Growth and Nutritional Enhancement of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) via Dual AMF Inoculation Under Phosphorus Regimes
Abstract
1. Introduction
2. Materials and Methods
2.1. Treatments and Trial Design
2.2. Soil Collection and Preparation
2.3. AMF Inoculum Preparation
2.4. Mycorrhizal Inoculation and Growing Lisianthus
2.5. Measuring Growth and Ornamental Qualities
2.6. Root Colonization Percentage
2.7. Content of Nutrients
2.8. Calculations and Statistical Analysis
3. Results
3.1. Growth and Ornamental Traits
3.1.1. Shoot
3.1.2. Root
3.1.3. Flower
3.2. Root Colonization
3.3. Shoot Nutrient Concentrations
3.4. Root Nutrient Concentrations
3.5. Pearson Correlation Matrix
3.6. Principal Component Analysis
4. Discussion
4.1. Root Colonization
4.2. Nutrient Contents in Root and Shoot
4.3. Vegetative Growth and Biomass Responses
4.4. Root Length and Morphology
4.5. Flowering and Ornamental Quality Parameters
4.6. Mycorrhizal Growth Responses (MGR)
4.7. Comparison of Inocula and Introducing the Best One
4.8. Agronomic and Environmental Significance of Findings
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darras, A.I. Implementation of Sustainable Practices to Ornamental Plant Cultivation Worldwide: A Critical Review. Agronomy 2020, 10, 1570. [Google Scholar] [CrossRef]
- Möhring, N.; Muller, A.; Schaub, S. Farmers’ Adoption of Organic Agriculture—A Systematic Global Literature Review. Eur. Rev. Agric. Econ. 2024, 51, 1012–1044. [Google Scholar] [CrossRef]
- Verlinden, S.; McDonald, L. Productivity and Quality of Statice (Limonium sinuatum Cv. Soiree Mix) and Cockscomb (Celosia argentea Cv. Chief Mix) under Organic and Inorganic Fertilization Regiments. Sci. Hortic. 2007, 114, 199–206. [Google Scholar] [CrossRef]
- Darras, A. Overview of the Dynamic Role of Specialty Cut Flowers in the International Cut Flower Market. Horticulturae 2021, 7, 51. [Google Scholar] [CrossRef]
- Smith, O.M.; Cohen, A.L.; Rieser, C.J.; Davis, A.G.; Taylor, J.M.; Adesanya, A.W.; Jones, M.S.; Meier, A.R.; Reganold, J.P.; Orpet, R.J. Organic Farming Provides Reliable Environmental Benefits but Increases Variability in Crop Yields: A Global Meta-Analysis. Front. Sustain. Food Syst. 2019, 3, 82. [Google Scholar] [CrossRef]
- Hinsley, A.; Hughes, A.C.; van Valkenburg, J.; Stark, T.; van Delft, J.; Sutherland, W.; Petrovan, S.O. Understanding the Environmental and Social Risks from the International Trade in Ornamental Plants. Bioscience 2025, 75, 222–239. [Google Scholar] [CrossRef]
- Wani, M.A.; Nazki, I.T.; Din, A.; Iqbal, S.; Wani, S.A.; Khan, F.U. Neelofar Floriculture Sustainability Initiative: The Dawn of New Era. In Sustainable Agriculture Reviews 27; Springer: Cham, Switzerland, 2018; pp. 91–127. [Google Scholar]
- Zhang, P.; Zhou, J.; He, D.; Yang, Y.; Lu, Z.; Yang, C.; Zhang, D.; Li, F.; Wang, J. From Flourish to Nourish: Cultivating Soil Health for Sustainable Floriculture. Plants 2024, 13, 3055. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Song, Y.; An, Y.; Lu, Y.; Zhong, G. Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health. Diversity 2024, 16, 734. [Google Scholar] [CrossRef]
