Kernel Dehydration Characteristics Is Related to Kernel Microstructure and Starch Granule Size Distribution in Different Maize Varieties
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experiment Design and Plant Material
2.3. Kernel Moisture (KM)
2.4. Starch Content
2.5. Weight of Grain Structural Components
2.6. Kernel Starch Microstructure
2.7. Starch Granules
2.8. Statistical Analysis
3. Results
3.1. Kernels Moisture Rate
3.2. Kernel Dehydration Parameters
3.3. Starch Content of Kernel
3.4. Proportion of Kernel Structure Weight
3.5. Kernel Pericarp Structure
3.6. Microstructure Horizontal Section Endosperm Structure
3.7. Kernel Longitudinal Section Endosperm Structure
3.8. Characteristics of Starch Granules
3.9. Correlation Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, N.; Meng, Q.F.; Feng, P.Y.; Qu, Z.R.; Yu, Y.H.; Liu, D.L.; Muller, C.; Wang, P. China can be self-sufficient in maize production by 2030 with optimal crop management. Nat. Commun. 2023, 14, 2637. [Google Scholar] [CrossRef]
- FAO. Statistics for Trade of Crops and Livestock Products-Dataset. 2021. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 14 October 2025).
- Xie, R.Z.; Ming, B.; Gao, S.; Wang, K.R.; Hou, P.; Li, S.K. Current state and suggestions for mechanical harvesting of corn in China. J. Integr. Agric. 2022, 21, 892–897. [Google Scholar] [CrossRef]
- MARAC (Ministry of Agriculture and Rural Affairs of China). Online Statistical Database: Agricultural Machinery. 2016. Available online: http://zdscxx.moa.gov.cn:8080/nyb/pc/frequency.jsp# (accessed on 10 March 2020).
- Li, S.K.; Wang, K.R.; Xie, R.Z.; Ming, B. Grain mechanical harvesting technology promotes the transformation of maize production mode. Sci. Agric. Sin. 2018, 51, 1842–1844. [Google Scholar]
- Wang, J.T.; Dong, X.L.; Qiu, R.J.; Lou, B.Y.; Tian, L.; Chen, P.; Zhang, X.J.; Liu, X.J.; Sun, H.Y. Optimization of sowing date and irrigation schedule of maize in different cropping systems by APSIM for realizing grain mechanical harvesting in the North China Plain. Agric. Water Manag. 2023, 276, 108068. [Google Scholar] [CrossRef]
- Wang, X.Y.; Tan, W.M.; Zhou, S.L.; Xu, Y.; Cui, T.; Gao, H.; Chen, M.L.; Dong, X.H.; Sun, H.Y.; Yang, J.Z.; et al. Converting maize production with low emergy cost and high economic return for sustainable development. Renew Sustain. Energy Rev. 2021, 136, 110443. [Google Scholar] [CrossRef]
- Shi, W.J.; Shao, H.; Sha, Y.; Shi, R.; Shi, D.F.; Chen, Y.C.; Ban, X.B.; Mi, G.H. Grain dehydration rate is related to post-silking thermal time and ear characters in different maize hybrids. J. Integr. Agric. 2022, 21, 964–976. [Google Scholar] [CrossRef]
- Wang, K.R.; Li, S.K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Sci. Agric. Sin. 2017, 50, 2027–2035. [Google Scholar] [CrossRef]
