Development of a Reinforcement Learning-Based Intelligent Irrigation Decision-Making Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Crop Evapotranspiration and Soil Water Balance Calculation
2.3. Development Model
2.4. Model Solving
2.5. Data Collection
3. Results
3.1. Analysis of Simulation Results
3.2. Analyses of Model Objectives
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ministry of Water Resources of the People’s Republic of China. National Water Resources Development Statistical Bulletin 2022; China Water & Power Press: Beijing, China, 2022.
- Ministry of Water Resources of the People’s Republic of China. China Water Resources Bulletin 2023; China Water Power Electrific: Beijing, China, 2023; p. 2.
- González Perea, R.; Daccache, A.; Rodríguez Díaz, J.A.; Camacho Poyato, E.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 2018, 19, 497–512. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, X.; Xiong, J.; Xiao, J. Water allocation and integrative management of precision irrigation: A systematic review. Water 2020, 12, 3135. [Google Scholar] [CrossRef]
- Azizi Khalkheili, T.; Zamani, G.H. Farmer participation in irrigation management: The case of Doroodzan Dam Irrigation Network, Iran. Agric. Water Manag. 2009, 96, 859–865. [Google Scholar] [CrossRef]
- Ricart, S.; Gandolfi, C.; Castelletti, A. How do irrigation district managers deal with climate change risks? Considering experiences, tipping points, and risk normalization in northern Italy. Clim. Risk Manag. 2024, 44, 100598. [Google Scholar] [CrossRef]
- Ahmed, Z.; Gui, D.; Murtaza, G.; Yunfei, L.; Ali, S. An overview of smart irrigation management for improving water productivity under climate change in drylands. Agronomy 2023, 13, 2113. [Google Scholar] [CrossRef]
- Jiménez, A.-F.; Cárdenas, P.-F.; Jiménez, F. Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales. Comput. Electron. Agric. 2022, 192, 106635. [Google Scholar] [CrossRef]
- Hejazi, M.I.; Cai, X.; Yuan, X.; Liang, X.-Z.; Kumar, P. Incorporating reanalysis-based short-term forecasts from a regional climate model in an irrigation scheduling optimization problem. J. Water Resour. Plann. Manag. 2014, 140, 699–713. [Google Scholar] [CrossRef]
- EG, A.; Bala, G.J. IoT and ML-based automatic irrigation system for smart agriculture system. Agron. J. 2024, 116, 1187–1203. [Google Scholar]
- Morari, F.; Giardini, L. Irrigation automation with heterogeneous vegetation: The case of the Padova botanical garden. Agric. Water Manag. 2002, 55, 183–201. [Google Scholar] [CrossRef]
- Ogedengbe, T.I.; Eta, O.M.; Ogunbiyi, A.A. Development of a model and sensor based smart irrigation system. J. Appl. Sci. Environ. Manag. 2020, 24, 909–915. [Google Scholar] [CrossRef]
- Benzaouia, M.; Hajji, B.; Mellit, A.; Rabhi, A. Fuzzy-IoT smart irrigation system for precision scheduling and monitoring. Comput. Electron. Agric. 2023, 215, 108407. [Google Scholar] [CrossRef]
- Cambra Baseca, C.; Sendra, S.; Lloret, J.; Tomas, J. A smart decision system for digital farming. Agronomy 2019, 9, 216. [Google Scholar] [CrossRef]
- Nawandar, N.K.; Satpute, V.R. IoT based low cost and intelligent module for smart irrigation system. Comput. Electron. Agric. 2019, 162, 979–990. [Google Scholar] [CrossRef]
- Lephondo, I.; Telukdarie, A.; Munien, I.; Onkonkwo, U.; Vermeulen, A. The outcomes of smart irrigation system using machine learning to minimize water usage within the agriculture sector. Procedia Comput. Sci. 2024, 237, 525–532. [Google Scholar] [CrossRef]