- Dagher, D.; Taskos, D.; Mourouzidou, S.; Monokrousos, N. Microbial-Enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae 2025, 11, 592. [Google Scholar] [CrossRef]
- Barea, J.M.; Azcón-Aguilar, C. Production of Plant Growth-Regulating Substances by the Vesicular-Arbuscular Mycorrhizal Fungus Glomus mosseae. Appl. Environ. Microbiol. 1982, 43, 810–813. [Google Scholar] [CrossRef]
- Tawaraya, K.; Tokairin, K.; Wagatsuma, T. Dependence of Allium Fistulosum Cultivars on the Arbuscular Mycorrhizal Fungus, Glomus fasciculatum. Appl. Soil Ecol. 2001, 17, 119–124. [Google Scholar] [CrossRef]
- Liu, J.; Wu, L.; Wei, S.; Xiao, X.; Su, C.; Jiang, P.; Song, Z.; Wang, T.; Yu, Z. Effects of Arbuscular Mycorrhizal Fungi on the Growth, Nutrient Uptake and Glycyrrhizin Production of Licorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 2007, 52, 29–39. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D.J. Mycorrhizal Symbiosis, 3rd ed.; Academic Press: San Diego, CA, USA, 2008. [Google Scholar]
- Poveda, J.; Santamaría, Ó.; Diez, J.J.; Martín-García, J. Mycorrhizal Fungi as a Source of Metabolites for Agricultural Applications. In Fungal Metabolites for Agricultural Applications: Biostimulation and Crop Protection by Fungal Biotechnology; Springer: Cham, Switzerland, 2025; pp. 39–58. [Google Scholar]
- Bolan, N.S. A Critical Review on the Role of Mycorrhizal Fungi in the Uptake of Phosphorus by Plants. Plant Soil 1991, 134, 189–207. [Google Scholar] [CrossRef]
- Hodge, A.; Campbell, C.D.; Fitter, A.H. An Arbuscular Mycorrhizal Fungus Accelerates Decomposition and Acquires Nitrogen Directly from Organic Material. Nature 2001, 413, 297–299. [Google Scholar] [CrossRef]
- Tang, H.; Hassan, M.U.; Feng, L.; Nawaz, M.; Shah, A.N.; Qari, S.H.; Liu, Y.; Miao, J. The Critical Role of Arbuscular Mycorrhizal Fungi to Improve Drought Tolerance and Nitrogen Use Efficiency in Crops. Front. Plant Sci. 2022, 13, 919166. [Google Scholar] [CrossRef]
- Ezawa, T.; Saito, K. How Do Arbuscular Mycorrhizal Fungi Handle Phosphate? New Insight into Fine-tuning of Phosphate Metabolism. New Phytol. 2018, 220, 1116–1121. [Google Scholar] [CrossRef]
- Qi, S.; Wang, J.; Wan, L.; Dai, Z.; da Silva Matos, D.M.; Du, D.; Egan, S.; Bonser, S.P.; Thomas, T.; Moles, A.T. Arbuscular Mycorrhizal Fungi Contribute to Phosphorous Uptake and Allocation Strategies of Solidago Canadensis in a Phosphorous-Deficient Environment. Front. Plant Sci. 2022, 13, 831654. [Google Scholar] [CrossRef] [PubMed]
- Weber, S.E.; Bascompte, J.; Kahmen, A.; Niklaus, P.A. AMF Diversity Promotes Plant Community Phosphorus Acquisition and Reduces Carbon Costs per Unit of Phosphorus. New Phytol. 2025, 248, 886–896. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, C.; Wang, G. Inoculation with Arbuscular Mycorrhizal Fungi Improves Plant Biomass and Nitrogen and Phosphorus Nutrients: A Meta-Analysis. BMC Plant Biol. 2024, 24, 960. [Google Scholar] [CrossRef] [PubMed]
- He, X.-H.; Critchley, C.; Bledsoe, C. Nitrogen Transfer within and between Plants through Common Mycorrhizal Networks (CMNs). CRC Crit. Rev. Plant Sci. 2003, 22, 531–567. [Google Scholar] [CrossRef]
