Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Farmland Extraction Module Using Satellite Images
2.2. Soil Moisture Prediction Module
2.3. Crop Yield Prediction Module
3. Results
3.1. Farmland Extraction Performance
3.2. Soil Moisture Prediction Performance
3.3. Onion Yield Prediction Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organization of the United Nations. Small Family Farmers Produce a Third of the World’s Food. Available online: https://www.fao.org/newsroom/detail/Small-family-farmers-produce-a-third-of-the-world-s-food/en (accessed on 27 September 2025).
- Food and Agriculture Organization (FAO). Agricultural Trade, Trade Policies and the Global Food System. Available online: https://www.fao.org/4/y4252e/y4252e11.htm (accessed on 21 October 2025).
- Grainrus. Which Countries in the World Have the Most Developed Agriculture? Available online: https://grainrus.com/en/news/articles/v-kakikh-stranakh-mira-naibolee-razvito-selskoe-khozyaystvo/#:~:text=profitable%20agricultural%20production?-,Top%20Five%20Agricultural%20Countries,the%20top%20five%20agricultural%20countries (accessed on 27 September 2025).
- Bloom Ranch. Advantages and Disadvantages of Commercial Farming. Available online: https://bloomranchofacton.com/pages/advantages-and-disadvantages-of-commercial-farming-including-definition-examples-images-types (accessed on 27 September 2025).
- Kim, Y.; On, Y.; So, J.; Kim, S.; Kim, S. A Decision support software application for the design of agrophotovoltaic systems in Republic of Korea. Sustainability 2023, 15, 8830. [Google Scholar] [CrossRef]
- Li, X.; Wang, R.; Du, Y.; Han, H.; Guo, S.; Song, X.; Ju, X. Significant increases in nitrous oxide emissions under simulated extreme rainfall events and straw amendments from agricultural soil. Soil Tillage Res. 2025, 246, 106361. [Google Scholar] [CrossRef]
- Gnisia, G.; Weik, J.; Ruser, R.; Essich, L.; Lewandowski, I.; Stein, A. Machine learning-based prediction of nitrous oxide emissions from arable farming: Exploring management practices as predictor variables. Ecol. Indic. 2025, 172, 113233. [Google Scholar] [CrossRef]
- Akkem, Y.; Biswas, S.K.; Varanasi, A. Smart farming using artificial intelligence: A review. Eng. Appl. Artif. Intell. 2023, 120, 105899. [Google Scholar] [CrossRef]
- Centorame, L.; La Porta, N.; Papandrea, M.; Mancini, A.; Foppa Pedretti, E. Evaluation of Feature Selection and Regression Models to Predict Biomass of Sweet Basil by Using Drone and Satellite Imagery. Appl. Sci. 2025, 15, 6227. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Madugundu, R.; Tola, E.; El-Hendawy, S.; Marey, S. Satellite-based determination of the water footprint of carrots and onions grown in the arid climate of Saudi Arabia. Remote Sens. 2022, 14, 5962. [Google Scholar] [CrossRef]
- Dastagiri, M.; Naga Sindhuja, P.V. Satellite farming in global agriculture: New tech revolution for food security and planet safety for future generation. Sci. Agric. 2020, 4, 2–10. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Hoang, T.D.; Pham, M.T.; Vu, T.T.; Nguyen, T.H.; Huynh, Q.-T.; Jo, J. Monitoring agriculture areas with satellite images and deep learning. Appl. Soft Comput. 2020, 95, 106565. [Google Scholar] [CrossRef]
- Segarra, J.; Buchaillot, M.L.; Araus, J.L.; Kefauver, S.C. Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy 2020, 10, 641. [Google Scholar] [CrossRef]
- The Business Research Company. Satellite Data Service for Agriculture Global Market Report. Available online: https://www.thebusinessresearchcompany.com/report/satellite-data-service-for-agriculture-global-market-report (accessed on 27 September 2025).
- Yoo, J.; Ahn, J.; Han, K.; Kang, H.; Cho, H.; Jeong, Y. Utilization of satellite technologies for agriculture. J. Environ. Sci. Int. 2024, 33, 547–552. [Google Scholar] [CrossRef]
- Omia, E.; Bae, H.; Park, E.; Kim, M.S.; Baek, I.; Kabenge, I.; Cho, B.-K. Remote sensing in field crop monitoring: A comprehensive review of sensor systems, data analyses and recent advances. Remote Sens. 2023, 15, 354. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Y.; Zhang, C.; Li, N. Machine learning methods for weather forecasting: A survey. Atmosphere 2025, 16, 82. [Google Scholar] [CrossRef]
- Shiff, S.; Lensky, I.M.; Bonfil, D.J. Using satellite data to optimize wheat yield and quality under climate change. Remote Sens. 2021, 13, 2049. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, S.; Kim, S. Onion (Allium cepa) Profit Maximization via Ensemble Learning-Based Framework for Efficient Nitrogen Fertilizer Use. Agronomy 2024, 14, 2130. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). Sentinel-2 Explorer. Available online: https://livingatlas.arcgis.com/sentinel2explorer/#mapCenter=122.87724%2C-23.46876%2C11.000&mode=dynamic&mainScene=%7CAgriculture+for+Visualization%7C (accessed on 1 September 2025).
