Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture
Abstract
1. Introduction
2. Problems in Apple Orchards
2.1. Diseases
Other Diseases
2.2. Insects
2.3. Weeds
2.4. Fruit Storage
3. Chemical Pesticides Applied in Apple Production and Pesticide Residues in Apples
4. Biopesticides
4.1. Fungi, Yeast, and Bacteria Recommended for Apple Cultivation
4.1.1. Aureobasidium pullulans
4.1.2. Pythium oligandrum
4.1.3. Candida oleophila
4.1.4. Bacillus subtilis
4.1.5. Bacillus thuringiensis
4.2. Natural Substances
4.2.1. Laminarin
4.2.2. Orange Oil
4.3. Pheromones
4.4. Natural Enemies of Pest Insects on Apple
Active Substance | Application [198] | Mode of Action |
---|---|---|
A. pullulans | FIRE BLIGHT (E. amylovora) BULL’S EYE ROT (Neofabraea spp.) | antagonistic effect, ability to colonise various environments, endophytic characteristic, competition for nutrients, production of antibiotic compounds and induction of a systemic resistance in a host plant [133,136,142]; production of secondary metabolites, including pullulan (α-glucan) and β-glucans that strengthen plant cell membranes, induce ISR, and inhibit development of pathogens [131]. |
P. oligandrum | BULL’S EYE ROT (Neofabraea spp.) BLUE MOULD (P. expansum) | antagonistic effect, mycoparasitism, antibiotism by secreting substances toxic to pathogens, competition for nutrients and living space; stimulation of plant defence mechanisms and growth promotion through production of biologically active compounds (glycoprotein–oligandrin-inducing ISR, and tryptamine, a compound belonging to auxins that contributes to the development of the plant root system, supporting plant growth) [147]. |
C. oleophila | GREY MOULD (B. cinerea) BLUE MOULD (P. expansum) | production of the enzyme, exo-β,1-3 glucanase, that degrades fungal cell walls and reduces spore and mycelium growth [152]; other antagonistic mechanisms; competition for nutrients and space [153]; induction of the defence mechanisms of a plant and antibiosis [150,151]. |
B. subtilis | FIRE BLIGHT (E. amylovora) | ability to biosynthesise a complex set of secondary metabolites, including cyclic lipopolypeptides, polyketones, and antibiotics that determine its antagonistic effects; ISR induction strengthens long-term resistance of crops [158]; it also shows properties promoting plant growth, acting as a bacteria supporting plant development and facilitates phosphate dissolving [165]; produces siderophores of the catechol type, which are associated with affinity to iron and improves its supply to plants [167]. |
B. thuringiensis | TORTRIX MOTH (Tortricidae) APPLE ERMINE MOTH (H. malinellus) WINTER MOTH (O. brumata) AND OTHER LEAF-EATING CATERPILLARS SAN JOSE SCALE (Diaspidiotus perniciosus) CODLING MOTH (C. pomonella) | presence of δ-endotoxins, especially Cry proteins, which give it its insecticidal properties [173,174]; synthesis of insecticidal protein (Vip) and secretion of the insecticidal protein (Sip) [177]; lysis of epidermal cells in the midgut of the insect. When consumed by insect larvae, the digestive enzymes in the gastrointestinal tract activate the toxin, and this results in formation of pores in membranes of intestinal cells, then in paralysis of the digestive tract, and eventually to larval death [173]. |
laminarin | FIRE BLIGHT (E. amylovora) APPLE SCAB (V. inaequalis) BULL’S EYE ROT (Neofabraea spp.) | activates natural plant defence mechanisms by stimulating production of defence compounds and strengthening structural barriers against pathogens [182]. |
orange oil | POWDERY MILDEW (P. leucotricha) CODLING MOTH (C. pomonella) APPLE SUCKER (Psylla mali) APPLE PSYLLID (Cacopsylla mali) | physical mode of action—desiccation of the cuticles of mites and soft-bodied insects, leading to their sudden death by exposing them to a loss of body fluids. It also affects winged insects by disrupting their protective covering and wing tension, rendering them unable to fly [185]; as a biofungicide, it dries out fungal structures’ protective membranes, halting the spread of infection without harming healthy tissues [186]; insecticidal activity could be linked to inhibition of acetylcholinesterase and sodium–potassium pump activities in insects [187]. |
5. Technological Innovations in Biocontrol Applications
5.1. RNAi
5.1.1. RNAi-Based Pest Control
5.1.2. RNAi Modifying Apple Tree Characteristics
5.1.3. The Importance of RNAi in Sustainable Agriculture
5.2. CRISPR and Gene Editing
5.3. Nanotechnology
5.3.1. Encapsulation for Harvested Fruit Protection in Storage
5.3.2. Nanopesticides—Pest Control
5.3.3. Nanotechnology Application for Mitigating Abiotic Stresses in Plants
5.3.4. Nanotechnology in Sustainable Agriculture
5.4. Drones and Precision Spraying Systems for Targeted Delivery
6. Perspectives and Recommendations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, D.; Xu, J.; Li, X.; Zhang, F. Green Production of Apples Delivers Environmental and Economic Benefits in China. Plant Commun. 2024, 5, 101006. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT. Food and Agriculture Organization of the United Nations. Crops and Livestock Products. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 11 August 2025).