- Saggi, M.K.; Jain, S. A survey towards decision support system on smart irrigation scheduling using machine learning approaches. Arch. Comput. Methods Eng. 2022, 29, 4455–4478. [Google Scholar] [CrossRef] [PubMed]
- Benameur, R.; Dahane, A.; Kechar, B.; Benyamina, A.E.H. An Innovative Smart and Sustainable Low-Cost Irrigation System for Anomaly Detection Using Deep Learning. Agronomy 2024, 24, 1162. [Google Scholar] [CrossRef]
- Bu, F.; Wang, X. A smart agriculture IoT system based on deep reinforcement learning. Future Gener. Comput. Syst. 2019, 99, 500–507. [Google Scholar] [CrossRef]
- Sami, M.; Khan, S.Q.; Khurram, M.; Farooq, M.U.; Anjum, R.; Aziz, S.; Qureshi, R.; Sadak, F. A deep learning-based sensor modeling for smart irrigation system. Agronomy 2022, 12, 212. [Google Scholar] [CrossRef]
- Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA, 2014. [Google Scholar]
- Brady, C.; Gonen, R.; Rabinovich, G. Deep reinforcement learning and influenced games. IEEE Access 2024, 12, 114086–114099. [Google Scholar] [CrossRef]
- Ballou, A.; Alameda-Pineda, X.; Reinke, C. Variational meta reinforcement learning for social robotics. Appl. Intell. 2023, 53, 27249–27268. [Google Scholar] [CrossRef]
- Kober, J.; Bagnell, J.A.; Peters, J. Reinforcement learning in robotics: A survey. Int. J. Robot. Res. 2013, 32, 1238–1274. [Google Scholar] [CrossRef]
- Polydoros, A.S.; Nalpantidis, L. Survey of model-based reinforcement learning: Applications on robotics. J. Intell. Robot Syst. 2017, 86, 153–173. [Google Scholar] [CrossRef]
- Aradi, S. Survey of deep reinforcement learning for motion planning of autonomous vehicles. arXiv 2020, arXiv:2001.11231. [Google Scholar] [CrossRef]
- You, C.; Lu, J.; Filev, D.; Tsiotras, P. Advanced planning for autonomous vehicles using reinforcement learning and deep inverse reinforcement learning. Robot. Auton. Syst. 2019, 114, 1–18. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Zhou, H.; Li, M.; Hou, Y.; Zhou, S.; Wang, F.; Hoetzlein, R.; Zhang, R. A review of reinforcement learning for natural language processing and applications in healthcare. J. Am. Med. Inform. Assoc. 2024, 31, 2379–2393. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cui, Y.; Wang, X.; Xie, H.; Liu, F.; Luo, T.; Zheng, S.; Luo, Y. A reinforcement learning approach to irrigation decision-making for rice using weather forecasts. Agric. Water Manag. 2021, 250, 106838. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, M.; Yu, Z.; Sun, W.; Fu, W.; He, L. Enhancing cotton irrigation with distributional actor–critic reinforcement learning. Agric. Water Manag. 2025, 307, 109194. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M.; Soares, V.N.G.J.; Caldeira, J.M.L.P. Comparison of on-policy deep reinforcement learning A2C with off-policy DQN in irrigation optimization: A case study at a site in Portugal. Computers 2022, 11, 104. [Google Scholar] [CrossRef]
Winter Wheat Growth Stages | Sowing to Tillering | Tillering to Overwintering | Overwintering to Green-up | Green-up to Jointing | Jointing to Grain Filling | Grain Filling to Wax Maturity | Wax Maturity to Harvest |
---|---|---|---|---|---|---|---|
Starting and ending dates | 11 October to 10 November | 11 November to 10 December | 11 December to 10 March | 11 March to 10 April | 11 April to 10 May | 11 May to 31 May | 1 June to 15 June |
