Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Proximate Composition Analysis
2.3. Mineral Element Analysis
2.4. Bioactive Compounds Analysis
2.4.1. Sample Extraction
2.4.2. L-Dopa
2.4.3. Flavonol
2.4.4. Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
2.5. Antioxidant Activity
2.6. Statistical Analysis
3. Results and Discussion
3.1. Dry Matter and Proximate Composition
3.2. Mineral Element
3.3. Bioactive Compounds
3.3.1. L-Dopa and Flavonols
3.3.2. TPC, TFC, and Antioxidant Activities
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, X.; Yadav, R.; Siddique, K.H. Neglected and underutilized crop species: The key to improving dietary diversity and fighting hunger and malnutrition in Asia and the Pacific. Front. Nutr. 2020, 7, 593711. [Google Scholar] [CrossRef] [PubMed]
- Halmemies-Beauchet-Filleau, A.; Rinne, M.; Lamminen, M.; Mapato, C.; Ampapon, T.; Wanapat, M.; Vanhatalo, A. Review: Alternative and novel feeds for ruminants: Nutritive value, product quality and environmental aspects. Animal 2018, 12, 295–309. [Google Scholar] [CrossRef] [PubMed]
- Yafetto, L.; Odamtten, G.T.; Wiafe-Kwagyan, M. Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon 2023, 9, e14814. [Google Scholar] [CrossRef]
- Yang, K.; Qing, Y.; Yu, Q.; Tang, X.; Chen, G.; Fang, R.; Liu, H. By-product feeds: Current understanding and future perspectives. Agriculture 2021, 11, 207. [Google Scholar] [CrossRef]
- Wu, Z.L.; Yang, X.; Zhang, J.; Wang, W.; Liu, D.; Hou, B.; Bai, T.; Zhang, R.; Zhang, Y.; Liu, H.; et al. Effects of forage type on the rumen microbiota, growth performance, carcass traits, and meat quality in fattening goats. Front. Vet. Sci. 2023, 10, 1147685. [Google Scholar] [CrossRef]
- Krusinski, L.; Sergin, S.; Jambunathan, V.; Rowntree, J.E.; Fenton, J.I. Attention to the details: How variations in US grass-fed cattle-feed supplementation and finishing date influence human health. Front. Sustain. Food Syst. 2022, 6, 851494. [Google Scholar] [CrossRef]
- Billman, E.D.; de Souza, I.A.; Smith, R.G.; Soder, K.J.; Warren, N.; Teixeira, F.A.; Brito, A.F. Winter annual forage mass–nutritive value trade—Offs are affected by harvest timing. CFTM 2021, 7, e20113. [Google Scholar] [CrossRef]
- Casler, M.D.; Undersander, D.J.; Sharpe, P. Identification of temperate pasture grasses and legumes. In Horse Pasture Management, 2nd ed.; Sharpe, P.H., Ed.; Academic Press: Cambridge, MA, USA, 2025; pp. 11–36. [Google Scholar]
- Capstaff, N.M.; Miller, A.J. Improving the yield and nutritional quality of forage crops. Front. Plant Sci. 2018, 9, 535. [Google Scholar] [CrossRef]
- Forage Seed–Market Share Analysis, Industry Trends & Statistics, Growth Forecasts (2025–2030). Available online: https://www.researchandmarkets.com/reports/5717172/forage-seed-market-share-analysis-industry (accessed on 4 August 2025).