- Jin, S.; Li, W.; Cao, Y.; Jones, G.; Chen, J.; Li, Z.; Chang, Q.; Yang, G.; Frewer, L.J. Identifying Barriers to Sustainable Apple Production: A Stakeholder Perspective. J. Environ. Manag. 2022, 302, 114082. [Google Scholar] [CrossRef] [PubMed]
- Garello, M.; Piombo, E.; Prencipe, S.; Schiavon, G.; Berra, L.; Wisniewski, M.; Droby, S.; Spadaro, D. Fruit Microbiome: A Powerful Tool to Study the Epidemiology of Dry Lenticel Rot and White Haze—Emerging Postharvest Diseases of Apple. Postharvest Biol. Technol. 2023, 196, 112163. [Google Scholar] [CrossRef]
- Reddy, K.R.N.; Spadaro, D.; Lore, A.; Gullino, M.L.; Garibaldi, A. Potential of Patulin Production by Penicillium expansum Strains on Various Fruits. Mycotoxin Res. 2010, 26, 257–265. [Google Scholar] [CrossRef] [PubMed]
- Remolif, G.; Schiavon, G.; Garello, M.; Spadaro, D. Efficacy of Postharvest Application of Aureobasidium pullulans to Control White Haze on Apples and Effect on the Fruit Mycobiome. Horticulturae 2024, 10, 927. [Google Scholar] [CrossRef]
- Weekers, T.; Marshall, L.; Leclercq, N.; Wood, T.J.; Cejas, D.; Drepper, B.; Garratt, M.; Hutchinson, L.; Roberts, S.; Bosch, J.; et al. Ecological, Environmental, and Management Data Indicate Apple Production Is Driven by Wild Bee Diversity and Management Practices. Ecol. Indic. 2022, 139, 108880. [Google Scholar] [CrossRef]
- Weber, R.W.S.; Busch, R.; Wesche, J. Spatial and Temporal Aspects of Fungicide Resistance in Venturia inaequalis (Apple Scab) Populations in Northern Germany. BioTech 2025, 14, 44. [Google Scholar] [CrossRef]
- Sallato, B.V.; Latorre, B.A.; Aylwin, G. First Report of Practical Resistance to QoI Fungicides in Venturia inaequalis (Apple Scab) in Chile. Plant Dis. 2006, 90, 375. [Google Scholar] [CrossRef]
- Zhao, H.; Li, R.; Hu, J. Frequently Used Pesticides and Their Metabolites Residues in Apple and Apple Juice from Markets across China: Occurrence and Health Risk Assessment. LWT 2023, 178, 114610. [Google Scholar] [CrossRef]
- Lazarević-Pašti, T.; Milanković, V.; Tasić, T.; Petrović, S.; Leskovac, A. With or Without You?—A Critical Review on Pesticides in Food. Foods 2025, 14, 1128. [Google Scholar] [CrossRef]
- Siddiqui, Z.A.; Khan, M.R. Management of Nematode-Charcoal Rot Disease Complexes in Legumes. In Macrophomina Phaseolina; Elsevier: Amsterdam, The Netherlands, 2023; pp. 75–82. [Google Scholar]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Chatterjee, A. Integrated Pest Management of the Disease Caused by Macrophomina phaseolina. In Macrophomina Phaseolina; Elsevier: Amsterdam, The Netherlands, 2023; pp. 291–297. [Google Scholar]
- Spadaro, D.; Droby, S. Development of Biocontrol Products for Postharvest Diseases of Fruit: The Importance of Elucidating the Mechanisms of Action of Yeast Antagonists. Trends Food Sci. Technol. 2016, 47, 39–49. [Google Scholar] [CrossRef]
- Droby, S.; Wisniewski, M.; Teixidó, N.; Spadaro, D.; Jijakli, M.H. The Science, Development, and Commercialization of Postharvest Biocontrol Products. Postharvest Biol. Technol. 2016, 122, 22–29. [Google Scholar] [CrossRef]
- Liu, J.; Sui, Y.; Wisniewski, M.; Droby, S.; Liu, Y. Review: Utilization of Antagonistic Yeasts to Manage Postharvest Fungal Diseases of Fruit. Int. J. Food Microbiol. 2013, 167, 153–160. [Google Scholar] [CrossRef] [PubMed]
- Gouit, S.; Chair, I.; Belabess, Z.; Legrifi, I.; Goura, K.; Tahiri, A.; Lazraq, A.; Lahlali, R. Harnessing Trichoderma Spp.: A Promising Approach to Control Apple Scab Disease. Pathogens 2024, 13, 752. [Google Scholar] [CrossRef] [PubMed]
- Mari, M.; Martini, C.; Spadoni, A.; Rouissi, W.; Bertolini, P. Biocontrol of Apple Postharvest Decay by Aureobasidium pullulans. Postharvest Biol. Technol. 2012, 73, 56–62. [Google Scholar] [CrossRef]
- Tulukoğlu-Kunt, K.S.; Özden, M.; Di Francesco, A. Exploring Wild and Local Fruits as Sources of Promising Biocontrol Agents against Alternaria Spp. in Apples. Horticulturae 2023, 9, 1156. [Google Scholar] [CrossRef]
- Zhang, D.; Spadaro, D.; Garibaldi, A.; Gullino, M.L. Potential Biocontrol Activity of a Strain of Pichia guilliermondii against Grey Mold of Apples and Its Possible Modes of Action. Biol. Control 2011, 57, 193–201. [Google Scholar] [CrossRef]
- Singh, R.; Gaur, R.; Bansal, S.; Biswas, P.; Pandey, P.; Jamal, F.; Tiwari, S.; Gaur, M. Aureobasidium pullulans—An Industrially Important Pullulan Producing Black Yeast. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 605–622. [Google Scholar]
- Semida, W.M.; Beheiry, H.R.; Sétamou, M.; Simpson, C.R.; Abd El-Mageed, T.A.; Rady, M.M.; Nelson, S.D. Biochar Implications for Sustainable Agriculture and Environment: A Review. S. Afr. J. Bot. 2019, 127, 333–347. [Google Scholar] [CrossRef]
- Jeranyama, P.; Shrestha, A.; Neupane, N. Sustainable Food Systems. In The Role of Ecosystem Services in Sustainable Food Systems; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–16. [Google Scholar]
- Camerlengo, F.; Frittelli, A.; Pagliarello, R. CRISPR towards a Sustainable Agriculture. Encyclopedia 2022, 2, 538–558. [Google Scholar] [CrossRef]
- Sheikh, B.A.; Baba, S.H. Problems in Apple Farming: A Case of Kashmir Valley. Int. J. Agric. Anim. Prod. 2023, 3, 38–45. [Google Scholar] [CrossRef]
- Azgomi, H.; Haredasht, F.R.; Safari Motlagh, M.R. Diagnosis of Some Apple Fruit Diseases by Using Image Processing and Artificial Neural Network. Food Control 2023, 145, 109484. [Google Scholar] [CrossRef]
- Zhang, C.; Valente, J.; Kooistra, L.; Guo, L.; Wang, W. Orchard Management with Small Unmanned Aerial Vehicles: A Survey of Sensing and Analysis Approaches. Precis. Agric. 2021, 22, 2007–2052. [Google Scholar] [CrossRef]
- Patriarca, A. Fungi and Mycotoxin Problems in the Apple Industry. Curr. Opin. Food Sci. 2019, 29, 42–47. [Google Scholar] [CrossRef]
- Surikova, V.; Kārkiņš, A. Competition between Apple—Trees and Grass in the Orchard. ETR 2015, 1, 169. [Google Scholar] [CrossRef]