- Govindarajulu, M.; Pfeffer, P.E.; Jin, H.; Abubaker, J.; Douds, D.D.; Allen, J.W.; Bücking, H.; Lammers, P.J.; Shachar-Hill, Y. Nitrogen Transfer in the Arbuscular Mycorrhizal Symbiosis. Nature 2005, 435, 819–823. [Google Scholar] [CrossRef]
- Goh, D.M.; Cosme, M.; Kisiala, A.B.; Mulholland, S.; Said, Z.M.F.; Spíchal, L.; Emery, R.J.N.; Declerck, S.; Guinel, F.C. A Stimulatory Role for Cytokinin in the Arbuscular Mycorrhizal Symbiosis of Pea. Front. Plant Sci. 2019, 10, 262. [Google Scholar] [CrossRef]
- Jing, S.; Li, Y.; Zhu, L.; Su, J.; Yang, T.; Liu, B.; Ma, B.; Ma, F.; Li, M.; Zhang, M. Transcriptomics and Metabolomics Reveal Effect of Arbuscular Mycorrhizal Fungi on Growth and Development of Apple Plants. Front. Plant Sci. 2022, 13, 1052464. [Google Scholar] [CrossRef]
- Mortimer, P.E.; Pérez-Fernández, M.A.; Valentine, A.J. The Role of Arbuscular Mycorrhizal Colonization in the Carbon and Nutrient Economy of the Tripartite Symbiosis with Nodulated Phaseolus Vulgaris. Soil. Biol. Biochem. 2008, 40, 1019–1027. [Google Scholar] [CrossRef]
- Pons, S.; Fournier, S.; Chervin, C.; Bécard, G.; Rochange, S.; Frei Dit Frey, N.; Puech Pagès, V. Phytohormone Production by the Arbuscular Mycorrhizal Fungus Rhizophagus Irregularis. PLoS ONE 2020, 15, e0240886. [Google Scholar] [CrossRef]
- Sachs, J.; Remans, R.; Smukler, S.; Winowiecki, L.; Andelman, S.J.; Cassman, K.G.; Castle, D.; DeFries, R.; Denning, G.; Fanzo, J. Monitoring the World’s Agriculture. Nature 2010, 466, 558–560. [Google Scholar] [CrossRef]
- Bianciotto, V.; Victorino, I.; Scariot, V.; Berruti, A. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Current Role and Potential for the Horticulture Industry. In Proceedings of the III International Symposium on Woody Ornamentals of the Temperate Zone 1191, Minneapolis, MN, USA, 2–5 August 2016; pp. 207–216. [Google Scholar]
- Vosnjak, M.; Likar, M.; Osterc, G. The Effect of Mycorrhizal Inoculum and Phosphorus Treatment on Growth and Flowering of Ajania (Ajania pacifica (Nakai) Bremer et Humphries) Plant. Horticulturae 2021, 7, 178. [Google Scholar] [CrossRef]
- Guo, X.; Wang, P.; Wang, X.; Li, Y.; Ji, B. Specific Plant Mycorrhizal Responses Are Linked to Mycorrhizal Fungal Species Interactions. Front. Plant Sci. 2022, 13, 930069. [Google Scholar] [CrossRef] [PubMed]
- Linderman, R.G.; Davis, E.A. Varied Response of Marigold (Tagetes spp.) Genotypes to Inoculation with Different Arbuscular Mycorrhizal Fungi. Sci. Hortic. 2004, 99, 67–78. [Google Scholar] [CrossRef]
- Miao-Miao, X.I.E.; Yu, W.; Qiu-Shuang, L.I.; Kamil, K.; Qiang-Sheng, W.U. A Friendly-Environmental Strategy: Application of Arbuscular Mycorrhizal Fungi to Ornamental Plants for Plant Growth and Garden Landscape. Not. Bot. Horti Agrobot. Cluj. Napoca 2020, 48, 1100–1115. [Google Scholar]
- Wu, W.-J.; Zou, Y.-N.; Hashem, A.; Avila-Quezada, G.D.; Abd_Allah, E.F.; Wu, Q.-S. Rhizoglomus Intraradices Is More Prominent in Improving Soil Aggregate Distribution and Stability than in Improving Plant Physiological Activities. Agronomy 2023, 13, 1427. [Google Scholar] [CrossRef]