- Billman, E.D.; de Souza, I.A.; Smith, R.G.; Soder, K.J.; Warren, N.; Brito, A.F. Evaluating warm—Season annual forages to fill summer forage gaps in short—Season climates. CFTM 2022, 8, e20152. [Google Scholar] [CrossRef]
- Bell, L.W.; Watt, L.J.; Stutz, R.S. Forage brassicas have potential for wider use in drier, mixed crop–livestock farming systems across Australia. Crop. Pasture Sci. 2020, 71, 924–943. [Google Scholar] [CrossRef]
- Holechek, J.L.; Geli, H.M.; Cibils, A.F.; Sawalhah, M.N. Climate change, rangelands, and sustainability of ranching in the Western United States. Sustainability 2020, 12, 4942. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Notenbaert, A.M.; Wood, S.; Msangi, S.; Freeman, H.; Bossio, D.; Dixon, J.; Peters, M.; van de Steeg, J.; et al. Smart investments in sustainable food production: Revisiting mixed crop-livestock systems. Science 2010, 327, 822–825. [Google Scholar] [CrossRef]
- Sharan, S.; Zanghelini, G.; Zotzel, J.; Bonerz, D.; Aschoff, J.; Saint-Eve, A.; Maillard, M.N. Fava bean (Vicia faba L.) for food applications: From seed to ingredient processing and its effect on functional properties, antinutritional factors, flavor, and color. CRFSFS 2021, 20, 401–428. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Hauggaard-Nielsen, H. Faba bean in cropping systems. Field Crop. Res. 2010, 115, 203–216. [Google Scholar] [CrossRef]
- FAOSTAT-Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL/visualize (accessed on 4 August 2025).
- Krenz, L.M.M.; Grebenteuch, S.; Zocher, K.; Rohn, S.; Pleissner, D. Valorization of faba bean (Vicia faba) by-products. Biomass Convers. Biorefin. 2024, 14, 26663–26680. [Google Scholar] [CrossRef]
- Ball, D.; Collins, M.; Lacefield, G.; Martin, N.; Mertens, D.; Olson, K.; Putnam, D.; Undersander, D.; Wolf, M. Understanding Forage Quality–American Farm Bureau Federation Publication 1 (01); American Farm Bureau Federation: Washington, DC, USA, 2001. [Google Scholar]
- Chapman, D.F.; Edwards, G.R.; Stewart, A.V.; McEvoy, M.; O’Donovan, M.; Waghorn, G.C. Valuing forages for genetic selection: What traits should we focus on? Anim. Prod. Sci. 2015, 55, 869–882. [Google Scholar] [CrossRef]
- Turco, I.; Ferretti, G.; Bacchetti, T. Review of the health benefits of Faba bean (Vicia faba L.) polyphenols. J. Food Nutr. Res. 2016, 55, 283–293. [Google Scholar]
- Prabhu, S.; Rajeswari, D. Nutritional and Biological properties of Vicia faba L.: A perspecitve review. Int. Food Res. J. 2018, 25, 1332–1340. [Google Scholar]