- Tian, Y.; Li, E.; Liang, Z.; Tan, M.; He, X. Diagnosis of Typical Apple Diseases: A Deep Learning Method Based on Multi-Scale Dense Classification Network. Front. Plant Sci. 2021, 12, 698474. [Google Scholar] [CrossRef]
- Sulaiman, A.; Anand, V.; Gupta, S.; Alshahrani, H.; Al Reshan, M.S.; Rajab, A.; Shaikh, A.; Azar, A.T. Sustainable Apple Disease Management Using an Intelligent Fine-Tuned Transfer Learning-Based Model. Sustainability 2023, 15, 13228. [Google Scholar] [CrossRef]
- Arato, A.A.; Mengesha, G.G.; Biress, Z.F.; Borano, B.B. Association of Apple Powdery Mildew (Podosphaera leucotricha) and Anthracnose (Neofabraea malicorticis) Epidemics with Environmental Factors and Agronomic Practices in Chencha Highlands, Southern Ethiopia. Phytopathol. Res. 2025, 7, 9. [Google Scholar] [CrossRef]
- Besufkad, A.; Worku, Y.; Desalegn, F.; Aragaw, D. A Survey on Temperate Fruit Pests and Their Importance in the Highland Areas of North Shewa Zone, Amhara Region, Ethiopia. J. Plant Pathol. Microbiol. 2018, 9, 437. [Google Scholar] [CrossRef]
- Sharma, R. Recognition of Anthracnose Injuries on Apple Surfaces Using YOLOV 3-Dense. Int. J. New Pract. Manag. Eng. 2015, 4, 08–14. [Google Scholar] [CrossRef]
- Cameldi, I.; Neri, F.; Ventrucci, D.; Ceredi, G.; Muzzi, E.; Mari, M. Influence of Harvest Date on Bull’s Eye Rot of ‘Cripps Pink’ Apple and Control Chemical Strategies. Plant Dis. 2016, 100, 2287–2293. [Google Scholar] [CrossRef] [PubMed]
- Rather, M.F.; Sakib, N.; Bhat, Z.A.; Masoodi, K.Z.; Hamid, A.; Shafi, F.; Munib-ur-Rehman; Wani, S.; Nabi, Z.; Ashraf, A.; et al. Comparative Analysis of Some Morpho-Cultural Characters of Venturia inaequalis (Apple Scab Pathogen) under Kashmir Conditions. J. Adv. Biol. Biotechnol. 2024, 27, 1387–1394. [Google Scholar] [CrossRef]
- Belete, T.; Boyraz, N. Critical Review on Apple Scab (Venturia inaequalis) Biology, Epidemiology, Economic Importance, Management and Defense Mechanisms to the Causal Agent. J. Plant Physiol. Pathol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Bhagta, S.; Siddappa, S.; Bhardwaj, V.; Kant, A. Comparative Expression Profile of Selected Genes in Venturia inaequalis Cooke (Wint.) Infecting Apple Fruits and Leaves. Gene Rep. 2024, 36, 101961. [Google Scholar] [CrossRef]
- Ahmad Shah, A.; Gupta, A. Venturia inaequalis Post-Infection Enhancement of Secondary Metabolites in the Peels of Delicious Apple Variety. Mater. Today Proc. 2023, 73, 151–162. [Google Scholar] [CrossRef]
- Stević, M.; Tamaš, N.; Miletić, N.; Vukša, P. Different Toxicity of the Strobilurin Fungicides Kresoxim-Methyl and Trifloxistrobin to Venturia inaequalis Isolates from Serbia. J. Environ. Sci. Health Part B 2015, 50, 633–637. [Google Scholar]
- Moinina, A.; Lahlali, R.; MacLean, D.; Boulif, M. Farmers’ Knowledge, Perception and Practices in Apple Pest Management and Climate Change in the Fes-Meknes Region, Morocco. Horticulturae 2018, 4, 42. [Google Scholar] [CrossRef]
- EPPO. PM 7/20 (3) Erwinia amylovora. EPPO Bull. 2022, 52, 198–224. [Google Scholar] [CrossRef]
- van der Zwet, T.; Orolaza-Halbrendt, N.; Zeller, W. Fire Blight: History, Biology, and Management; The American Phytopathological Society: Saint Paul, MN, USA, 2016; ISBN 978-0-89054-483-9. [Google Scholar]
- Santander, R.D.; Khodadadi, F.; Meredith, C.L.; Rađenović, Ž.; Clements, J.; Aćimović, S.G. Fire Blight Resistance, Irrigation and Conducive Wet Weather Improve Erwinia amylovora Winter Survival in Cankers. Front. Microbiol. 2022, 13, 1009364. [Google Scholar] [CrossRef]
- Slack, S.M.; Zeng, Q.; Outwater, C.A.; Sundin, G.W. Microbiological Examination of Erwinia amylovora Exopolysaccharide Ooze. Phytopathology 2017, 107, 403–411. [Google Scholar] [CrossRef] [PubMed]
- Boucher, M.; Collins, R.; Harling, K.; Brind’Amour, G.; Hesler, S.; Wentworth, K.; Cox, K.; Loeb, G. Field Evaluation of Interactions between Insects and Erwinia amylovora in a New York Apple Orchard. PhytoFrontiers 2021, 1, 94–103. [Google Scholar] [CrossRef]
- Marchica, A.; Pisuttu, C.; Calzone, A.; Bernardi, R.; Lorenzini, G. First Report of Powdery Mildew Caused by Erysiphe platani in Ailanthus altissima, the Tree-of-Heaven, in the Mediterranean Basin, Italy. J. General. Plant Pathol. 2020, 86, 428–431. [Google Scholar] [CrossRef]
- Gan, C.-M.; Tang, T.; Zhang, Z.-Y.; Li, M.; Zhao, X.-Q.; Li, S.-Y.; Yan, Y.-W.; Chen, M.-X.; Zhou, X. Unraveling the Intricacies of Powdery Mildew: Insights into Colonization, Plant Defense Mechanisms, and Future Strategies. Int. J. Mol. Sci. 2025, 26, 3513. [Google Scholar] [CrossRef]
- Moinina, A.; Lahlali, R.; Boulif, M. Important Pests, Diseases and Weather Conditions Affecting Apple Production: Current State and Perspectives. Rev. Marocaine Des Sci. Agron. et Vétérinaires 2019, 7, 71–87. [Google Scholar]
- Pramanik, D.; Shelake, R.M.; Park, J.; Kim, M.J.; Hwang, I.; Park, Y.; Kim, J.-Y. CRISPR/Cas9-Mediated Generation of Pathogen-Resistant Tomato against Tomato Yellow Leaf Curl Virus and Powdery Mildew. Int. J. Mol. Sci. 2021, 22, 1878. [Google Scholar] [CrossRef]
- Hoshi, H.; Sato, Y.; Kagiwada, S.; Horie, H. First Report of Powdery Mildew on Zinnia, Blue Torenia, Dahurian Patrinia and Scoparia Caused by Genus Euoidium in Japan. J. General. Plant Pathol. 2013, 79, 89–95. [Google Scholar] [CrossRef]
- Boekhout, T.; Gildemacher, P.; Theelen, B.; Muller, W.H.; Heijne, B.; Lutz, M. Extensive Colonization of Apples by Smut Anamorphs Causes a New Postharvest Disorder. FEMS Yeast Res. 2006, 6, 63–76. [Google Scholar] [CrossRef]
- Guarnaccia, V.; Remolif, G.M.E.; Nari, L.; Gualandri, V.; Angeli, D.; Oettl, S.; Dijksterhuis, J.; Boekhout, T.; Spadaro, D. Characterization of Fungal Species Involved in White Haze Disorder on Apples in Northern Italy and Description of Golubevia mali Sp. Nov. and Entyloma mali Sp. Nov. Postharvest Biol. Technol. 2024, 209, 112678. [Google Scholar] [CrossRef]