- Djighaly, P.I.; Diagne, N.; Ngom, M.; Ngom, D.; Hocher, V.; Fall, D.; Diouf, D.; Laplaze, L.; Svistoonoff, S.; Champion, A. Selection of Arbuscular Mycorrhizal Fungal Strains to Improve Casuarina equisetifolia L. and Casuarina glauca Sieb. Tolerance to Salinity. Ann. For. Sci. 2018, 75, 72. [Google Scholar] [CrossRef]
- Ortas, I. The Effect of Mycorrhizal Fungal Inoculation on Plant Yield, Nutrient Uptake and Inoculation Effectiveness under Long-Term Field Conditions. Field Crops Res. 2012, 125, 35–48. [Google Scholar] [CrossRef]
- Watts-Williams, S.J.; Cavagnaro, T.R. Arbuscular Mycorrhizas Modify Tomato Responses to Soil Zinc and Phosphorus Addition. Biol. Fertil. Soils 2012, 48, 285–294. [Google Scholar] [CrossRef]
- Schreiner, R.P.; Moyer, M.M.; East, K.E.; Zasada, I.A. Managing Arbuscular Mycorrhizal Fungi in Arid Columbia Basin Vineyards of the Pacific Northwest United States. Am. J. Enol. Vitic. 2023, 74, 0740020. [Google Scholar] [CrossRef]
- Liang, L.; Liu, B.; Huang, D.; Kuang, Q.; An, T.; Liu, S.; Liu, R.; Xu, B.; Zhang, S.; Deng, X. Arbuscular Mycorrhizal Fungi Alleviate Low Phosphorus Stress in Maize Genotypes with Contrasting Root Systems. Plants 2022, 11, 3105. [Google Scholar] [CrossRef] [PubMed]
- Dejana, L.; Ramírez-Serrano, B.; Rivero, J.; Gamir, J.; Lopez-Raez, J.A.; Pozo, M.J. Phosphorus Availability Drives Mycorrhiza Induced Resistance in Tomato. Front. Plant Sci. 2022, 13, 1060926. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size Analysis. Methods Soil. Anal. Part. 1 Phys. Mineral. Methods 1986, 5, 383–411. [Google Scholar]
- Thomas, G.W. Exchangeable Cations. Methods Soil. Anal. Part. 2 Chem. Microbiol. Prop. 1982, 9, 159–165. [Google Scholar]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Nelson, D.W.; Sommers, L.E. Determination of Total Nitrogen in Plant Material 1. Agron. J. 1973, 65, 109–112. [Google Scholar] [CrossRef]
- Feldmann, F.; Idczak, E. 18 Inoculum Production of Vesicular-Arbuscular Mycorrhizal Fungi for Use in Tropical Nurseries. In Methods in Microbiology; Elsevier: Amsterdam, The Netherlands, 1992; Volume 24, pp. 339–357. ISBN 0580-9517. [Google Scholar]
- Harbaugh, B.K.; Bell, M.L.; Liang RongNa, L.R. Evaluation of Forty-Seven Cultivars of Lisianthus as Cut Flowers. HortTechnology 2000, 10, 812–815. [Google Scholar] [CrossRef]
- Tennant, D. A Test of a Modified Line Intersect Method of Estimating Root Length. J. Ecol. 1975, 63, 995. [Google Scholar] [CrossRef]
- Koske, R.E.; Gemma, J.N. A Modified Procedure for Staining Roots to Detect VA Mycorrhizas. Mycol. Res. 1989, 92, 486–488. [Google Scholar] [CrossRef]
- Giovannetti, M.; Mosse, B. An Evaluation of Techniques for Measuring Vesicular Arbuscular Mycorrhizal Infection in Roots. New Phytol. 1980, 84, 489–500. [Google Scholar] [CrossRef]
- Jones, J.B., Jr.; Case, V.W. Sampling, Handling, and Analyzing Plant Tissue Samples. Soil. Test. Plant Anal. 1990, 3, 389–427. [Google Scholar]
- Jackson, M.L. Soil Chemical Analysis: Advanced Course; UW-Madison Libraries parallel press: Madison, WI, USA, 2005; ISBN 1893311473. [Google Scholar]