- Ponnampalam, E.N.; Kiani, A.; Santhiravel, S.; Holman, B.W.; Lauridsen, C.; Dunshea, F.R. The importance of dietary antioxidants on oxidative stress, meat and milk production, and their preservative aspects in farm animals: Antioxidant action, animal health, and product quality—Invited review. Animals 2022, 12, 3279. [Google Scholar] [CrossRef]
- Valente, I.M.; Maia, M.R.G.; Malushi, N.; Oliveira, H.M.; Papa, L.; Rodrigues, J.A.; Fonseca, A.J.M.; Cabrita, A.R.J. Profiling of phenolic compounds and antioxidant properties of European varieties and cultivars of Vicia faba L. pods. Phytochemistry 2018, 152, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Tesoro, C.; Ciriello, R.; Lelario, F.; Di Capua, A.; Pascale, R.; Bianco, G.; Dell’Agli, M.; Piazza, S.; Guerrieri, A.; Scrano, L.; et al. Development and validation of a reversed-phase HPLC method with UV detection for the determination of L-Dopa in Vicia faba L. broad beans. Molecules 2022, 27, 7468. [Google Scholar] [CrossRef]
- Neugart, S.; Rohn, S.; Schreiner, M. Identification of complex, naturally occurring flavonoid glycosides in Vicia faba and Pisum sativum leaves by HPLC-DAD-ESI-MSn and the genotypic effect on their flavonoid profile. Food Res. Int. 2015, 76, 114–121. [Google Scholar] [CrossRef]
- Vlasova, I.; Krüsselmann, P.; Kostenko, Y.; Obrębski, M.; Granica, S.; Vahjen, W.; Zentek, J.; Równicki, M.; Piwowarski, J.P. The assessment of chemical composition and biological activity of faba bean pods as a potential feed additive utilized in piglets nutrition. Sci. Rep. 2025, 15, 1234. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Havlin, J.L.; Soltanpour, P.N. A nitric acid plant tissue digest method for use with inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1980, 11, 969–980. [Google Scholar] [CrossRef]
- Duan, S.; Kwon, S.-J.; Lim, Y.J.; Gil, C.S.; Jin, C.; Eom, S.H. L-3, 4-dihydroxyphenylalanine accumulation in faba bean (Vicia faba L.) tissues during different growth stages. Agronomy 2021, 11, 502. [Google Scholar] [CrossRef]
- Duan, S.; Kwon, S.-J.; Kim, J.H.; Kim, J.-H.; Kim, J.M.; Kim, J.; Eom, S.H. Thermal dependent effects of roasting on the volatiles, phenolics, and sensory properties of faba leaves (Vicia faba). LWT 2025, 215, 117257. [Google Scholar] [CrossRef]
- Onyeonagu, C.C.; Eze, S.M. Proximate composition of some forage grasses and legumes as influenced by season harvest. AJAR 2012, 8, 339–343. [Google Scholar]
