024, 1362, 012027. [Google Scholar] [CrossRef]
- Ministerio de Agricultura y Riego (MINAGRI). Decreto Supremo N° 013-2010-AG: Reglamento para la Ejecución de Levantamiento de Suelos. Available online: https://www.midagri.gob.pe/portal/decreto-supremo/ds-2010/4804-decreto-supremo-no-013-2010-ag (accessed on 27 October 2025).
- Oliva-Cruz, M.; Cabañas-López, J.R.; Altamirano-Tantalean, M.A.; Juarez-Contreras, L.; Vigo, C.N. Agronomic Behavior of Peanut (Arachis hypogaea L.) Cultivars under Three Planting Densities in the Northeast of Peru. Agronomy 2024, 14, 1905. [Google Scholar] [CrossRef]
- NTP-ISO/IEC 17025:2017. Requisitos Generales Para la Competencia de los Laboratorios de Ensayo y Calibración, 3rd ed.; Instituto Nacional de Calidad (INACAL): Lima, Peru, 2017. [Google Scholar]
- Bazán, R. Manual de Procedimientos de los Análisis de Suelos y Agua con Fines de Riego. Available online: https://repositorio.inia.gob.pe/server/api/core/bitstreams/55bde890-0de8-4f7b-8d15-8b39ea07cd26/content (accessed on 18 September 2025).
- Vásquez, H.V.; Valqui, L.; Bobadilla, L.G.; Meseth, E.; Trigoso, M.J.; Zagaceta, L.H.; Valqui-Valqui, L.; Saravia-Navarro, D.; Barboza, E.; Maicelo, J.L. Agronomic and Nutritional Evaluation of INIA 910—Kumymarca Ryegrass (Lolium multiflorum Lam.): An Alternative for Sustainable Forage Production in Department of Amazonas (NW Peru). Agronomy 2025, 15, 100. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. (Eds.) Official Methods of Analysis of AOAC International, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2005; Available online: https://www.researchgate.net/publication/292783651_AOAC_2005 (accessed on 18 September 2025).
- R Core Team. R: The R Project for Statistical Computing. Available online: https://www.r-project.org (accessed on 18 September 2025).
- de Mendiburu, F. agricolae: Statistical Procedures for Agricultural Research. Available online: https://CRAN.R-project.org/package=agricolae (accessed on 18 September 2025).
- Wei, T.; Simko, V. corrplot: Visualization of a Correlation Matrix, R package version 0.92; 2021. Available online: https://github.com/taiyun/corrplot (accessed on 18 September 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 18 September 2025).
- du Toit, J.C. Early survival and growth of vegetatively propagated indigenous grasses in a clear-felled timber plantation in KwaZulu-Natal, South Africa. Afr. J. Range Forage Sci. 2009, 26, 97–101. [Google Scholar] [CrossRef]
- Díaz-Páez, M.; Werden, L.K.; Zahawi, R.A.; Usuga, J.; Polanía, J. Vegetative propagation of native tree species: An alternative restoration strategy for the tropical Andes. Restor. Ecol. 2021, 30, e13611. [Google Scholar] [CrossRef]
- Tambong, J.D. Branch Cutting Propagation of Different Bamboo Species Through Varying Levels of Alpha Naphthalene Acetic Acid Supplementation. Int. J. Res. Rev. 2023, 10, 393–399. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Majrashi, M.A.; Ibrahim, H.M. Improvement of physical properties and water retention in sandy soils through the synergistic use of natural clay deposits and wheat straw. Sustainability 2024, 16, 46. [Google Scholar] [CrossRef]
- Lo, Y.-N. Root initiation of Shorea macrophylla cuttings: Effects of node position, growth regulators and misting regime. For. Ecol. Manag. 1985, 12, 43–52. [Google Scholar] [CrossRef]
- Pollock, A.; Grant, K.R.; Schoonmaker, A. Size influences on the survival of willow cuttings under operational field conditions. Ecol. Evol. 2025, 15, e70835. [Google Scholar] [CrossRef]
- Liu, Z.; Lan, J.; Li, W.; Ma, H. Reseeding improved soil and plant characteristics of degraded alfalfa (Medicago sativa) grassland in loess hilly plateau region, China. Ecol. Eng. 2023, 190, 106933. [Google Scholar] [CrossRef]
- Li, D.; Li, S.; Chen, H.; Wu, J. Reseeding promotes plant biomass by improving microbial community stability and soil fertility in a degraded subalpine grassland. Geoderma 2025, 453, 117160. [Google Scholar] [CrossRef]
- Nyiramvuyekure, V.; Obwoyere, G.O.; Inoti, S.K. The influence of planting orientation and ecotype on sprouting and survival of stem cuttings of African teak (Milicia excelsa (Welw.)) in Kenya. Open Access Res. J. Sci. Technol. 2022, 6, 001–008. [Google Scholar] [CrossRef]