- Copernicus Data Space Ecosystem (CDSE). Sentinel-2. Available online: https://dataspace.copernicus.eu/data-collections/copernicus-sentinel-data/sentinel-2 (accessed on 1 September 2025).
- Xie, Q.; Dash, J.; Huete, A.; Jiang, A.; Yin, G.; Ding, Y.; Peng, D.; Hall, C.C.; Brown, L.; Shi, Y. Retrieval of crop biophysical parameters from Sentinel-2 remote sensing imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 187–195. [Google Scholar] [CrossRef]
- Environmental Systems Research Institute (ESRI). Resample Function. Available online: https://pro.arcgis.com/en/pro-app/3.3/help/analysis/raster-functions/resample-function.htm (accessed on 13 October 2025).
- Amani, S.; Shafizadeh-Moghadam, H. A review of machine learning models and influential factors for estimating evapotranspiration using remote sensing and ground-based data. Agric. Water Manag. 2023, 284, 108324. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Taloor, A.K.; Manhas, D.S.; Kothyari, G.C. Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Appl. Comput. Geosci. 2021, 9, 100051. [Google Scholar] [CrossRef]
- Lykhovyd, P.; Sharii, V. Normalised difference moisture index in water stress assessment of maize crops. Agrology 2024, 7, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Burney, S.A.; Tariq, H. K-means cluster analysis for image segmentation. Int. J. Comput. Appl. 2014, 96, 1–8. [Google Scholar] [CrossRef]
- Workie, A.G.; Ketsela, Y.S. Assessing irrigation water management utilizing the CROPGRO model in implementing deficit irrigation for peanut cultivation in Arba Minch, Ethiopia. Water Sci. 2025, 39, 138–150. [Google Scholar] [CrossRef]
- Zheng, L.; Li, M.; Sun, J.; Tang, N.; Zhang, X. Estimation of soil moisture with aerial images and hyperspectral data. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Republic of Korea, 29 July 2005; pp. 4516–4519. [Google Scholar]
- Martinez, W.G. Ensemble pruning via quadratic margin maximization. IEEE Access 2021, 9, 48931–48951. [Google Scholar] [CrossRef]
- Liu, L.; Zhao, G.; Liang, W.; Jian, Z. Hybrid stacking ensemble algorithm and simulated annealing optimization for stability evaluation of underground entry-type excavations. Undergr. Space 2024, 17, 25–44. [Google Scholar] [CrossRef]
- Lu, M.; Hou, Q.; Qin, S.; Zhou, L.; Hua, D.; Wang, X.; Cheng, L. A stacking ensemble model of various machine learning models for daily runoff forecasting. Water 2023, 15, 1265. [Google Scholar] [CrossRef]
- Soil Environment Information System. Soil Properties. Available online: https://soil.rda.go.kr/soilmap/chemistry.do (accessed on 28 September 2025).