- Wang, X.Y.; Wang, X.L.; Xu, C.C.; Tan, W.M.; Wang, P.; Meng, Q.F. Decreased kernel moisture in medium-maturing maize hybrids with high yield for mechanized grain harvest. Crop Sci. 2019, 59, 2794–2805. [Google Scholar] [CrossRef]
- Wang, J.T.; Dong, X.L.; Xiao, Y.; Liu, Q.S.; Zhang, D.M.; Han, J.L.; Liu, Y.; Gao, G.R.; Liu, Z.M.; Sun, H.Y. Analysis of kernel dry down process after physiological maturity of spring maize based on diffusion theory in the North China. Chin. J. Eco-Agric. 2020, 28, 545–557. [Google Scholar] [CrossRef]
- Chai, Z.W.; Wang, K.R.; Guo, Y.Q.; Xie, R.Z.; Li, L.L.; Ming, B.; Hou, P.; Liu, C.W.; Chu, Z.D.; Zhang, W.X.; et al. Current status of maize mechanical grain harvesting and its relationship with grain moisture content. Sci. Agric. Sin. 2017, 50, 2036–2043. [Google Scholar] [CrossRef]
- Yin, S.Y.; Liu, J.; Yang, T.T.; Li, P.C.; Xu, Y.; Fang, H.M.; Xu, S.H.; Wei, J.; Xue, L.; Hao, D.R.; et al. Genetic analysis of the seed dehydration process in maize based on a logistic model. Crop J. 2020, 8, 182–193. [Google Scholar] [CrossRef]
- Liu, J.J.; Yu, H.; Liu, Y.L.; Deng, S.N.; Liu, Q.C.; Liu, B.S.; Xu, M.L. Genetic dissection of grain water content and dehydration rate related to mechanical harvest in maize. BMC Plant Biol. 2020, 20, 118. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Li, W.Q.; Liu, Y.F.; Liu, Y.J.; Zhang, Q.Z.; Ouyang, Y.D.; Ding, W.Y.; Xue, Y.; Zou, Y.L.; Yan, J.H.; et al. A Zea genus-specific micropeptide controls kernel dehydration in maize. Cell 2025, 188, 44–59.e21. [Google Scholar] [CrossRef] [PubMed]
- Plett, S. Corn kernel breakage as a function of grain moisture at harvest in a prairie environment. Can. J. Plant Sci. 1994, 74, 543–544. [Google Scholar] [CrossRef]
- Dai, L.Q.; Wu, L.; Dong, Q.S.; Zhang, Z.; Wu, N.; Song, Y.; Lu, S.; Wang, P.W. Genome-wide association study of field grain drying rate after physiological maturity based on a resequencing approach in elite maize germplasm. Euphytica 2017, 213, 182. [Google Scholar] [CrossRef]
- Brooking, I.R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Res. 1990, 23, 55–68. [Google Scholar] [CrossRef]
- Nielsen, R.L. Field Dry Down of Mature Corn Grain; Purdue University: West Lafayette, IN, USA, 2005; Available online: http://www.kingcorn.org/news/articles.05/GrainDrying-0815.html (accessed on 14 October 2025).
- Wan, Z.H.; Ren, B.Z.; Zhao, B.; Liu, P.; Dong, S.T.; Zhang, J.W. Grain filling and dehydration characteristics of summer maize hybrids differing in maturities and effect of plant density. Acta Agron. Sin. 2018, 44, 1517–1526. [Google Scholar] [CrossRef]
- Yang, J.; Carena, M.J.; Uphaus, J. Area under the dry down curve (AUDDC): A method to evaluate rate of dry down in maize. Crop Sci. 2010, 50, 2347–2354. [Google Scholar] [CrossRef]