- Baric, S.; Lindner, L.; Marschall, K.; Dalla Via, J. Haplotype Diversity of Tilletiopsis Spp. Causing White Haze in Apple Orchards in Northern Italy. Plant Pathol. 2010, 59, 535–541. [Google Scholar] [CrossRef]
- Prencipe, S.; Spadaro, D.; Fruk, G.; Jemric, T. First Report of Tilletiopsis pallescens Causing White Haze on Apple in Croatia. Plant Dis. 2016, 100, 225. [Google Scholar] [CrossRef]
- Weber, R.W.S.; Zabel, D. White Haze and Scarf Skin, Two Little-Known Cosmetic Defects of Apples in Northern Germany. Eur. J. Hortic. Sci. 2011, 76, 45–50. [Google Scholar] [CrossRef]
- Spadaro, D.; Torres, R.; Errampalli, D.; Everett, K.; Ramos, L.; Mari, M. Postharvest Pathology of Fresh Horticultural Produce; Palou, L., Smilanick, J.L., Eds.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 9781315209180. [Google Scholar]
- Liang, X.; Zhang, R.; Gleason, M.L.; Sun, G. Sustainable Apple Disease Management in China: Challenges and Future Directions for a Transforming Industry. Plant Dis. 2022, 106, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Wöhner, T.; Emeriewen, O.F. Apple Blotch Disease (Marssonina coronaria (Ellis & Davis) Davis)—Review and Research Prospects. Eur. J. Plant Pathol. 2019, 153, 657–669. [Google Scholar] [CrossRef]
- Fontaine, K.; Fourrier-Jeandel, C.; Armitage, A.D.; Boutigny, A.-L.; Crépet, M.; Caffier, V.; Gnide, D.C.; Shiller, J.; Le Cam, B.; Giraud, M.; et al. Identification and Pathogenicity of Alternaria Species Associated with Leaf Blotch Disease and Premature Defoliation in French Apple Orchards. PeerJ 2021, 9, e12496. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Li, B.; Zhang, Q.; Liang, W.; Wang, C. Salicylic Acid Confers Enhanced Resistance to Glomerella Leaf Spot in Apple. Plant Physiol. Biochem. 2016, 106, 64–72. [Google Scholar] [CrossRef]
- Feng, H.; Wang, C.; He, Y.; Tang, L.; Han, P.; Liang, J.; Huang, L. Apple Valsa Canker: Insights into Pathogenesis and Disease Control. Phytopathol. Res. 2023, 5, 45. [Google Scholar] [CrossRef]
- Cai, J.; Xiong, J.; Hong, Y.; Hu, R. Pesticide Overuse in Apple Production and Its Socioeconomic Determinants: Evidence from Shaanxi and Shandong Provinces, China. J. Clean. Prod. 2021, 315, 128179. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, Y.; Tan, X.; Chen, A.; Feng, J. Biological Control of Insect Pests in Apple Orchards in China. Biol. Control 2014, 68, 47–56. [Google Scholar] [CrossRef]
- Boltabaev, A.; Mamarakhimov, O.; Tangirov, N.; Tursunova, S.; Turdalieva, K.; Alimov, A. Identification of the Major Insect Pests and Their Biological Characteristics in Apple Orchards (Uzbekistan). BIO Web Conf. 2024, 126, 01006. [Google Scholar] [CrossRef]
- Chouinard, G.; Pelletier, F.; Vincent, C. Pest Activity and Protection Practices: Four Decades of Transformation in Quebec Apple Orchards. Insects 2021, 12, 197. [Google Scholar] [CrossRef]
- Yee, W.L. Comparisons of Apple Cultivar Suitability for Rhagoletis pomonella (Diptera: Tephritidae) from Washington State, United States of America. Can. Entomol. 2024, 156, e33. [Google Scholar] [CrossRef]
- EPPO. PM 7/160 (1) Rhagoletis pomonella. EPPO Bull. 2025, 55, 211–226. [Google Scholar] [CrossRef]
- Akroute, D.; Douaik, A.; Habbadi, K.; ElBakkali, A.; BenBouazza, A.; Benkirane, R.; El Iraqui El Houssaini, S. Influence of Some Fruit Traits on Codling Moth (Cydia pomonella L.) Preference among Apple Varieties in Two Contrasted Climatic Conditions. Horticulturae 2023, 9, 788. [Google Scholar] [CrossRef]
- Ju, D.; Mota-Sanchez, D.; Fuentes-Contreras, E.; Zhang, Y.-L.; Wang, X.-Q.; Yang, X.-Q. Insecticide Resistance in the Cydia pomonella (L): Global Status, Mechanisms, and Research Directions. Pestic. Biochem. Physiol. 2021, 178, 104925. [Google Scholar] [CrossRef]
- Maggi, C.; Chreil, R. Codling Moth (Cydia pomonella) Biology, and Integrated Pest Management. Tree Fruit. Insects 2023, 1, 1–12. [Google Scholar]
- Crassweller, R.; Baugher, T.; Ford, T.; Marini, R.; Schupp, J.; Weber, D.; Krawczyk, G.; Biddinger, D.; López-Uribe, M.; Hopwood, J. Penn State Tree Fruit Production Guide 2020–2021; Penn State Extension: Bellefonte, PA, USA, 2020; 454p. [Google Scholar]
- Joshi, N.K.; Phan, N.T.; Biddinger, D.J. Management of Panonychus ulmi with Various Miticides and Insecticides and Their Toxicity to Predatory Mites Conserved for Biological Mite Control in Eastern U.S. Apple Orchards. Insects 2023, 14, 228. [Google Scholar] [CrossRef]
- Beers, E.H.; Hull, L.A. Timing of Mite Injury Affects the Bloom and Fruit Development of Apple. J. Econ. Entomol. 1990, 83, 547–551. [Google Scholar] [CrossRef]
- Liu, T.-C.J.; Cottrell, T.E.; Blaauw, B.R. Seasonal Activity of Plum Curculio (Coleoptera: Curculionidae) in Small Southeastern Peach Orchards. Environ. Entomol. 2024, 53, 801–814. [Google Scholar] [CrossRef]
- Vincent, C. Conotrachelus nenuphar (Plum Curculio). CABI Compend. 2008, 15164. [Google Scholar] [CrossRef]
- Lampasona, T.P.; Rodriguez-Saona, C.; Leskey, T.C.; Nielsen, A.L. A Review of the Biology, Ecology, and Management of Plum Curculio (Coleoptera: Curculionidae). J. Integr. Pest. Manag. 2020, 11, 22. [Google Scholar] [CrossRef]
- Shaw, B.; Nagy, C.; Fountain, M.T. Organic Control Strategies for Use in IPM of Invertebrate Pests in Apple and Pear Orchards. Insects 2021, 12, 1106. [Google Scholar] [CrossRef] [PubMed]
- Ryalls, J.M.W.; Garratt, M.P.D.; Spadaro, D.; Mauchline, A.L. The Benefits of Integrated Pest Management for Apple Depend on Pest Type and Production Metrics. Front. Sustain. Food Syst. 2024, 8, 1321067. [Google Scholar] [CrossRef]
- Atay, E.; Gargin, S.; Esitken, A.; Guzel, N.P.; Atay, A.N.; Altindal, M.; Senyurt, H.; Emre, M. The Effect of Weed Competition on Apple Fruit Quality. Not. Bot. Horti Agrobot. Cluj. Napoca 2017, 45, 120–125. [Google Scholar] [CrossRef]
- Byron, M.; Treadwell, D.D.; Dittmar, P.J. Weeds as Reservoirs of Plant Pathogens Affecting Economically Important Crops. EDIS 2019, 2019, 7. [Google Scholar] [CrossRef]