- Monteiro, J.S.; Leite, M.B.; Wink, C.; Durlo, M.A. Influência do ângulo de plantio sobre a brotação e o enraizamento de estacas de Phyllanthus sellowianus (Klotzsch) Müll. Arg. Cienc. Florest. 2010, 20, 523–532. [Google Scholar] [CrossRef]
- Decruyenaere, J.G.; Holt, J.S. Seasonality of clonal propagation in giant reed. Weed Sci. 2001, 49, 760–767. [Google Scholar] [CrossRef]
- Boersma, N.N.; Heaton, E.A. Effects of temperature, illumination and node position on stem propagation of Miscanthus × giganteus. GCB Bioenergy 2012, 4, 680–687. [Google Scholar] [CrossRef]
- Thimann, K.V.; Skoog, F. Studies on the growth hormone of plants: III. The inhibiting action of the growth substance on bud development. Proc. Natl. Acad. Sci. USA 1933, 19, 714–716. [Google Scholar] [CrossRef]
- Minakuchi, K.; Kameoka, H.; Yasuno, N.; Umehara, M.; Luo, L.; Kobayashi, K.; Hanada, A.; Ueno, K.; Asami, T.; Yamaguchi, S.; et al. FINE CULM1 (FC1) works downstream of strigolactones to inhibit the outgrowth of axillary buds in rice. Plant Cell Physiol. 2010, 51, 1127–1135. [Google Scholar] [CrossRef]
- Zhao, B.; Wu, T.-T.; Ma, S.-S.; Jiang, D.-J.; Bie, X.-M.; Sui, N.; Zhang, X.-S.; Wang, F. TaD27-B gene controls the tiller number in hexaploid wheat. Plant Biotechnol. J. 2020, 18, 513–525. [Google Scholar] [CrossRef]
- Chaves Gurgel, A.L.; dos Santos Difante, G.; Marques Costa, C.; Emerenciano Neto, J.V.; Tonhão, G.H.; Vinhas Ítavo, L.C.; Alce Miyake, A.W. Establishment of tropical forage grasses in the Cerrado biome. Rev. Mex. Cienc. Pecu. 2022, 13, 674–689. [Google Scholar] [CrossRef]
- Cárdenas-Aquino, M.d.R.; Camas-Reyes, A.; Valencia-Lozano, E.; López-Sánchez, L.; Martínez-Antonio, A.; Cabrera-Ponce, J.L. The cytokinins BAP and 2-iP modulate different molecular mechanisms on shoot proliferation and root development in lemongrass (Cymbopogon citratus). Plants 2023, 12, 3637. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Li, G.; Zhao, J.; Chu, H.; Lin, W.; Zhang, D.; Wang, Z.; Liang, W. Dwarf Tiller1, a WUSCHEL-related homeobox transcription factor, is required for tiller growth in rice. PLoS Genet. 2014, 10, e1004154. [Google Scholar] [CrossRef] [PubMed]
- Stape, J.L.; Silva, C.R.; Binkley, D. Spacing and geometric layout effects on the productivity of clonal Eucalyptus plantations. Trees For. People 2022, 8, 100235. [Google Scholar] [CrossRef]
- Porfirio, M.D.; Neres, M.A.; Führ, C.A.; da Silva, T.H.; Guimarães, I.C.S.B. Effects of row spacing and planting density of forage sorghum on dry matter yield, morphologic parameters, nutritive value, and predicted milk yield of dairy cows. Res. Soc. Dev. 2021, 10, e36101119374. [Google Scholar] [CrossRef]
- Noland, R.; Dowdy, M.; Harris, G. Maize row spacing and seeding rate informed by space-per-plant geometry. Agronomy 2025, 15, 374. [Google Scholar] [CrossRef]
- Olson, N.A.; Trostle, C.; Meyer, R.; Hulke, B.S. Canopy closure, yield, and quality under heterogeneous plant spacing in sunflower. Agron. J. 2024, 116, 2275–2283. [Google Scholar] [CrossRef]
- Baseggio, M.; Newman, Y.; Sollenberger, L.E.; Fraisse, C.; Obreza, T. Planting Rate and Depth Effects on Tifton 85 Bermudagrass Establishment Using Rhizomes. Crop Sci. 2015, 55, 1338–1345. [Google Scholar] [CrossRef]
- Fukagawa, S.; Ishii, Y. Grassland establishment of dwarf napiergrass (Pennisetum purpureum Schumach.) by planting of cuttings in the winter season. Agronomy 2018, 8, 12. [Google Scholar] [CrossRef]
- Sivakumar, S.D.; Sridharan, N.; Babu, C. Effect of planting materials and sett treatment on establishment and yield of Bajra Napier hybrid grass CO (BN) 5. Madras Agric. J. 2022, 109, 28–32. [Google Scholar] [CrossRef]
- Iglesias-Gómez, J.M.; Domínguez-Escudero, J.M.A.; Wencomo-Cárdenas, H.B.; Olivera-Castro, Y.; Toral-Pérez, O.C.; Milera-Rodríguez, M.d.l.C. Comportamiento agronómico y nutricional de especies mejoradas en un sistema de pastoreo racional Voisin, en Panamá. Pastos y Forrajes 2022, 45, eE10. Available online: https://www.redalyc.org/journal/2691/269173684010/ (accessed on 19 September 2025).