- Zhou, G.F.; Hao, D.R.; Xue, L.; Chen, G.Q.; Lu, H.H.; Zhang, Z.L.; Shi, M.L.; Huang, X.L.; Mao, Y.X. Genome-wide association study of kernel moisture content at harvest stage in maize. Breed. Sci. 2018, 68, 622–628. [Google Scholar] [CrossRef]
- Hicks, D.R.; Geadelmann, G.L.; Peterson, R.H. Drying rates of frosted maturing maize. Agron. J. 1976, 68, 452–455. [Google Scholar] [CrossRef]
- Li, L.L.; Gu, W.R.; Zuo, S.Y.; Meng, Y.; Li, C.F.; Li, W.H.; Zhang, Z.Y.; Wei, S. Effects of thidiazuron and ethephon on the grain filling and dehydration characteristics of maize in Northeast China. Arch. Agron. Soil Sci. 2020, 68, 886–902. [Google Scholar] [CrossRef]
- Cavalieri, A.J.; Smith, O.S. Grain filling and field drying of a set of maize hybrids released from 1930 to 1982. Crop Sci. 1985, 25, 856–860. [Google Scholar] [CrossRef]
- Crane, P.L.; Miles, S.R.; Newman, J.E. Factors associated with varietal differences in rate of field drying in corn. Agron. J. 1959, 51, 318–320. [Google Scholar] [CrossRef]
- Mathre, D.E.; Johnston, R.H.; Martin, J.M. Sources of resistance to Cephalosporium gramineum in Triticum and Agropyron species. Euphytica 1985, 34, 419–424. [Google Scholar] [CrossRef]
- Pineda-Gomez, P.; Rosales-Rivera, A.; Gutierrez-Cortez, E.; Rodriguez-Garcia, M.E. Comparative analysis of the water diffusion in the corn grains, with and without pericarp during the thermo-alkaline treatment. Food Bioprod. Process. 2020, 119, 38–47. [Google Scholar] [CrossRef]
- Huang, Z.F.; Li, L.L.; Hou, L.Y.; Gao, S.; Ming, B.; Xie, R.Z.; Hou, P.; Wang, K.R.; Xue, J.; Li, S.K. Accumulated temperature requirement for field stalk dehydration after maize physiological maturity in different planting regions. Sci. Agric. Sin. 2022, 55, 680–691. [Google Scholar] [CrossRef]
- Troyer, A.F.; Ambrose, W.B. Plant characteristics affecting field drying rate of ear corn. Crop Sci. 1971, 11, 529–531. [Google Scholar] [CrossRef]
- Qu, J.Z.; Zhong, Y.Y.; Ding, L.; Liu, X.X.; Xu, S.T.; Guo, D.W.; Blennow, A.; Xue, J.Q. Biosynthesis, structure and functionality of starch granules in maize inbred lines with different kernel dehydration rate. Food Chem. 2022, 368, 130796. [Google Scholar] [CrossRef]
- Li, D.Z.; Wang, J.L.; Zhang, Y.; Lu, X.J.; Du, J.J.; Guo, X.Y. CT-Based Phenotyping and Genome-Wide Association Analysis of the Internal Structure and Components of Maize Kernels. Agronomy 2023, 13, 1078. [Google Scholar] [CrossRef]
- Zhang, L.G.; Fan, Q.J.; Chen, X.C.; Li, B.; Zhang, Y.; Xiu, L.L. Correlation analysis on dry-down rate and main agricultural traits in maize after physiological maturity. Heilongjiang Agric. Sci. 2012, 3, 1–5. [Google Scholar]
- Cui, L.N.; Dong, S.T.; Zhang, J.W.; Liu, P. Starch granule size distribution and morphogenesis in maize (Zea mays L.) grains with different endosperm types. Aust. J. Crop Sci. 2014, 8, 1560–1565. Available online: https://search.informit.org/doi/10.3316/informit.820885364920205 (accessed on 14 October 2025).