- Gazoulis, I.; Kanatas, P.; Zannopoulos, S.; Kokkini, M.; Kontogeorgou, V.; Antonopoulos, N.; Travlos, I. Agroecology and beyond: Enhancing Ecosystem Services Provided by Natural Vegetation and Inventing “Service Weeds”. Front. Plant Sci. 2024, 15, 1436310. [Google Scholar] [CrossRef]
- Licznar-Małańczuk, M. Occurrence of Weeds in an Orchard Due to Cultivation of Long-Term Perennial Living Mulches. Acta Agrobot. 2020, 73, 2. [Google Scholar] [CrossRef]
- Mafe, A.N.; Edo, G.I.; Makia, R.S.; Joshua, O.A.; Akpoghelie, P.O.; Gaaz, T.S.; Jikah, A.N.; Yousif, E.; Isoje, E.F.; Igbuku, U.A.; et al. A Review on Food Spoilage Mechanisms, Food Borne Diseases and Commercial Aspects of Food Preservation and Processing. Food Chem. Adv. 2024, 5, 100852. [Google Scholar] [CrossRef]
- Grabowski, M.F. Incidence of Postharvest Fungal Diseases of Apples in Integrated Fruit Production. Acta Sci. Pol. Hortorum Cultus 2021, 20, 123–129. [Google Scholar] [CrossRef]
- De Clercq, N.; Vlaemynck, G.; Van Pamel, E.; Colman, D.; Heyndrickx, M.; Van Hove, F.; De Meulenaer, B.; Devlieghere, F.; Van Coillie, E. Patulin Production by Penicillium expansum Isolates from Apples during Different Steps of Long-Term Storage. World Mycotoxin J. 2016, 9, 379–388. [Google Scholar] [CrossRef]
- Zholdoshbekova, S.; Özer, G.; Türkkan, M.; Erper, İ. First Report of Postharvest Fruit Rot Caused by Penicillium expansum on Apple in Kyrgyzstan. J. Plant Pathol. 2024, 106, 1861–1862. [Google Scholar] [CrossRef]
- Habib, W.; Masiello, M.; Chahine-Tsouvalakis, H.; Al Moussawi, Z.; Saab, C.; Tawk, S.T.; Piemontese, L.; Solfrizzo, M.; Logrieco, A.F.; Moretti, A.; et al. Occurrence and Characterization of Penicillium Species Isolated from Post-Harvest Apples in Lebanon. Toxins 2021, 13, 730. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, M.S.; Abbasi, S.; Abbasi, P.A.; Ali, S. Apple Bitter Rot and Glomerella Leaf Spot: A Comprehensive Review of Causal Species and Their Biology, Fungicide Sensitivities, and Management Strategies. Plant Dis. 2024, 108, 3432–3445. [Google Scholar] [CrossRef]
- Michalecka, M.; Bryk, H.; Poniatowska, A.; Puławska, J. Identification of Neofabraea Species Causing Bull’s Eye Rot of Apple in Poland and Their Direct Detection in Apple Fruit Using Multiplex PCR. Plant Pathol. 2016, 65, 643–654. [Google Scholar] [CrossRef]
- Simon, S.; Brun, L.; Guinaudeau, J.; Sauphanor, B. Pesticide Use in Current and Innovative Apple Orchard Systems. Agron. Sustain. Dev. 2011, 31, 541–555. [Google Scholar] [CrossRef]
- JKI. Behandlungsindex, Behandlungshäufigkeit, Wirstoffranking, Wirkstoffmengen Und Behandlungsflächen. Available online: https://papa.julius-kuehn.de/index.php?menuid=43 (accessed on 12 August 2025).
- Garthwaite, D.; Sinclair, C.; Glass, R.; Pote, A.; Trevisan, M.; Sacchettini, G.; Spanoghe, P.; Doan Ngoc, K.; Fevery, D.; Machera, K.; et al. Collection of Pesticide Application Data in View of Performing Environmental Risk Assessments for Pesticides. EFSA Support. Publ. 2015, 12, 846E. [Google Scholar] [CrossRef]
- Goritschnig, L.; Durstberger, T.; Burtscher-Schaden, H.; Zaller, J.G. The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production. Agrochemicals 2024, 3, 232–252. [Google Scholar] [CrossRef]
- Judt, C.; Korányi, D.; Zaller, J.G.; Batáry, P. Floral Resources and Ground Covers Promote Natural Enemies but Not Pest Insects in Apple Orchards: A Global Meta-Analysis. Sci. Total Environ. 2023, 903, 166139. [Google Scholar] [CrossRef]
- Giffard, B.; Winter, S.; Guidoni, S.; Nicolai, A.; Castaldini, M.; Cluzeau, D.; Coll, P.; Cortet, J.; Le Cadre, E.; d’Errico, G.; et al. Vineyard Management and Its Impacts on Soil Biodiversity, Functions, and Ecosystem Services. Front. Ecol. Evol. 2022, 10, 850272. [Google Scholar] [CrossRef]
- Garratt, M.P.D.; Breeze, T.D.; Jenner, N.; Polce, C.; Biesmeijer, J.C.; Potts, S.G. Avoiding a Bad Apple: Insect Pollination Enhances Fruit Quality and Economic Value. Agric. Ecosyst. Environ. 2014, 184, 34–40. [Google Scholar] [CrossRef]
- Khalifa, S.A.M.; Elshafiey, E.H.; Shetaia, A.A.; El-Wahed, A.A.A.; Algethami, A.F.; Musharraf, S.G.; AlAjmi, M.F.; Zhao, C.; Masry, S.H.D.; Abdel-Daim, M.M.; et al. Overview of Bee Pollination and Its Economic Value for Crop Production. Insects 2021, 12, 688. [Google Scholar] [CrossRef]
- García, D.; Miñarro, M.; Martínez-Sastre, R. Birds as Suppliers of Pest Control in Cider Apple Orchards: Avian Biodiversity Drivers and Insectivory Effect. Agric. Ecosyst. Environ. 2018, 254, 233–243. [Google Scholar] [CrossRef]
- Mayne, S.J.; King, D.I.; Andersen, J.C.; Elkinton, J.S. Pest Control Services on Farms Vary among Bird Species on Diversified, Low-Intensity Farms. Glob. Ecol. Conserv. 2023, 43, e02447. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; Lubbers, I.M.; Vos, H.M.J.; Brown, G.G.; De Deyn, G.B.; van Groenigen, K.J. Earthworms Increase Plant Production: A Meta-Analysis. Sci. Rep. 2014, 4, 6365. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Kumar, V.; Shahzad, B.; Tanveer, M.; Sidhu, G.P.S.; Handa, N.; Kohli, S.K.; Yadav, P.; Bali, A.S.; Parihar, R.D.; et al. Worldwide Pesticide Usage and Its Impacts on Ecosystem. SN Appl. Sci. 2019, 1, 1446. [Google Scholar] [CrossRef]
- Zaller, J.G. Daily Poison; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-50529-5. [Google Scholar]
- Linhart, C.; Panzacchi, S.; Belpoggi, F.; Clausing, P.; Zaller, J.G.; Hertoge, K. Year-Round Pesticide Contamination of Public Sites near Intensively Managed Agricultural Areas in South Tyrol. Environ. Sci. Eur. 2021, 33, 1. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, C.; Jiao, R.; Yu, L.; He, L.; Li, L. Effects of Spraying Pesticide and Grass Management on Arthropod Community and Relative Stability in the Apple Orchard. J. Fruit. Sci. 2020, 37, 582–592. [Google Scholar]
- Biddinger, D.J.; Robertson, J.L.; Mullin, C.; Frazier, J.; Ashcraft, S.A.; Rajotte, E.G.; Joshi, N.K.; Vaughn, M. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 2013, 8, e72587. [Google Scholar] [CrossRef]