- Mundra, S.; Bahram, M.; Eidesen, P.B. Alpine Bistort (Bistorta vivipara) in Edge Habitat Associates with Fewer but Distinct Ectomycorrhizal Fungal Species: A Comparative Study of Three Contrasting Soil Environments in Svalbard. Mycorrhiza 2016, 26, 809–818. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, M.S.; Janos, D.P. Plant Growth, Phosphorus Nutrition, and Root Morphological Responses to Arbuscular Mycorrhizas, Phosphorus Fertilization, and Intraspecific Density. Mycorrhiza 2005, 15, 203–216. [Google Scholar] [CrossRef] [PubMed]
- Prasad, K.; Aggarwal, A.; Yadav, K.; Tanwar, A. Impact of Different Levels of Superphosphate Using Arbuscular Mycorrhizal Fungi and Pseudomonas Fluorescens on Chrysanthemum indicum L. J. Soil. Sci. Plant Nutr. 2012, 12, 451–462. [Google Scholar] [CrossRef]
- Tian, Y.; Xu, J.; Li, L.; Farooq, T.H.; Ma, X.; Wu, P. Effect of Arbuscular Mycorrhizal Symbiosis on Growth and Biochemical Characteristics of Chinese Fir (Cunninghamia lanceolata) Seedlings under Low Phosphorus Environment. PeerJ 2024, 12, e17138. [Google Scholar] [CrossRef]
- Zhang, T.; Feng, G. Arbuscular Mycorrhizal Fungi Alleviate the Negative Effects of Increases in Phosphorus (P) Resource Diversity on Plant Community Structure by Improving P Resource Utilization. Plant Soil 2021, 461, 295–307. [Google Scholar] [CrossRef]
- Ortas, I.; Sari, N.; Akpinar, Ç.; Yetisir, H. Screening Mycorrhiza Species for Plant Growth, P and Zn Uptake in Pepper Seedling Grown under Greenhouse Conditions. Sci. Hortic. 2011, 128, 92–98. [Google Scholar] [CrossRef]
- Gaur, A.; Gaur, A.; Adholeya, A. Growth and Flowering in Petunia hybrida, Callistephus chinensis and Impatiens balsamina Inoculated with Mixed AM Inocula or Chemical Fertilizers in a Soil of Low P Fertility. Sci. Hortic. 2000, 84, 151–162. [Google Scholar] [CrossRef]
- Sheikh-Assadi, M.; Khandan-Mirkohi, A.; Taheri, M.R.; Babalar, M.; Sheikhi, H.; Nicola, S. Arbuscular Mycorrhizae Contribute to Growth, Nutrient Uptake, and Ornamental Characteristics of Statice (Limonium sinuatum [L.] Mill.) Subject to Appropriate Inoculum and Optimal Phosphorus. Horticulturae 2023, 9, 564. [Google Scholar] [CrossRef]
- Sarathambal, C.; Srinivasan, V.; Jeevalatha, A.; Sivaranjani, R.; Alagupalamuthirsolai, M.; Peeran, M.F.; Mukesh Sankar, S.; George, P.; Dilkush, F. Unravelling the Synergistic Effects of Arbuscular Mycorrhizal Fungi and Vermicompost on Improving Plant Growth, Nutrient Absorption, and Secondary Metabolite Production in Ginger (Zingiber officinale Rosc.). Front. Sustain. Food Syst. 2024, 8, 1412610. [Google Scholar] [CrossRef]
- Sohn, B.K.; Kim, K.Y.; Chung, S.J.; Kim, W.S.; Park, S.M.; Kang, J.G.; Rim, Y.S.; Cho, J.S.; Kim, T.H.; Lee, J.H. Effect of the Different Timing of AMF Inoculation on Plant Growth and Flower Quality of Chrysanthemum. Sci. Hortic. 2003, 98, 173–183. [Google Scholar] [CrossRef]
- Liu, C.-Y.; Guo, X.-N.; Alqahtani, M.D.; Wu, Q.-S. Funneliformis mosseae Exhibits Greater Improved Effects on Root Hair Development and Phosphorus Uptake in Trifoliate Orange than Claroideoglomus etunicatum. Rhizosphere 2025, 34, 101081. [Google Scholar] [CrossRef]