- Li, W.Y.; Wu, P.J.; Zhang, D.P.; Yan, S.H. Granule size distribution and pasting properties of starch in normal, waxy and sweet maize kernels. Bangladesh J. Bot. 2020, 49, 949–956. [Google Scholar] [CrossRef]
- Gayral, M.; Gaillard, C.; Bakan, B.; Dalgalarrondo, M.; Elmorjani, K.; Delluc, C.; Brunet, S.; Linossier, L.; Morel, M.-H.; Marion, D. Transition from vitreous to floury endosperm in maize (Zea mays L.) kernels is related to protein and starch gradients. J. Cereal Sci. 2016, 68, 148–154. [Google Scholar] [CrossRef]
- Xu, A.H.; Lin, L.S.; Guo, K.; Liu, T.X.; Yin, Z.T.; Wei, C.X. Physicochemical properties of starches from vitreous and floury endosperms from the same maize kernels. Food Chem. 2019, 291, 149–156. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.Y.; Gao, R.Q.; Dong, S.T. Anatomical and physiological characteristics associated with corn endosperm texture. Agron. J. 2011, 103, 1258–1264. [Google Scholar] [CrossRef]
- Miao, M.; Li, R.; Jiang, B.; Cui, S.W.; Lu, K.Y.; Zhang, T. Structure and digestibility of endosperm water-soluble α-glucans from different sugary maize mutants. Food Chem. 2014, 143, 156–162. [Google Scholar] [CrossRef]
- Watson, S.A. Structure and composition. In Corn Chemistry and Technology; Watson, S.A., Ramstad, P.E., Eds.; American Association of Cereal Chemists, Inc.: St. Paul, MN, USA, 1987; pp. 53–82. [Google Scholar]
- Li, L.L.; Ming, B.; Gao, S.; Xie, R.Z.; Hou, P.; Wang, K.R.; Li, S.K. Study on grain dehydration characters of summer maize and its relationship with grain filling. Sci. Agric. Sin. 2018, 51, 1878–1889. [Google Scholar]
- Liu, Y.L.; Li, M.M.; Liu, J.J.; Deng, S.N.; Zhang, Y.; Xia, Y.F.; Liu, B.S.; Xu, M.L. Multi-omics analysis reveals the pivotal role of phytohormone homeostasis in regulating maize grain water content. Crop J. 2024, 12, 1081–1092. [Google Scholar] [CrossRef]
- Guo, Y.N.; Hou, L.Y.; Li, L.L.; Gao, S.; Hou, J.F.; Ming, B.; Xie, R.Z.; Xue, J.; Hou, P.; Wang, K.R.; et al. Study of corn kernel breakage susceptibility as a function of its moisture content by using a laboratory grinding method. J. Integr. Agric. 2022, 21, 70–77. [Google Scholar] [CrossRef]
- Chase, S.S. Relation of yield and number of days from planting to flowering in early maturity maize hybrids of equivalent grain moisture at harvest. Crop Sci. 1964, 4, 111–112. [Google Scholar] [CrossRef]
- Zhang, J.H.; Yue, Y.; Hu, M.J.; Yi, F.; Chen, J.; Lai, J.S.; Xin, B.B. Dynamic transcriptome landscape of maize pericarp development. Plant J. 2024, 117, 1574–1591. [Google Scholar] [CrossRef]
- Hu, X.W.; Wang, Y.R.; Wu, Y.P. Effects of the pericarp on imbibition, seed germination, and seedling establishment in seeds of Hedysarum scoparium Fisch. et Mey. Ecol. Res. 2009, 24, 559–564. [Google Scholar] [CrossRef]
- Helm, J.L.; Zuber, M.S. Effect of harvest date on pericarp thickness in dent corn. Can. J. Plant Sci. 1970, 50, 411–413. [Google Scholar] [CrossRef]
- Gong, G.T.; Jia, H.T.; Tang, Y.Q.; Pei, H.; Zhai, L.H.; Huang, J. Genetic analysis and QTL mapping for pericarp thickness in maize (Zea mays L.). BMC Plant Biol. 2024, 24, 338. [Google Scholar] [CrossRef]