- Zaller, J.G.; Kruse-Plaß, M.; Schlechtriemen, U.; Gruber, E.; Peer, M.; Nadeem, I.; Formayer, H.; Hutter, H.-P.; Landler, L. Pesticides in Ambient Air, Influenced by Surrounding Land Use and Weather, Pose a Potential Threat to Biodiversity and Humans. Sci. Total Environ. 2022, 838, 156012. [Google Scholar] [CrossRef]
- Brühl, C.A.; Zaller, J.G. Biodiversity Decline as a Consequence of an Inappropriate Environmental Risk Assessment of Pesticides. Front. Environ. Sci. 2019, 7, 177. [Google Scholar] [CrossRef]
- El Hawari, K.; Mokh, S.; Al Iskandarani, M.; Halloum, W.; Jaber, F. Pesticide Residues in Lebanese Apples and Health Risk Assessment. Food Addit. Contam. Part B 2019, 12, 81–89. [Google Scholar] [CrossRef]
- EFSA. European Food Safety Authority. The European Union Report on Pesticide Residues in Food. Available online: https://efsa.onlinelibrary.wiley.com/doi/abs/10.2903/j.efsa.2024.8753 (accessed on 31 July 2024).
- Ezrari, S.; Legrifi, I.; Taoussi, M.; Khadiri, M.; Belabess, Z.; Lahlali, R. Plant—Pathogen Interactions and Global Food Security. In Plant Pathogen Interaction; Springer Nature: Singapore, 2023; pp. 11–52. [Google Scholar]
- European Commission. Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Commission: Brussels, Belgium, 2022.
- Daraban, G.M.; Hlihor, R.-M.; Suteu, D. Pesticides vs. Biopesticides: From Pest Management to Toxicity and Impacts on the Environment and Human Health. Toxics 2023, 11, 983. [Google Scholar] [CrossRef] [PubMed]
- Książek-Trela, P.; Szpyrka, E. The Effect of Natural and Biological Pesticides on the Degradation of Synthetic Pesticides. Plant Prot. Sci. 2022, 58, 273–291. [Google Scholar] [CrossRef]
- Cai, P.; Dimopoulos, G. Microbial Biopesticides: A One Health Perspective on Benefits and Risks. One Health 2025, 20, 100962. [Google Scholar] [CrossRef]
- Di Francesco, A.; Ugolini, L.; D’Aquino, S.; Pagnotta, E.; Mari, M. Biocontrol of Monilinia Laxa by Aureobasidium pullulans Strains: Insights on Competition for Nutrients and Space. Int. J. Food Microbiol. 2017, 248, 32–38. [Google Scholar] [CrossRef]
- Vero, S.; Garmendia, G.; González, M.B.; Garat, M.F.; Wisniewski, M. Aureobasidium pullulans as a Biocontrol Agent of Postharvest Pathogens of Apples in Uruguay. Biocontrol Sci. Technol. 2009, 19, 1033–1049. [Google Scholar] [CrossRef]
- Liu, X.; Wang, J.; Gou, P.; Mao, C.; Zhu, Z.-R.; Li, H. In Vitro Inhibition of Postharvest Pathogens of Fruit and Control of Gray Mold of Strawberry and Green Mold of Citrus by Aureobasidin A. Int. J. Food Microbiol. 2007, 119, 223–229. [Google Scholar] [CrossRef]
- Di Francesco, A.; Di Foggia, M.; Corbetta, M.; Baldo, D.; Ratti, C.; Baraldi, E. Biocontrol Activity and Plant Growth Promotion Exerted by Aureobasidium pullulans Strains. J. Plant Growth Regul. 2021, 40, 1233–1244. [Google Scholar] [CrossRef]
- Banani, H.; Spadaro, D.; Zhang, D.; Matic, S.; Garibaldi, A.; Gullino, M.L. Biocontrol Activity of an Alkaline Serine Protease from Aureobasidium pullulans Expressed in Pichia pastoris against Four Postharvest Pathogens on Apple. Int. J. Food Microbiol. 2014, 182–183, 1–8. [Google Scholar] [CrossRef]
- Di Francesco, A.; Ugolini, L.; Lazzeri, L.; Mari, M. Production of Volatile Organic Compounds by Aureobasidium pullulans as a Potential Mechanism of Action against Postharvest Fruit Pathogens. Biol. Control 2015, 81, 8–14. [Google Scholar] [CrossRef]
- Cignola, R.; Zucchinali, S.; Firrao, G.; Di Francesco, A. Aspects of the Biocontrol Activity of Aureobasidium Spp. Strain against Penicillium expansum of Apple. Ann. Appl. Biol. 2024, 184, 307–313. [Google Scholar] [CrossRef]
- Di Francesco, A.; Sciubba, L.; Bencivenni, M.; Marzadori, C.; Baraldi, E. Application of Aureobasidium pullulans in iron-poor Soil. Can the Production of Siderophores Improve Iron Bioavailability and Yeast Antagonistic Activity? Ann. Appl. Biol. 2022, 180, 398–406. [Google Scholar] [CrossRef]
- Ippolito, A.; El Ghaouth, A.; Wilson, C.L.; Wisniewski, M. Control of Postharvest Decay of Apple Fruit by Aureobasidium pullulans and Induction of Defense Responses. Postharvest Biol. Technol. 2000, 19, 265–272. [Google Scholar] [CrossRef]
- Zeng, Q.; Johnson, K.B.; Mukhtar, S.; Nason, S.; Huntley, R.; Millet, F.; Yang, C.-H.; Hassani, M.A.; Zuverza-Mena, N.; Sundin, G.W. Aureobasidium pullulans from the Fire Blight Biocontrol Product, Blossom Protect, Induces Host Resistance in Apple Flowers. Phytopathology 2023, 113, 1192–1201. [Google Scholar] [CrossRef] [PubMed]
- Schena, L.; Ippolito, A.; Zahavi, T.; Cohen, L.; Nigro, F.; Droby, S. Genetic Diversity and Biocontrol Activity of Aureobasidium pullulans Isolates against Postharvest Rots. Postharvest Biol. Technol. 1999, 17, 189–199. [Google Scholar] [CrossRef]
- Zhimo, V.Y.; Sharma, V.K.; Feygenberg, O.; Salim, S.; Whitehead, S.R.; Spadaro, D.; Freilich, S.; Wisniewski, M.; Droby, S. Changes in Microbial Assembly and Ecological Processes Following Application of Aureobasidium pullulans on Apple Fruit Surface. Int. J. Food Microbiol. 2025, 441, 111299. [Google Scholar] [CrossRef]
- Di Francesco, A.; Zajc, J.; Stenberg, J.A. Aureobasidium Spp.: Diversity, Versatility, and Agricultural Utility. Horticulturae 2023, 9, 59. [Google Scholar] [CrossRef]
- Mannaa, M.; Han, G.; Jung, H.; Park, J.; Kim, J.-C.; Park, A.R.; Seo, Y.-S. Aureobasidium pullulans Treatment Mitigates Drought Stress in Abies Koreana via Rhizosphere Microbiome Modulation. Plants 2023, 12, 3653. [Google Scholar] [CrossRef]
- Rusin, C.; Di Francesco, A.; Di Foggia, M.; D’Aquino, S.; Rombolà, A.; Tugnoli, V.; Botelho, R.V.; Baraldi, E. An Emerging Problem Affecting Apple Production: Neofusicoccum parvum. Aureobasidium pullulans L1 and L8 Strains as an Alternative Control Strategy. Biol. Control 2019, 134, 157–162. [Google Scholar] [CrossRef]
- EU Pesticides Database European Commission. Available online: https://food.ec.europa.eu/plants/pesticides/eu-pesticides-database_en (accessed on 30 July 2024).