- Etesami, H.; Jeong, B.R.; Glick, B.R. Contribution of Arbuscular Mycorrhizal Fungi, Phosphate–Solubilizing Bacteria, and Silicon to P Uptake by Plant. Front. Plant Sci. 2021, 12, 1355. [Google Scholar] [CrossRef]
- Deng, Y.; Feng, G.; Chen, X.; Zou, C. Arbuscular Mycorrhizal Fungal Colonization Is Considerable at Optimal Olsen-P Levels for Maximized Yields in an Intensive Wheat-Maize Cropping System. Field Crops Res. 2017, 209, 1–9. [Google Scholar] [CrossRef]
- Hart, M.M.; Forsythe, J.A. Using Arbuscular Mycorrhizal Fungi to Improve the Nutrient Quality of Crops; Nutritional Benefits in Addition to Phosphorus. Sci. Hortic. 2012, 148, 206–214. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, A.K.; Prasad, R.; Varma, A. Arbuscular Mycorrhiza: A Tool for Enhancing Crop Production. In Mycorrhiza-Nutrient Uptake, Biocontrol, Ecorestoration; Springer: Cham, Switzerland, 2017; pp. 235–250. [Google Scholar]
- Xie, X.; Hu, W.; Fan, X.; Chen, H.; Tang, M. Interactions between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. Front. Plant Sci. 2019, 10, 1172. [Google Scholar] [CrossRef]
- Duan, S.; Feng, G.; Limpens, E.; Bonfante, P.; Xie, X.; Zhang, L. Cross-Kingdom Nutrient Exchange in the Plant–Arbuscular Mycorrhizal Fungus–Bacterium Continuum. Nat. Rev. Microbiol. 2024, 22, 773–790. [Google Scholar] [CrossRef]
- Van Geel, M.; De Beenhouwer, M.; Lievens, B.; Honnay, O. Crop-Specific and Single-Species Mycorrhizal Inoculation Is the Best Approach to Improve Crop Growth in Controlled Environments. Agron. Sustain. Dev. 2016, 36, 37. [Google Scholar] [CrossRef]
- Zou, Y.-N.; Wan, Y.-X.; Zheng, F.-L.; Cheng, X.-F.; Hashem, A.; Wu, Q.-S. Mycorrhizal Trifoliate Orange Plants Tolerate Soil Drought by Enhancing Photosynthetic Physiological Activities and Reducing Active GA3 Levels. Tree Physiol. 2025, 45, tpaf073. [Google Scholar] [CrossRef]
- Sun, X.; Chen, F.; Yuan, L.; Mi, G. The Physiological Mechanism Underlying Root Elongation in Response to Nitrogen Deficiency in Crop Plants. Planta 2020, 251, 84. [Google Scholar] [CrossRef]
- Van der Werf, A.; Nagel, O.W. Carbon Allocation to Shoots and Roots in Relation to Nitrogen Supply Is Mediated by Cytokinins and Sucrose: Opinion. Plant Soil 1996, 185, 21–32. [Google Scholar] [CrossRef]
- Engel, A.; Simler-Williamson, A.; Ravenscraft, A.; Bittleston, L.; de Graaff, M.-A. Interactive Effects of Fungal Community Structure and Soil Moisture on Wyoming Big Sagebrush Performance. Plant Soil 2025, 508, 417–439. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Z.; Mo, S.; Liu, J.; Xing, Y.; Wang, Y.; Ge, C.; Wang, Y. Mechanism of Low Phosphorus Inducing the Main Root Lengthening of Rice. J. Plant Growth Regul. 2021, 40, 1032–1043. [Google Scholar] [CrossRef]
- Nguyen, T.Q.; Sesin, V.; Kisiala, A.; Emery, R.J.N. Phytohormonal Roles in Plant Responses to Heavy Metal Stress: Implications for Using Macrophytes in Phytoremediation of Aquatic Ecosystems. Environ. Toxicol. Chem. 2021, 40, 7–22. [Google Scholar] [CrossRef] [PubMed]