- Huang, L.C.; Tan, H.Y.; Zhang, C.Q.; Li, Q.F.; Liu, Q.Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. Plant Commun. 2021, 2, 100237. [Google Scholar] [CrossRef]
- Wang, D.; Eckhoff, S.R. Effect of broken corn levels on water absorption and steepwater characteristics. Cereal Chem. 2020, 77, 525–528. [Google Scholar] [CrossRef]
- Timm, N.D.S.; Ramos, A.H.; Ferreira, C.D.; Biduski, B.; Eicholz, E.D.; Oliveira, M.D. Effects of drying temperature and genotype on morphology and technological, thermal, and pasting properties of corn starch. Int. J. Biol. Macromol. 2020, 165, 354–364. [Google Scholar] [CrossRef]
- Dombrink-Kurtzman, M.A.; Knutson, C.A. A study of maize endosperm hardness in relation to amylose content and susceptibility to damage. Cereal Chem. 1997, 74, 776–780. [Google Scholar] [CrossRef]
- Kljak, K.D.; Grbeša, D.; Aleuš, D. Relationships between kernel physical properties and zein content in corn hybrids. Bull. UASVM Agric. 2011, 68, 188–194. [Google Scholar] [CrossRef]
- Lu, M.L.; Zhang, Y.T.; Ren, H.; Wang, T.J.; Han, Y.M.; Li, W.Y.; Li, C.F. Effects of increasing density on the granule size distribution and viscosity parameters of endosperm starch in spring maize kernel. Sci. Agric. Sin. 2023, 56, 1646–1657. [Google Scholar]
- Paterson, J.L.; Hardacre, A.; Li, P.; Rao, M.A. Rheology and granule size distribution of corn starch dispersions from two genotypes and grown in four regions. Food Hydrocoll. 2001, 15, 453–459. [Google Scholar] [CrossRef]
- Utrilla-Coello, R.G.; Agama-Acevedo, E.; Rosa, A.P.B.D.L.; Rodríguez-Ambriz, S.L.; Bello-Pérez, L.A. Physicochemical and enzyme characterization of small and large starch granules isolated from two maize cultivars. Cereal Chem. 2010, 87, 50–56. [Google Scholar] [CrossRef]
- Park, S.H.; Wilson, J.D.; Seabourn, B.W. Starch granule size distribution of hard red winter and hard red spring wheat: Its effects on mixing and breadmaking quality. J. Cereal Sci. 2009, 49, 98–105. [Google Scholar] [CrossRef]
- Svihus, B.; Uhlen, A.K.; Harstad, O.M. Effect of starch granule structure, associated components and processing on nutritive value of cereal starch: A review. Anim. Feed Sci. Technol. 2005, 122, 303–320. [Google Scholar] [CrossRef]
- Shi, D.Y.; Zhang, H.Y.; Dong, S.T. Effects of supplemental irrigation and nitrogen application on starch granule size distribution of maize grain. Sci. Agric. Sin. 2014, 47, 633–643. [Google Scholar]








| Month | 2022 | 2023 | ||
|---|---|---|---|---|
| Daily Average Temperature (°C) | Precipitation (mm) | Daily Average Temperature (°C) | Precipitation (mm) | |
| June | 23.4 | 80.9 | 23.8 | 28 |
| July | 26.5 | 54 | 27.4 | 23.8 |
| August | 25.3 | 176.8 | 25.7 | 141.8 |
| September | 20.5 | 66.5 | 21.9 | 13.1 |
| October | 13.4 | 27.8 | 16.3 | 0 |
| November | 10.3 | 8.9 | 7.3 | 2.5 |
| Years | Hybrids | Sowing Dates | Silking | Physiological Maturity | Harvest | Accumulated Temperature from Sowing to Pollination | Accumulated Temperature from Pollination to Physiological Maturity | Accumulated Temperature from Physiological Maturity to Harvest |
|---|---|---|---|---|---|---|---|---|