- McGowan, J.; Fitzpatrick, D.A. Genomic, Network, and Phylogenetic Analysis of the Oomycete Effector Arsenal. mSphere 2017, 2, 10. [Google Scholar] [CrossRef]
- Bělonožníková, K.; Hýsková, V.; Vašková, M.; Křížek, T.; Čokrtová, K.; Vaněk, T.; Halířová, L.; Chudý, M.; Žufić, A.; Ryšlavá, H. Seed Protection of Solanum lycopersicum with Pythium oligandrum against Alternaria brassicicola and Verticillium albo-atrum. Microorganisms 2022, 10, 1348. [Google Scholar] [CrossRef]
- Gerbore, J.; Benhamou, N.; Vallance, J.; Le Floch, G.; Grizard, D.; Regnault-Roger, C.; Rey, P. Biological Control of Plant Pathogens: Advantages and Limitations Seen through the Case Study of Pythium oligandrum. Environ. Sci. Pollut. Res. 2014, 21, 4847–4860. [Google Scholar] [CrossRef] [PubMed]
- Bělonožníková, K.; Hýsková, V.; Chmelík, J.; Kavan, D.; Čeřovská, N.; Ryšlavá, H. Pythium oligandrum in Plant Protection and Growth Promotion: Secretion of Hydrolytic Enzymes, Elicitors and Tryptamine as Auxin Precursor. Microbiol. Res. 2022, 258, 126976. [Google Scholar] [CrossRef] [PubMed]
- Takenaka, S.; Yamaguchi, K.; Masunaka, A.; Hase, S.; Inoue, T.; Takahashi, H. Implications of Oligomeric Forms of POD-1 and POD-2 Proteins Isolated from Cell Walls of the Biocontrol Agent Pythium oligandrum in Relation to Their Ability to Induce Defense Reactions in Tomato. J. Plant Physiol. 2011, 168, 1972–1979. [Google Scholar] [CrossRef]
- Takenaka, S.; Nishio, Z.; Nakamura, Y. Induction of Defense Reactions in Sugar Beet and Wheat by Treatment with Cell Wall Protein Fractions from the Mycoparasite Pythium oligandrum. Phytopathology 2003, 93, 1228–1232. [Google Scholar] [CrossRef]
- Takenaka, S.; Tamagake, H. Foliar Spray of a Cell Wall Protein Fraction from the Biocontrol Agent Pythium Oligandrum Induces Defence-Related Genes and Increases Resistance against Cercospora Leaf Spot in Sugar Beet. J. Gen. Plant Pathol. 2009, 75, 340–348. [Google Scholar] [CrossRef]
- Derevnina, L.; Dagdas, Y.F.; De la Concepcion, J.C.; Bialas, A.; Kellner, R.; Petre, B.; Domazakis, E.; Du, J.; Wu, C.; Lin, X.; et al. Nine Things to Know about Elicitins. New Phytol. 2016, 212, 888–895. [Google Scholar] [CrossRef]
- Benhamou, N.; le Floch, G.; Vallance, J.; Gerbore, J.; Grizard, D.; Rey, P. Pythium Oligandrum: An Example of Opportunistic Success. Microbiology 2012, 158, 2679–2694. [Google Scholar] [CrossRef]
- Gerbore, J.; Vallance, J.; Yacoub, A.; Delmotte, F.; Grizard, D.; Regnault-Roger, C.; Rey, P. Characterization of Pythium oligandrum Populations that Colonize the Rhizosphere of Vines from the Bordeaux Region. FEMS Microbiol. Ecol. 2014, 90, 153–167. [Google Scholar] [CrossRef]
- Yang, K.; Dong, X.; Li, J.; Wang, Y.; Cheng, Y.; Zhai, Y.; Li, X.; Wei, L.; Jing, M.; Dou, D. Type 2 Nep1-Like Proteins from the Biocontrol Oomycete Pythium oligandrum Suppress Phytophthora capsici Infection in Solanaceous Plants. J. Fungi 2021, 7, 496. [Google Scholar] [CrossRef]
- Le Floch, G.; Rey, P.; Benizri, E.; Benhamou, N.; Tirilly, Y. Impact of Auxin-Compounds Produced by the Antagonistic Fungus Pythium oligandrum or the Minor Pathogen Pythium Group F on Plant Growth. Plant Soil. 2003, 257, 459–470. [Google Scholar] [CrossRef]
- Gabrielová, A.; Mencl, K.; Suchánek, M.; Klimeš, R.; Hubka, V.; Kolařík, M. The Oomycete Pythium oligandrum Can Suppress and Kill the Causative Agents of Dermatophytoses. Mycopathologia 2018, 183, 751–764. [Google Scholar] [CrossRef] [PubMed]
- Świerczyński, S.; Frąszczak, B. Effect of Trichoderma Spp. Fungi and Pythium oligandrum on Maiden Apple Tree Growth and Photosynthesis in the Nursery. Agronomy 2024, 14, 1020. [Google Scholar] [CrossRef]
- Vallance, J.; Le Floch, G.; Déniel, F.; Barbier, G.; Lévesque, C.A.; Rey, P. Influence of Pythium oligandrum Biocontrol on Fungal and Oomycete Population Dynamics in the Rhizosphere. Appl. Environ. Microbiol. 2009, 75, 4790–4800. [Google Scholar] [CrossRef]
- Rubák, P.; Landfeld, A.; Strohalm, J.; Vaněk, T.; Zajkowska, E. Demonstration of Efficacy of a Pythium oligandrum Product Postharvest Treatment against Fruit Rot in Apples. Acta Hortic. 2023, 1363, 81–88. [Google Scholar] [CrossRef]
- Zheng, X.; Jiang, H.; Silvy, E.M.; Zhao, S.; Chai, X.; Wang, B.; Li, Z.; Bi, Y.; Prusky, D. Candida oleophila Proliferated and Accelerated Accumulation of Suberin Poly Phenolic and Lignin at Wound Sites of Potato Tubers. Foods 2021, 10, 1286. [Google Scholar] [CrossRef]
- Liu, J.; Wisniewski, M.; Artlip, T.; Sui, Y.; Droby, S.; Norelli, J. The Potential Role of PR-8 Gene of Apple Fruit in the Mode of Action of the Yeast Antagonist, Candida oleophila, in Postharvest Biocontrol of Botrytis cinerea. Postharvest Biol. Technol. 2013, 85, 203–209. [Google Scholar] [CrossRef]