Number of days | 31 | 30 | 90 | 31 | 30 | 31 | 15 |
Maximum volumetric moisture content | 36.26% | 36.26% | 36.26% | 36.26% | 36.26% | 36.26% | 36.26% |
Minimum volumetric moisture content | 19.95% | 23.57% | 23.57% | 23.57% | 23.57% | 21.61% | 21.61% |
Corn Growth Stages | Sowing to Germination | Germination to Jointing | Jointing to Booting | Booting to Grain Filling | Grain Filling to Milk Stage |
---|---|---|---|---|---|
Starting and ending dates | 11 June to 30 June | 1 July to 20 July | 21 July to 10 August | 11 August to 31 August | 1 September to 30 September |
Number of days | 20 | 20 | 21 | 20 | 27 |
Maximum volumetric moisture content | 36.26% | 36.26% | 36.26% | 36.26% | 36.26% |
Minimum volumetric moisture content | 19.95% | 21.76% | 21.76% | 23.57% | 20.22% |
Year | Irrigation Time | Irrigation Water Volume (mm) | Irrigation Time | Irrigation Water Volume (mm) | Irrigation Time | Irrigation Water Volume (mm) | Irrigation Time | Irrigation Water Volume (mm) |
---|---|---|---|---|---|---|---|---|
2014 | 24 March | 79 | 28 April | 107 | 26 July | 150 | 11 October | 121 |
2015 | 22 April | 97 | ||||||
2016 | 20 March | 84 | 26 April | 109 | ||||
2017 | 26 February | 128 | 30 April | 109 | ||||
2018 | 3 March | 121 | 8 October | 130 | ||||
2019 | 11 April | 101 | 11 June | 176 | 7 October | 173 | ||
2020 | 13 April | 74 | 10 June | 136 | ||||
2021 | 2 March | 80 | 5 May | 101 | ||||
2022 | 30 April | 110 | ||||||
2023 | 1 March | 84 | 8 May | 115 | 6 September | 129 |
Crop | Volume of Water | Multi-Year Monthly Average | |||||||
---|---|---|---|---|---|---|---|---|---|
Winter wheat growth stages | October | November | December | January | February | March | April | May | |
Precipitation (mm) | 28 | 31 | 5 | 4 | 8 | 9 | 31 | 38 | |
crop water requirements (mm) | 38 | 17 | 6 | 7 | 12 | 54 | 130 | 158 | |
Corn growth stages | June | July | August | September | |||||
Precipitation (mm) | 79 | 190 | 185 | 34 | |||||
crop water requirements (mm) | 83 | 113 | 145 | 118 |
Year | Objective 1 | Objective 2 | Objective 3 | Objective 4 | Objective 5 |
---|---|---|---|---|---|
2014 | ➕ | ➕ | ➕ | ||
2015 | ➕ | ➕ | |||
2016 | ➕ | ||||
2017 | ➕ | ➕ | |||
2018 | ➕ | ➕ | ➕ | ||
2019 | ➕ | ||||
2020 | ➕ | ➕ | |||
2021 | ➕ | ➕ | |||
2022 | ➕ | ||||
2023 | ➕ | ➕ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Zheng, X.; Gao, Z.; Fan, Y.; Zhou, K.; Zhang, W.; Chang, X. Development of a Reinforcement Learning-Based Intelligent Irrigation Decision-Making Model. Agronomy 2025, 15, 2416. https://doi.org/10.3390/agronomy15102416
Zhang X, Zheng X, Gao Z, Fan Y, Zhou K, Zhang W, Chang X. Development of a Reinforcement Learning-Based Intelligent Irrigation Decision-Making Model. Agronomy. 2025; 15(10):2416. https://doi.org/10.3390/agronomy15102416
Chicago/Turabian StyleZhang, Xufeng, Xinrong Zheng, Zhanyi Gao, Yu Fan, Ke Zhou, Weixian Zhang, and Xiaomin Chang. 2025. "Development of a Reinforcement Learning-Based Intelligent Irrigation Decision-Making Model" Agronomy 15, no. 10: 2416. https://doi.org/10.3390/agronomy15102416
APA StyleZhang, X., Zheng, X., Gao, Z., Fan, Y., Zhou, K., Zhang, W., & Chang, X. (2025). Development of a Reinforcement Learning-Based Intelligent Irrigation Decision-Making Model. Agronomy, 15(10), 2416. https://doi.org/10.3390/agronomy15102416