- Valqui, L.; Saucedo-Uriarte, J.A.; Altamirano-Tantalean, M.A.; Bobadilla, L.G.; Portocarrero Villegas, S.M.; Bardales, W.; Frias, H.; Zagaceta Llanca, L.H.; Valqui-Valqui, L.; Puerta-Chavez, L.J.; et al. Influence of tree species on soil physicochemical composition, macrofauna, and forage production. J. Agric. Food Res. 2025, 23, 102220. [Google Scholar] [CrossRef]
- Li, Y.; Du, S.; Sun, L.; Cheng, Q.; Hao, J.; Lu, Q.; Ge, G.; Wang, Z.; Jia, Y. Effects of lactic acid bacteria and molasses additives on dynamic fermentation quality and microbial community of native grass silage. Front. Microbiol. 2022, 13, 830121. [Google Scholar] [CrossRef]
- Ayandiran, S.K.; Odeyinka, S.M.; Amoo, A.F.; Ojo, I.F.; Ogunmola, Y.E.; Olakunle, T.M.; Oloidi, F.F. Effect of ensiling elephant grass with molasses on the nutritive value and in vitro digestibility. Niger. J. Anim. Prod. 2024, 1585–1588. [Google Scholar] [CrossRef]
- Musa, A.R.; Garba, Y. Nutritive value of untreated and molasses-urea treated Typha (Typha domingensis) silage. FUDMA J. Agric. Agric. Technol. 2022, 8, 70–76. [Google Scholar] [CrossRef]
- Duran, N.N.; Elfaki, M.O.A.; Kılıç, Ü. Determination of the feed value, digestibility, and in vitro gas production of high-moisture corn grain silage. World J. Adv. Res. Rev. 2024, 24, 1995–2000. [Google Scholar] [CrossRef]
- Gordon, C.H.; Derbyshire, J.C.; Wiseman, H.G.; Jacobson, W.C. Variations in initial composition of orchardgrass as related to silage composition and feeding value. J. Dairy. Sci. 1964, 47, 987–992. [Google Scholar] [CrossRef]
- Aswini, M.S.; Ganesan, K.N.; Ezhilarasi, T. Correlation between green fodder yield and fodder quality traits in hybrids of pearl millet [Pennisetum glaucum (L.) R. Br.]. Int. J. Plant Soil. Sci. 2023, 35, 1975–1983. [Google Scholar] [CrossRef]
- Culqui, L.; Huaman-Pilco, Á.F.; Juarez-Contreras, L.; Vigo, C.N.; Goñas, M.; Pariente-Mondragón, E.; Maicelo-Quintana, J.L.; Oliva-Cruz, M. Nutritional potential of native shrub species for cattle feeding in northeastern Peru. Rangel. Ecol. Manag. 2025, 98, 600–608. [Google Scholar] [CrossRef]
- Vásquez, H.V.; Valqui, L.; Valqui-Valqui, L.; Bobadilla, L.G.; Reyna, M.; Maravi, C.; Pajares, N.; Altamirano-Tantalean, M.A. Influence of nitrogen fertilization and cutting dynamics on the yield and nutritional composition of white clover (Trifolium repens L.). Plants 2025, 14, 2765. [Google Scholar] [CrossRef]
- Beltran Barriga, P.A.; Corrêa de Lima, R.; Brugnara Soares, A.; Simioni Assmann, T.; Canaza Cayo, A.W. Intensidad de pastoreo y fertilización nitrogenada sobre la altura de Lolium multiflorum Lam. en un sistema de integración agricultura-ganadería. Agron. Costarric. 2020, 44, 127–137. [Google Scholar] [CrossRef]
- González Marcillo, R.L.; Castro Guamàn, W.E.; Guerrero Pincay, A.E.; Vera Zambrano, P.A.; Ortiz Naveda, N.R.; Guamàn Rivera, S.A. Assessment of Guinea Grass Panicum maximum under Silvopastoral Systems in Combination with Two Management Systems in Orellana Province, Ecuador. Agriculture 2021, 11, 117. [Google Scholar] [CrossRef]