- Hamacher, M.; Malisch, C.S.; Reinsch, T.; Taube, F.; Loges, R. Evaluation of yield formation and nutritive value of forage legumes and herbs with potential for diverse grasslands due to their concentration in plant specialized metabolites. Eur. J. Agron. 2021, 128, 126307. [Google Scholar] [CrossRef]
- Mejri, F.; Selmi, S.; Martins, A.; Benkhoud, H.; Baati, T.; Chaabane, H.; Njim, L.; Serralheiro, M.L.M.; Rauter, A.P.; Hosni, K. Broad bean (Vicia faba L.) pods: A rich source of bioactive ingredients with antimicrobial, antioxidant, enzyme inhibitory, anti-diabetic and health-promoting properties. Food Funct. 2018, 9, 2051–2069. [Google Scholar] [CrossRef]
- Harris, G.K.; Marshall, M.R. Ash Analysis. In Food Analysis. Food Science Text Series; Nielsen, S.S., Ed.; Springer: Cham, Germany, 2017. [Google Scholar]
- Juknevičius, S.; Sabienė, N. The content of mineral elements in some grasses and legumes. Ekologija 2007, 53, 44–52. [Google Scholar]
- Kappel, L.C.; Morgan, E.B.; Kilgore, L.; Ingraham, R.H.; Babcock, D.K. Seasonal changes of mineral content of southern forages. J. Dairy Sci. 1985, 68, 1822–1827. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, W.; Cheng, Q.; Zhang, L.; Cai, T.; Shi, Q.; Wang, Z.; Chang, C.; Yin, Q.; Jiang, X.; et al. Multi-omics analyses reveal new insights into nutritional quality changes of alfalfa leaves during the flowering period. Front. Plant Sci. 2022, 13, 995031. [Google Scholar] [CrossRef] [PubMed]
- Stochmal, A.; Oleszek, W. Seasonal and structural changes of flavones in alfalfa (Medicago sativa) aerial parts. JFAE 2007, 5, 170. [Google Scholar]
- Duan, S.; Kwon, S.-J.; Eom, S.-H. Effect of thermal processing on color, phenolic compounds, and antioxidant activity of faba bean (Vicia faba L.) leaves and seeds. Antioxidants 2021, 10, 1207. [Google Scholar] [CrossRef]
- M’Rabet, Y.; Rokbeni, N.; Cluzet, S.; Boulila, A.; Richard, T.; Krisa, S.; Marzouki, L.; Casabianca, H.; Hosni, K. Profiling of phenolic compounds and antioxidant activity of Melia azedarach L. leaves and fruits at two stages of maturity. Ind. Crop. Prod. 2017, 107, 232–243. [Google Scholar] [CrossRef]




| Cultivar | Leaf | Stem | |||||||
|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | LSD | S1 | S2 | S3 | LSD | ||
| Dry matter (g/plant) | PI | 7.65 ± 1.05 c | 44.62 ± 4.38 a | 21.22 ± 1.52 b | 9.50 | 8.14 ± 1.51 b | 72.65 ± 9.72 a | 61.72 ± 11.91 a | 30.86 | 