- Fitsum, G.; Woldetsadik, K.; Alemayhu, Y. Effect of irrigation depth and nitrogen levels on growth and buld yield on onion (Allium cepa L) at algae, central rift valley of Ethiopia. Int. J. Life Sci. 2016, 5, 152–162. [Google Scholar]
- Ambomsa, A.; Husen, D.; Shelemew, Z.; Jalde, A. Effects of Different Irrigation Levels and Fertilizer Rates on Yield, Yield Components and Water Productivity of Onion at Adami Tulu Agricultural Research Center. Agric. For. Fish. 2023, 12, 57–63. [Google Scholar] [CrossRef]
- Kemal, Y.O. Effects of irrigation and nitrogen levels on bulb yield, nitrogen uptake and water use efficiency of shallot (Allium cepa var. ascalonicum Baker). Afr. J. Agric. Res. 2013, 8, 4637–4643. [Google Scholar] [CrossRef]
- Lindi, S.; Nanesa, K.; Hone, M.; Eticha, B. Determination of Irrigation Scheduling and Optimal Nitrogen Fertilizer Rate for Onion in Tiyo District, Arsi Zone, South Eastern Ethiopia. Global Res. Environ. Sustainability 2024, 2, 15–27. [Google Scholar]
- Kim, S.; Seo, J.; Kim, S. Machine learning technologies in the supply chain management research of biodiesel: A review. Energies 2024, 17, 1316. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Chen, M.; Liu, S.; Shao, Z.; Zhou, X.; Liu, P. Illumination and contrast balancing for remote sensing images. Remote Sens. 2014, 6, 1102–1123. [Google Scholar] [CrossRef]









| Sentinel-2 Bands | Spatial Resolution (m) | |
|---|---|---|
| Band 4—Red | 0.665 | 10 |
| Band 8—NIR | 0.842 | 10 |
| Band 11—SWIR | 1.610 | 20 |
| Soil Depth (cm) | Physical Properties | Chemical Properties | |||||||
|---|---|---|---|---|---|---|---|---|---|
| Clay (%) | Silt (%) | Sand (%) | Bulk Density (Mg/m3) | Soil Type | Field Capacity (%) | Organic Carbon (g/kg) | Cation Exchange Capacity (cmol/kg) | pH | |
| 0–18 | 27.7 | 51.8 | 20.5 | 1.19 | Clay Loam | 35.7 | 12.7 | 11.9 | 5.4 |
| 18–34 | 26.1 | 52.9 | 21.0 | 1.42 | Silt Loam | 36.0 | 5.6 | 10.7 | 5.7 |
| Satellite Imagery | R2 | MAE | MAPE | RMSE |
|---|---|---|---|---|
| RGB Image | 0.683 | 1423.404 | 0.740 | 1961.599 |
| NDVI Image Map | 0.908 | 649.876 | 0.362 | 911.720 |
| NDMI Image Map | 0.880 | 858.429 | 0.466 | 1166.047 |
| NDVI+NDMI Intersection | 0.981 | 255.673 | 0.126 | 364.663 |
| Satellite Imagery | Accuracy | Precision | Recall | F1-Score |
|---|---|---|---|---|
| RGB Image | 0.822 | 0.668 | 1.000 | 0.801 |
| NDVI Image Map | 0.908 | 0.815 | 0.999 | 0.898 |
| NDMI Image Map | 0.893 | 0.769 | 1.000 | 0.870 |
| NDVI+NDMI Intersection | 0.965 | 0.917 | 0.992 | 0.953 |
| Soil Irrigation Level | Range of RGB Values | ||
|---|---|---|---|
| Red | Green | Blue | |
| 0% | 119–161 | 107–148 | 91–130 |
| 50% | 69–108 | 55–91 | 48–80 |
| 100% | 48–80 | 43–74 | 37–66 |
| Category | Year | Average Temperature (°C) | Average Precipitation (mm/day) | Average Humidity (%) | Average Solar Radiation (MJ/m2) |
|---|---|---|---|---|---|
| Study A | 2009 | 19.41 | 3.04 | 59.21 | 21.81 |
| Study B | 2013–2014 | 14.69 | 1.48 | 53.71 | 18.63 |
| Study C | 2021–2023 | 15.67 | 3.23 | 61.99 | 23.84 |
| Study D | 2021–2022 | 18.81 | 1.99 | 63.35 | 22.29 |
| Average | 17.15 | 2.44 | 59.57 | 21.64 | |
| Irrigation Level Model | Satellite RGB Model | |||||
|---|---|---|---|---|---|---|
| Meta Learner | R2 | MAE | RMSE | R2 | MAE | RMSE |
| LR | 0.9419 | 1.6245 | 1.3388 | 0.9815 | 1.0072 | 0.7150 |
| SVR | 0.9380 | 1.6776 | 1.3711 | 0.9839 | 0.9391 | 0.7187 |
| Lasso | 0.9420 | 1.6226 | 1.3356 | 0.9819 | 0.9984 | 0.7399 |
| DTR | 0.7565 | 3.3262 | 2.5888 | 0.9598 | 1.4854 | 1.3525 |
| RFR | 0.8937 | 2.1980 | 1.8243 | 0.9368 | 1.8637 | 1.6518 |
| Average | 0.8944 | 2.0898 | 1.6917 | 0.9688 | 1.2588 | 1.0356 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, J.; Kim, S.; Kim, S. Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model. Agronomy 2025, 15, 2479. https://doi.org/10.3390/agronomy15112479
Seo J, Kim S, Kim S. Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model. Agronomy. 2025; 15(11):2479. https://doi.org/10.3390/agronomy15112479
Chicago/Turabian StyleSeo, Junyoung, Sumin Kim, and Sojung Kim. 2025. "Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model" Agronomy 15, no. 11: 2479. https://doi.org/10.3390/agronomy15112479
APA StyleSeo, J., Kim, S., & Kim, S. (2025). Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model. Agronomy, 15(11), 2479. https://doi.org/10.3390/agronomy15112479