| (M-D) | (M-D) | (M-D) | (M-D) | (°C·d) | (°C·d) | (°C·d) | ||
| 2022 | ZD958 | 6-21 | 8-15 | 10-27 | 11-02 | 1471.8 | 1351.0 | 70.1 |
| JNK728 | 6-21 | 8-14 | 10-22 | 11-02 | 1442.2 | 1317.8 | 132.9 | |
| 2023 | ZD958 | 6-22 | 8-13 | 10-23 | 10-27 | 1399.9 | 1462.1 | 77.0 |
| JNK728 | 6-22 | 8-12 | 10-15 | 10-27 | 1375.1 | 1381.6 | 182.3 |
| Year | Varieties | Pericarp (%) | Embryo (%) | Floury Endosperm (%) | Vitreous Endosperm (%) | Vitreous Endosperm/ Floury Endosperm | Vitreousness (%) |
|---|---|---|---|---|---|---|---|
| 2022 | ZD958 | 5.40 b | 10.19 a | 24.93 b | 59.48 a | 2.39 a | 70.46 a |
| JNK728 | 6.18 a | 10.98 a | 34.40 a | 48.44 b | 1.41 b | 58.47 b | |
| 2023 | ZD958 | 5.02 b | 11.03 a | 23.88 b | 60.07 a | 2.52 a | 71.55 a |
| JNK728 | 6.01 a | 11.14 a | 29.56 a | 53.29 b | 1.81 b | 64.33 b |
| Year | Hybrids | Diameter of Starch Granule (%) | D (4,3) | Peak Diameter (μm) | |
|---|---|---|---|---|---|
| <10 μm | ≥10 μm | (μm) | |||
| 2022 | ZD958 | 12.29 a | 87.92 b | 17.23 | 15.5 |
| JNK728 | 9.13 b | 90.88 a | 17.07 | 16.4 | |
| 2023 | ZD958 | 11.41 a | 88.58 b | 15.90 | 14.5 |
| JNK728 | 9.24 b | 90.76 a | 16.80 | 14.5 | |
| Year | Hybrids | Diameter of Starch Granule (%) | D (1,0) | Peak Diameter (μm) | |
|---|---|---|---|---|---|
| <10 μm | ≥10 μm | (μm) | |||
| 2022 | ZD958 | 40.98 a | 59.01 b | 12.80 | 11.2 |
| JNK728 | 30.92 b | 69.07 a | 13.47 | 11.2 | |
| 2023 | ZD958 | 34.05 a | 65.95 b | 13.00 | 11.2 |
| JNK728 | 30.43 b | 69.56 a | 13.43 | 11.2 | |
| Year | Hybrids | Diameter of Starch Granule (%) | D (3,2) | Peak Diameter (μm) | |
|---|---|---|---|---|---|
| <10 μm | ≥10 μm | (μm) | |||
| 2022 | ZD958 | 19.98 a | 80.02 b | 15.60 | 13.6 |
| JNK728 | 14.67 b | 85.32 a | 15.77 | 14.5 | |
| 2023 | ZD958 | 17.41 a | 82.59 b | 14.90 | 12.7 |
| JNK728 | 14.66 b | 85.34 a | 15.60 | 14.5 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Suo, F.; Li, Z.; Yang, Y.; Hao, X.; Sun, Q.; Jiang, W.; Liu, L.; Wang, Z.; Shi, Z.; et al. Kernel Dehydration Characteristics Is Related to Kernel Microstructure and Starch Granule Size Distribution in Different Maize Varieties. Agronomy 2025, 15, 2471. https://doi.org/10.3390/agronomy15112471
Li X, Suo F, Li Z, Yang Y, Hao X, Sun Q, Jiang W, Liu L, Wang Z, Shi Z, et al. Kernel Dehydration Characteristics Is Related to Kernel Microstructure and Starch Granule Size Distribution in Different Maize Varieties. Agronomy. 2025; 15(11):2471. https://doi.org/10.3390/agronomy15112471
Chicago/Turabian StyleLi, Xuejie, Fengxue Suo, Zengxu Li, Yang Yang, Xin Hao, Qing Sun, Wen Jiang, Letian Liu, Ziyue Wang, Zeqian Shi, and et al. 2025. "Kernel Dehydration Characteristics Is Related to Kernel Microstructure and Starch Granule Size Distribution in Different Maize Varieties" Agronomy 15, no. 11: 2471. https://doi.org/10.3390/agronomy15112471
APA StyleLi, X., Suo, F., Li, Z., Yang, Y., Hao, X., Sun, Q., Jiang, W., Liu, L., Wang, Z., Shi, Z., Li, J., & Sun, X. (2025). Kernel Dehydration Characteristics Is Related to Kernel Microstructure and Starch Granule Size Distribution in Different Maize Varieties. Agronomy, 15(11), 2471. https://doi.org/10.3390/agronomy15112471