| WJ | 8.78 ± 0.86 c | 48.98 ± 2.68 a | 19.75 ± 1.92 b | 6.81 | 9.28 ± 1.40 b | 80.34 ± 11.82 a | 69.12 ± 8.62 a | 29.36 | |
| Moisture (% d.w.) | PI | 5.05 ± 0.11 b | 5.13 ± 0.58 b | 8.45 ± 0.37 a | 1.39 | 5.62 ± 0.03 a | 1.85 ± 0.40 b | 1.47 ± 0.13 b | 0.84 | 
| WJ | 5.70 ± 0.10 a | 5.84 ± 0.10 a | 5.72 ± 0.26 a | 0.58 | 6.11 ± 0.16 a | 2.39 ± 0.39 b | 1.88 ± 0.23 b | 0.96 | |
| Crude protein (g/100 g d.w.) | PI | 28.66 ± 0.10 a | 16.12 ± 0.54 b | 11.44 ± 0.30 c | 1.26 | 12.19 ± 0.46 a | 5.00 ± 0.41 c | 7.37 ± 0.89 b | 2.15 | 
| WJ | 22.97 ± 0.10 a | 19.47 ± 0.55 b | 10.62 ± 1.31 c | 2.85 | 7.48 ± 0.15 a | 8.10 ± 0.76 a | 4.75 ± 0.51 b | 1.85 | |
| Crude fat (g/100 g d.w.) | PI | 2.33 ± 0.15 a | 1.89 ± 0.10 b | 1.71 ± 0.10 b | 0.41 | 1.97 ± 0.13 a | 1.52 ± 0.11 b | 1.47 ± 0.09 b | 0.39 | 
| WJ | 2.24 ± 0.04 a | 2.11 ± 0.22 a | 1.80 ± 0.05 a | 0.45 | 1.47 ± 0.14 ab | 1.39 ± 0.15 b | 1.81 ± 0.10 a | 0.40 | |
| Carbohydrate (g/100 g d.w.) | PI | 62.34 ± 0.14 c | 74.39 ± 0.43 b | 77.84 ± 0.44 a | 1.26 | 78.84 ± 0.44 b | 91.09 ± 0.78 a | 89.07 ± 0.98 a | 2.66 | 
| WJ | 67.94 ± 0.30 b | 70.19 ± 0.71 b | 80.69 ± 1.52 a | 3.41 | 83.97 ± 0.34 c | 87.43 ± 1.22 b | 91.11 ± 0.22 a | 2.56 | |
| Energetic value (kcal/100 g) | PI | 385.01 ± 0.62 a | 379.04 ± 2.46 a | 372.46 ± 2.08 b | 6.56 | 381.87 ± 0.92 b | 398.06 ± 1.18 a | 399.04 ± 1.23 a | 3.87 | 
| WJ | 383.80 ± 0.50 a | 377.65 ± 0.80 b | 381.44 ± 0.94 a | 2.66 | 379.04 ± 0.91 c | 394.60 ± 1.78 b | 399.73 ± 0.78 a | 4.28 | |
| Ash (g/100 g d.w.) | PI | 9.98 ± 0.43 b | 14.23 ± 0.59 a | 7.84 ± 0.25 c | 1.55 | 11.03 ± 0.21 a | 8.02 ± 0.46 b | 7.68 ± 0.26 b | 1.14 | 
| WJ | 9.34 ± 0.031 b | 13.34 ± 0.11 a | 10.25 ± 0.37 b | 0.99 | 9.65 ± 0.29 a | 8.13 ± 0.07 b | 7.09 ± 0.34 c | 0.96 | |
| Cultivar | Leaf | Stem | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | LSD | S1 | S2 | S3 | LSD | |||
| Macro element | K | PI | 1.95 ± 0.21 ab | 2.61 ± 0.21 a | 1.26 ± 0.29 b | 0.82 | 3.60 ± 0.11 a | 2.51 ± 0.26 b | 2.24 ± 0.14 b | 0.63 | 
| WJ | 2.39 ± 0.03 a | 2.57 ± 0.12 a | 1.44 ± 0.39 b | 0.81 | 3.63 ± 0.30 a | 2.74 ± 0.12 a | 2.90 ± 0.44 a | 1.09 | ||
| p | PI | 0.61 ± 0.06 a | 0.29 ± 0.02 b | 0.32 ± 0.03 b | 0.15 | 0.57 ± 0.02 a | 0.38 ± 0.02 c | 0.47 ± 0.02 b | 0.07 | |
| WJ | 0.69 ± 0.00 a | 0.45 ± 0.09 b | 0.29 ± 0.01 b | 0.18 | 0.60 ± 0.02 a | 0.49 ± 0.13 a | 0.39 ± 0.08 a | 0.31 | ||
| S | PI | 0.29 ± 0.03 a | 0.16 ± 0.02 b | 0.15 ± 0.03 b | 0.09 | 0.24 ± 0.01 a | 0.15 ± 0.01 b | 0.18 ± 0.03 b | 0.06 | |