- Oliva-Cruz, M.; Altamirano-Tantalean, M.A.; Chuquizuta-Torres, R.; Oliva-Cruz, C.; Maicelo-Quintana, J.L.; Leiva-Espinoza, S.T.; Culqui, L.; Mendez-Fasabi, L.D.; Rojas Ventura, H.M.; Corazon-Guivin, M.A.; et al. Isolation and Characterization of Native Isolates of Metarhizium sp. as a Biocontrol Agent of Hypothenemus hampei in Rodríguez de Mendoza Province—Peru. Agronomy 2024, 14, 1341. [Google Scholar] [CrossRef]
- Zeballos-Cabana, J.C.; Carrasco-Chilon, W.L.; Vásquez-Pérez, H.V. Efecto de zonas agroecológicas y condición de siembra sobre altura de planta y rendimiento en avena forrajera en la región Puno, Perú. Tecnol. En. Marcha 2023, 36, 89–96. Available online: https://www.redalyc.org/articulo.oa?id=699877376012 (accessed on 18 October 2025). [CrossRef]






| Planting Methods (S) | Description |
|---|---|
| S1 | Two-node cuttings, 25 cm in length; orientation inclined at 45° relative to the soil surface; insertion depth 12 cm; spacing between cuttings 50 cm, measured base-to-base along the furrow |
| S2 | Single-node cuttings, 14 cm in length; orientation inclined at 45° relative to the soil surface; insertion depth 12 cm; spacing between cuttings 50 cm, measured base-to-base along the furrow |
| S3 | Two-node cuttings, 25 cm in length; horizontal position 180°, parallel to the soil surface; fully buried at 8 cm depth; spacing between cuttings 50 cm, measured base-to-base along the furrow |
| S4 | Two-node cuttings, 25 cm in length; horizontal position 180°, parallel to the soil surface; Fully buried at 8 cm depth; no spacing between cuttings along the furrow, cuttings placed contiguously |
| S5 | Nine-node cuttings, 170 cm in length; horizontal position 180°, parallel to the soil surface; fully buried at 8 cm depth; no spacing between cuttings along the furrow, cuttings placed contiguously |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vásquez, H.V.; Valqui, L.; Valqui-Valqui, L.; Bobadilla, L.G.; Maicelo, J.L.; Altamirano-Tantalean, M.A.; Ampuero-Trigoso, G.; Yalta Vela, J. Effects of Planting Methods on the Establishment, Yield, and Nutritional Composition of Hybrid Grass Cuba OM-22 in the Dry Tropics of Peru. Agronomy 2025, 15, 2497. https://doi.org/10.3390/agronomy15112497
Vásquez HV, Valqui L, Valqui-Valqui L, Bobadilla LG, Maicelo JL, Altamirano-Tantalean MA, Ampuero-Trigoso G, Yalta Vela J. Effects of Planting Methods on the Establishment, Yield, and Nutritional Composition of Hybrid Grass Cuba OM-22 in the Dry Tropics of Peru. Agronomy. 2025; 15(11):2497. https://doi.org/10.3390/agronomy15112497
Chicago/Turabian StyleVásquez, Héctor V., Leandro Valqui, Lamberto Valqui-Valqui, Leidy G. Bobadilla, Jorge L. Maicelo, Miguel A. Altamirano-Tantalean, Gustavo Ampuero-Trigoso, and Juan Yalta Vela. 2025. "Effects of Planting Methods on the Establishment, Yield, and Nutritional Composition of Hybrid Grass Cuba OM-22 in the Dry Tropics of Peru" Agronomy 15, no. 11: 2497. https://doi.org/10.3390/agronomy15112497
APA StyleVásquez, H. V., Valqui, L., Valqui-Valqui, L., Bobadilla, L. G., Maicelo, J. L., Altamirano-Tantalean, M. A., Ampuero-Trigoso, G., & Yalta Vela, J. (2025). Effects of Planting Methods on the Establishment, Yield, and Nutritional Composition of Hybrid Grass Cuba OM-22 in the Dry Tropics of Peru. Agronomy, 15(11), 2497. https://doi.org/10.3390/agronomy15112497