- Asrar, A.-W.A.; Elhindi, K.M. Alleviation of Drought Stress of Marigold (Tagetes erecta) Plants by Using Arbuscular Mycorrhizal Fungi. Saudi J. Biol. Sci. 2011, 18, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Othman, Y.A.; Tahat, M.; Alananbeh, K.M.; Al-Ajlouni, M. Arbuscular Mycorrhizal Fungi Inoculation Improves Flower Yield and Postharvest Quality Component of Gerbera Grown under Different Salinity Levels. Agriculture 2022, 12, 978. [Google Scholar] [CrossRef]
- Lee, T.D.; Bazzaz, F.A. Regulation of Fruit Maturation Pattern in an Annual Legume, Cassia Fasciculata. Ecology 1982, 63, 1374–1388. [Google Scholar] [CrossRef]
- Flores, A.C.; Luna, A.A.E.; Portugal, V.O. Yield and Quality Enhancement of Marigold Flowers by Inoculation with Bacillus Subtilis and Glomus Fasciculatum. J. Sustain. Agric. 2007, 31, 21–31. [Google Scholar] [CrossRef]
- Aboul-Nasr, A. Effects of Vesicular-Arbuscular Mycorrhiza on Tagetes erecta and Zinnia elegans. Mycorrhiza 1995, 6, 61–64. [Google Scholar] [CrossRef]
- Edriss, M.H.; Davis, R.M.; Burger, D.W. Influence of Mycorrhizal Fungi on Cytokinin Production in Sour Orange. J. Am. Soc. Hortic. Sci. 1984, 109, 587–590. [Google Scholar] [CrossRef]
- López, I.G.; Martín, V.J.M. Application of Arbuscular Mycorrhizal Fungi on the Production of Cut Flower Roses under Commercial-like Conditions. Span. J. Agric. Res. 2012, 10, 166–174. [Google Scholar] [CrossRef]
- Qin, Z.; Tian, Y.; Hao, W.; Zhang, J.; Feng, G.; Christie, P.; Gai, J. Identifying the Predictors of Mycorrhizal Response under Multiple Fertilization Regimes. Agric. Ecosyst. Environ. 2024, 365, 108926. [Google Scholar] [CrossRef]
- Mardukhi, B.; Rejali, F.; Daei, G.; Ardakani, M.R.; Malakouti, M.J.; Miransari, M. Arbuscular Mycorrhizas Enhance Nutrient Uptake in Different Wheat Genotypes at High Salinity Levels under Field and Greenhouse Conditions. Comptes Rendus. Biol. 2011, 334, 564–571. [Google Scholar] [CrossRef]





| Treatments | Leaf Area (mm2 Plant−1) | Fresh Root Weight (g Plant−1) | Root Length (cm Plant−1) | |
|---|---|---|---|---|
| P a | P1 | 36,100 ± 3815 ab | 6.93 ± 0.36 a | 2843 ± 215 a |
| P2 | 40,000 ± 2928 a | 5.38 ± 0.44 b | 2184 ± 232 b | |
| P3 | 32,137 ± 1672 b | 4.72 ± 0.10 b | 1760 ± 68 b | |
| M b | M0 | 31,119 ± 1496 b | 4.86 ± 0.52 b | 1783 ± 211 b |
| M1 | 40,258 ± 4747 a | 5.94 ± 0.71 a | 2346 ± 349 a | |
| M2 | 33,331 ± 3705 ab | 5.78 ± 0.83 ab | 2413 ± 405 a | |
| M3 | 39,608 ± 1707 a | 6.12 ± 0.66 a | 2507 ± 341 a | |
| Sig. c | P | * | *** | *** |
| M | * | * | * | |
| P × M | ns | ns | ns | |
| Treatments | Number of Stem/Plant | Number of Flowers/Plant | Flower Diameter (mm) | Total Fresh Flower Weight (g Plant−1) | Fresh Flower Weight (g) | Vase Life (Days) | |
|---|---|---|---|---|---|---|---|
| P a | P1 | 1.83 ± 0.12 b | 7.92 ± 0.99 b | 90.92 ± 1.98 a | 22.44 ± 3.12 b | 2.84 ± 0.09 a | 9.83 ± 0.50 a |
| P2 | 2.19 ± 0.17 a | 11.31 ± 1.34 a | 90.59 ± 1.81 a | 34.51 ± 4.15 a | 3.02 ± 0.02 a | 11.00 ± 0.14 a | |
| P3 | 2.00 ± 0.10 ab | 9.37 ± 0.43 ab | 91.30 ± 2.33 a | 28.00 ± 2.32 ab | 2.93 ± 0.18 a | 11.83 ± 0.10 a | |
| M b | M0 | 1.75 ± 0.14 b | 7.36 ± 0.56 b | 85.7 ± 0.86 b | 21.61 ± 1.45 b | 2.90 ± 0.12 a | 10.44 ± 0.97 a |