| WJ | 0.28 ± 0.01 a | 0.17 ± 0.02 b | 0.18 ± 0.04 b | 0.08 | 0.21 ± 0.01 a | 0.12 ± 0.02 b | 0.14 ± 0.04 ab | 0.08 | ||
| Ca | PI | 1.01 ± 0.02 b | 1.79 ± 0.14 a | 1.40 ± 0.21 ab | 0.50 | 0.37 ± 0.04 b | 0.85 ± 0.10 a | 1.00 ± 0.07 a | 0.25 | |
| WJ | 1.10 ± 0.05 b | 2.23 ± 0.17 a | 1.94 ± 0.29 a | 0.68 | 0.41 ± 0.01 b | 0.80 ± 0.02 a | 1.09 ± 0.17 a | 0.34 | ||
| Mg | PI | 0.35 ± 0.01 ab | 0.41 ± 0.04 a | 0.27 ± 0.02 b | 0.08 | 0.22 ± 0.02 a | 0.26 ± 0.02 a | 0.26 ± 0.02 a | 0.06 | |
| WJ | 0.36 ± 0.01 a | 0.48 ± 0.04 a | 0.43 ± 0.05 a | 0.14 | 0.19 ± 0.00 a | 0.22 ± 0.02 a | 0.27 ± 0.05 a | 0.10 | ||
| Micro element | Fe | PI | 0.04 ± 0.00 a | 0.05 ± 0.03 a | 0.02 ± 0.00 a | 0.06 | 0.02 ± 0.00 a | 0.01 ± 0.00 b | 0.01 ± 0.00 ab | 0.01 | 
| WJ | 0.03 ± 0.00 a | 0.03 ± 0.01 a | 0.02 ± 0.00 a | 0.02 | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 | ||
| B | PI | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | |
| WJ | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | ||
| Mn | PI | 0.01 ± 0.00 b | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 | Tr. | Tr. | Tr. | - | |
| WJ | 0.01 ± 0.00 b | 0.01 ± 0.00 b | 0.02 ± 0.00 a | 0.01 | Tr. | Tr. | 0.01 ± 0.00 | - | ||
| Zn | PI | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 | Tr. | Tr. | Tr. | - | |
| WJ | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.01 ± 0.00 a | 0.00 | Tr. | Tr. | Tr. | - | ||
| Cu | PI | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | |
| WJ | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | ||
| Mo | PI | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | |
| WJ | Tr. | Tr. | Tr. | - | Tr. | Tr. | Tr. | - | ||
| Total | PI | 4.27 ± 0.31 b | 5.33 ± 0.63 a | 3.44 ± 0.11 b | 0.96 | 5.02 ± 0.14 a | 4.16 ± 0.25 b | 4.17 ± 0.09 b | 0.61 | |
| WJ | 4.88 ± 0.04 ab | 5.94 ± 0.22 a | 4.34 ± 0.53 b | 1.15 | 5.06 ± 0.30 a | 4.39 ± 0.24 a | 4.81 ± 0.44 a | 1.17 | ||
| Flavonol (mg/g d.w.) | Cultivar | Leaf | Stem | ||||||
|---|---|---|---|---|---|---|---|---|---|
| S1 | S2 | S3 | LSD | S1 | S2 | S3 | LSD | ||
| Q-gly-1 | PI | 1.55 ± 0.08 a | 0.48 ± 0.03 b | 0.45 ± 0.05 b | 0.20 | 0.27 ± 0.02 a | 0.08 ± 0.01 b | 0.10 ± 0.01 b | 0.05 | 
| WJ | 0.84 ± 0.04 a | 0.45 ± 0.04 b | 0.46 ± 0.05 b | 0.15 | 0.12 ± 0.00 a | 0.05 ± 0.01 b | 0.05 ± 0.01 b | 0.01 | |
| Q-gly-2 | PI | 1.58 ± 0.04 a | 0.54 ± 0.03 b | 0.48 ± 0.06 b | 0.16 | 0.36 ± 0.03 a | 0.26 ± 0.02 b | 0.27 ± 0.03 ab | 0.09 | 
| WJ | 1.03 ± 0.04 a | 0.53 ± 0.07 b | 0.51 ± 0.04 b | 0.18 | 0.21 ± 0.01 a | 0.30 ± 0.01 a | 0.30 ± 0.04 a | 0.09 | |
| Q-3-rha-glc | PI | 2.04 ± 0.17 a | 0.72 ± 0.03 b | 0.57 ± 0.12 b | 0.41 | 0.34 ± 0.03 a | 0.15 ± 0.02 b | 0.14 ± 0.04 b | 0.11 | 
| WJ | 2.44 ± 0.08 a | 1.37 ± 0.14 b | 1.26 ± 0.12 b | 0.40 | 0.26 ± 0.01 a | 0.16 ± 0.02 b | 0.15 ± 0.02 b | 0.06 | |
| Q-3-rha-gal (glu)-7-rha | PI | 9.54 ± 0.50 a | 2.71 ± 0.17 b | 2.41 ± 0.55 b | 1.51 | 1.41 ± 0.10 a | 0.45 ± 0.07 b | 0.47 ± 0.14 b | 0.37 | 
| WJ | 9.43 ± 0.28 a | 4.61 ± 0.50 b | 4.78 ± 0.38 b | 1.38 | 1.08 ± 0.03 a | 0.58 ± 0.08 b | 0.56 ± 0.04 b | 0.19 | |
| Q-3-rha-ara-7-rha | PI | 0.46 ± 0.02 a | 0.25 ± 0.01 b | 0.24 ± 0.07 b | 0.14 | 0.39 ± 0.04 a | 0.34 ± 0.03 a | 0.31 ± 0.02 a | 0.12 | 
| WJ | 8.42 ± 0.26 a | 3.25 ± 0.35 b | 3.36 ± 0.30 b | 1.06 | 1.02 ± 0.03 a | 0.50 ± 0.09 b | 0.48 ± 0.05 b | 0.21 | |
| Q-gly-3 | PI | 2.12 ± 0.04 a | 0.61 ± 0.03 b | 0.54 ± 0.06 b | 0.16 | 0.41 ± 0.04 b | 0.95 ± 0.15 a | 0.81 ± 0.05 a | 0.34 | 
| WJ | 0.60 ± 0.02 a | 0.51 ± 0.01 ab | 0.42 ± 0.06 b | 0.13 | 0.08 ± 0.01 c | 0.51 ± 0.03 a | 0.22 ± 0.04 b | 0.10 | |
| Total Q | PI | 17.28 ± 0.79 a | 5.31 ± 0.28 b | 4.70 ± 0.89 b | 2.45 | 3.17 ± 0.24 a | 2.25 ± 0.29 b | 2.11 ± 0.18 b | 0.84 | 
| WJ | 22.76 ± 0.67 a | 10.74 ± 1.10 b | 10.79 ± 0.96 b | 3.21 | 2.77 ± 0.07 a | 2.10 ± 0.18 b | 1.78 ± 0.19 b | 0.54 | |
| K-3-rha | PI | 0.58 ± 0.05 ab | 0.67 ± 0.07 a | 0.45 ± 0.05 b | 0.20 | 0.36 ± 0.04 b | 0.63 ± 0.06 a | 0.65 ± 0.03 a | 0.15 | 
| WJ | 0.59 ± 0.02 b | 1.11 ± 0.05 a | 0.87 ± 0.13 a | 0.28 | 0.29 ± 0.01 c | 0.62 ± 0.04 a | 0.48 ± 0.04 b | 0.11 | |
| K-3-rha-glc-7-rha-rha | PI | 2.04 ± 0.08 a | 1.39 ± 0.08 b | 1.21 ± 0.06 b | 0.26 | 0.44 ± 0.04 a | 0.24 ± 0.03 b | 0.26 ± 0.02 b | 0.10 | 
| WJ | 0.66 ±0.04a | 0.69 ± 0.07 a | 0.65 ± 0.08 a | 0.22 | 0.11 ± 0.00 a | 0.10 ± 0.01 a | 0.09 ± 0.01 a | 0.02 | |
| K-3-rha-gal (glc)-7-rha | PI | 2.49 ± 0.10 a | 1.72 ± 0.11 b | 1.48 ± 0.01 b | 0.30 | 0.35 ± 0.04 a | 0.25 ± 0.03 a | 0.28 ± 0.01 a | 0.11 | 
| WJ | 1.06 ± 0.02 a | 1.04 ± 0.10 a | 0.95 ± 0.10 a | 0.28 | 0.14 ± 0.01 a | 0.10 ± 0.01 b | 0.09 ± 0.01 b | 0.03 | |
| K-3-rha-ara-7-rha | PI | 11.41 ± 0.62 a | 9.14 ± 0.54 b | 6.63 ± 0.78 c | 2.26 | 1.30 ± 0.13 a | 1.10 ± 0.11 ab | 0.76 ± 0.17 b | 0.47 | 
| WJ | 9.19 ± 0.50 a | 9.9 ± 0.65 a | 9.01 ± 0.60 a | 2.03 | 1.29 ± 0.02 a | 1.32 ± 0.12 a | 1.34 ± 0.14 a | 0.37 | |
| K-3-ara-7-rha | PI | 36.46 ± 2.33 a | 29.89 ± 2.37 ab | 22.98 ± 1.63 b | 7.40 | 5.50 ± 0.55 a | 5.12 ± 0.48 a | 4.40 ± 0.58 a | 1.86 | 