| M1 | 1.97 ± 0.14 ab | 9.39 ± 0.91 ab | 92.58 ± 0.90 a | 28.85 ± 3.92 ab | 3.04 ± 0.17 a | 10.89 ± 0.80 a | |
| M2 | 2.03 ± 012 ab | 10.07 ± 1.85 a | 92.30 ± 2.38 a | 28.09 ± 6.50 ab | 2.73 ± 0.12 a | 11.12 ± 0.29 a | |
| M3 | 2.28 ± 0.15 a | 11.33 ± 1.03 a | 93.11 ± 0.32 a | 34.71 ± 3.25 a | 3.05 ± 0.06 a | 11.11 ± 0.29 a | |
| Sig. c | P | ns | ** | ns | ** | ns | ns |
| A | * | ** | ** | * | ns | ns | |
| P × M | ns | ns | ns | ns | ns | ns |
| Treatments | Root | Shoot | |||||||
|---|---|---|---|---|---|---|---|---|---|
| N | K | Ca | Zn | Fe | K | Ca | |||
| (%) | (%) | (%) | (mg kg−1 D.W) | (mg kg−1 D.W) | (%) | (%) | |||
| P a | P1 | 2.35 ± 0.09 b | 0.81 ± 0.05 a | 0.44 ± 0.01 a | 26.60 ± 0.70 a | 629.83 ± 19.69 a | 1.10 ± 0.02 b | 0.35 ± 0.02 a | |
| P2 | 2.71 ± 0.09 a | 0.89 ± 0.03 a | 0.41 ± 0.01 a | 18.40 ± 2.06 b | 409.83 ± 10.92 b | 1.23 ± 0.03 a | 0.37 ± 0.02 a | ||
| P3 | 2.74 ± 0.01 a | 0.92 ± 0.02 a | 0.47 ± 0.00 a | 16.85 ± 1.06 b | 420.83 ± 31.12 b | 1.27 ± 0.03 a | 0.40 ± 0.01 a | ||
| M b | M0 | 2.45 ± 0.19 b | 0.81 ± 0.09 a | 0.45 ± 0.02 a | 23.53 ± 2.43 a | 458.89 ± 59.30 a | 1.17 ± 0.05 a | 0.32 ± 0.02 b | |
| M1 | 2.58 ± 0.12 ab | 0.87 ± 0.00 a | 0.45 ± 0.01 a | 20.13 ± 2.85 a | 474.67 ± 84.49 a | 1.18 ± 0.08 a | 0.36 ± 0.01 ab | ||
| M2 | 2.65 ± 0.10 a | 0.90 ± 0.04 a | 0.43 ± 0.02 a | 18.53 ± 3.45 a | 518.67 ± 71.00 a | 1.25 ± 0.05 a | 0.38 ± 0.02 ab | ||
| M3 | 2.72 ± 0.13 a | 0.92 ± 0.01 a | 0.44 ± 0.02 a | 20.27 ± 3.98 a | 494.00 ± 82.67 a | 1.21 ± 0.06 a | 0.41 ± 0.02 a | ||
| Significance c | P | *** | ns | ns | *** | *** | ** | ns | |
| M | ** | ns | ns | ns | ns | ns | * | ||
| P × M | ns | ns | ns | ns | ns | ns | ns | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheikh-Assadi, M.; Taheri, M.; Khandan-Mirkohi, A.; Babalar, M.; Khansefid, M.; Omidi, M.; Gasparatos, D. Growth and Nutritional Enhancement of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) via Dual AMF Inoculation Under Phosphorus Regimes. Agronomy 2025, 15, 2480. https://doi.org/10.3390/agronomy15112480
Sheikh-Assadi M, Taheri M, Khandan-Mirkohi A, Babalar M, Khansefid M, Omidi M, Gasparatos D. Growth and Nutritional Enhancement of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) via Dual AMF Inoculation Under Phosphorus Regimes. Agronomy. 2025; 15(11):2480. https://doi.org/10.3390/agronomy15112480
Chicago/Turabian StyleSheikh-Assadi, Morteza, Mohammadreza Taheri, Azizollah Khandan-Mirkohi, Mesbah Babalar, Mahdi Khansefid, Mohammad Omidi, and Dionisios Gasparatos. 2025. "Growth and Nutritional Enhancement of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) via Dual AMF Inoculation Under Phosphorus Regimes" Agronomy 15, no. 11: 2480. https://doi.org/10.3390/agronomy15112480
APA StyleSheikh-Assadi, M., Taheri, M., Khandan-Mirkohi, A., Babalar, M., Khansefid, M., Omidi, M., & Gasparatos, D. (2025). Growth and Nutritional Enhancement of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.) via Dual AMF Inoculation Under Phosphorus Regimes. Agronomy, 15(11), 2480. https://doi.org/10.3390/agronomy15112480