| WJ | 29.81 ± 1.32 a | 34.68 ± 2.65 a | 31.40 ± 2.22 a | 7.39 | 5.38 ± 0.05 a | 5.29 ± 0.19 a | 4.78 ± 0.30 a | 0.71 | |
| K-3-acetyl-rha-gal-7-rha | PI | 2.75 ± 0.07 | Tr. | Tr. | 0.13 | 0.93 ± 0.10 | Tr. | Tr. | 0.20 | 
| WJ | 44.05 ± 1.46 a | 32.86 ± 3.03 b | 30.04 ± 2.12 b | 7.94 | 5.59 ± 0.13 a | 4.08 ± 0.10 b | 4.00 ± 0.37 b | 0.81 | |
| K-gly | PI | 24.98 ± 1.69 a | 18.80 ± 1.40 b | 12.20 ± 1.55 c | 5.36 | 3.49 ± 0.57 a | 3.90 ± 0.30 a | 3.12 ± 0.69 a | 1.89 | 
| WJ | 15.87 ± 0.59 b | 22.04 ± 1.34 a | 18.84 ± 1.88 ab | 4.77 | 2.58 ± 0.11 a | 2.96 ± 0.10 a | 2.65 ± 0.17 a | 0.45 | |
| K-3-acetyl-gal-7-rha | PI | 13.63 ± 0.77 a | 8.48 ± 0.64 b | 5.92 ± 0.42 c | 2.17 | 2.30 ± 0.36 a | 2.23 ± 0.17 a | 1.98 ± 0.35 a | 1.06 | 
| WJ | 10.41 ± 0.31 a | 11.6 ± 0.95 a | 10.39 ± 0.75 a | 2.49 | 1.63 ± 0.06 a | 1.70 ± 0.04 a | 1.51 ± 0.15 a | 0.34 | |
| Total K | PI | 94.34 ± 5.58 a | 70.10 ± 5.21 b | 50.88 ± 4.29 c | 17.49 | 14.67 ± 1.77 a | 13.47 ± 1.14 a | 11.45 ± 1.76 a | 5.49 | 
| WJ | 111.65 ± 3.97 a | 113.92 ± 8.80 a | 102.15 ± 7.84 a | 24.85 | 17.01 ± 0.25 a | 16.18 ± 0.44 a | 14.93 ± 1.13 a | 2.48 | |
| Total flavonol | PI | 111.62 ± 6.36 a | 75.41 ± 5.49 b | 55.57 ± 4.99 c | 19.52 | 17.84 ± 1.99 a | 15.72 ± 1.36 a | 13.57 ± 1.94 a | 6.18 | 
| WJ | 134.40 ± 4.51 a | 124.66 ± 9.87 a | 112.95 ± 8.75 a | 27.85 | 19.78 ± 0.18 a | 18.28 ± 0.48 ab | 16.71 ± 1.32 b | 2.63 | |
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, S.; Kwon, S.-J.; Kim, J.W.; Kim, J.H.; Lee, J.W.; Kim, M.-S.; Baik, M.-Y.; Eom, S.H. Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities. Agronomy 2025, 15, 2473. https://doi.org/10.3390/agronomy15112473
Duan S, Kwon S-J, Kim JW, Kim JH, Lee JW, Kim M-S, Baik M-Y, Eom SH. Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities. Agronomy. 2025; 15(11):2473. https://doi.org/10.3390/agronomy15112473
Chicago/Turabian StyleDuan, Shucheng, Soon-Jae Kwon, Ji Won Kim, Ji Hye Kim, Jeong Woo Lee, Min-Seok Kim, Moo-Yeol Baik, and Seok Hyun Eom. 2025. "Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities" Agronomy 15, no. 11: 2473. https://doi.org/10.3390/agronomy15112473
APA StyleDuan, S., Kwon, S.-J., Kim, J. W., Kim, J. H., Lee, J. W., Kim, M.-S., Baik, M.-Y., & Eom, S. H. (2025). Forage Potential of Faba Bean By-Products: A Comprehensive Analysis of Proximate Nutrients, Mineral Content, Bioactive Components, and Antioxidant Activities. Agronomy, 15(11), 2473. https://doi.org/10.3390/agronomy15112473
 
        

 
       