- Sui, Y.; Wisniewski, M.; Droby, S.; Piombo, E.; Wu, X.; Yue, J. Genome Sequence, Assembly, and Characterization of the Antagonistic Yeast Candida oleophila Used as a Biocontrol Agent Against Post-Harvest Diseases. Front. Microbiol. 2020, 11, 295. [Google Scholar] [CrossRef]
- Bar-Shimon, M.; Yehuda, H.; Cohen, L.; Weiss, B.; Kobeshnikov, A.; Daus, A.; Goldway, M.; Wisniewski, M.; Droby, S. Characterization of Extracellular Lytic Enzymes Produced by the Yeast Biocontrol Agent Candida oleophila. Curr. Genet. 2004, 45, 140–148. [Google Scholar] [CrossRef]
- Cai, M.; Zhou, Y.; Zhang, H.; Deng, L.; Yao, S.; Zeng, K. Effect and Possible Modes of Action of Candida oleophila on Controlling Penicillium expansum in Apples. Food Sci. 2018, 39, 265–271. [Google Scholar]
- Guerrero Prieto, V.M.; Jacobo Cuéllar, J.L.; Parra Quezada, R.Á.; Linares Marrufo, M.I.; Ojeda Barrios, D.L.; Hernández Rodríguez, O.A.; Robles Hernández, L.; Berlanga Reyes, D.I.; Cabanillas Mata, I.J. Botrytis cinerea Pers. in Postharvest Apple Fruit, Control with Candida oleophila Montrocher Strains and/or Synthetic Fungicides. Nova Sci. 2019, 11, 69–84. [Google Scholar] [CrossRef]
- Al Raish, S.M.; Sourani, O.M.; Abu-Elsaoud, A.M. Plant Growth-Promoting Microorganisms as Biocontrol Agents: Mechanisms, Challenges, and Future Prospects. Appl. Microbiol. 2025, 5, 44. [Google Scholar] [CrossRef]
- Jan, F.; Arshad, H.; Ahad, M.; Jamal, A.; Smith, D.L. In Vitro Assessment of Bacillus subtilis FJ3 Affirms Its Biocontrol and Plant Growth Promoting Potential. Front. Plant Sci. 2023, 14, 1205894. [Google Scholar] [CrossRef]
- Albayrak, Ç.B. Bacillus Species as Biocontrol Agents for Fungal Plant Pathogens. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Springer: Berlin/Heidelberg, Germany, 2019; pp. 239–265. [Google Scholar]
- Miljaković, D.; Marinković, J.; Balešević-Tubić, S. The Significance of Bacillus Spp. in Disease Suppression and Growth Promotion of Field and Vegetable Crops. Microorganisms 2020, 8, 1037. [Google Scholar] [CrossRef]
- Rajkumari, J.; Pandey, P. Genomic Insights and Comparative Genomics of Bacillus Species Having Diverse Mechanisms of Biocontrol Against Fungal Phytopathogens. In Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol; Springer: Berlin/Heidelberg, Germany, 2019; pp. 217–237. [Google Scholar]
- Dimkić, I.; Janakiev, T.; Petrović, M.; Degrassi, G.; Fira, D. Plant-Associated Bacillus and Pseudomonas Antimicrobial Activities in Plant Disease Suppression via Biological Control Mechanisms—A Review. Physiol. Mol. Plant Pathol. 2022, 117, 101754. [Google Scholar] [CrossRef]
- Romero, D.; Aguilar, C.; Losick, R.; Kolter, R. Amyloid Fibers Provide Structural Integrity to Bacillus subtilis Biofilms. Proc. Natl. Acad. Sci. USA 2010, 107, 2230–2234. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Tabassum, B.; Fathi Abd Allah, E. Bacillus subtilis: A Plant-Growth Promoting Rhizobacterium that Also Impacts Biotic Stress. Saudi J. Biol. Sci. 2019, 26, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Shafi, J.; Tian, H.; Ji, M. Bacillus Species as Versatile Weapons for Plant Pathogens: A Review. Biotechnol. Biotechnol. Equip. 2017, 31, 446–459. [Google Scholar] [CrossRef]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics. Biomed. Res. Int. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Khan, A.; Doshi, H.V.; Thakur, M.C. Bacillus Spp.: A Prolific Siderophore Producer. In Bacilli and Agrobiotechnology; Springer International Publishing: Cham, Switzerland, 2016; pp. 309–323. [Google Scholar]
- Glick, B.R. Bacteria with ACC Deaminase Can Promote Plant Growth and Help to Feed the World. Microbiol. Res. 2014, 169, 30–39. [Google Scholar] [CrossRef]
- Radhakrishnan, R.; Hashem, A.; Abd_Allah, E.F. Bacillus: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. Front. Physiol. 2017, 8, 667. [Google Scholar] [CrossRef]
- Zhang, N.; Wang, Z.; Shao, J.; Xu, Z.; Liu, Y.; Xun, W.; Miao, Y.; Shen, Q.; Zhang, R. Biocontrol Mechanisms of Bacillus: Improving the Efficiency of Green Agriculture. Microb. Biotechnol. 2023, 16, 2250–2263. [Google Scholar] [CrossRef]
- Karačić, V.; Miljaković, D.; Marinković, J.; Ignjatov, M.; Milošević, D.; Tamindžić, G.; Ivanović, M. Bacillus Species: Excellent Biocontrol Agents against Tomato Diseases. Microorganisms 2024, 12, 457. [Google Scholar] [CrossRef]
- Poleatewich, A.M.; Ngugi, H.K.; Backman, P.A. Assessment of Application Timing of Bacillus Spp. to Suppress Pre- and Postharvest Diseases of Apple. Plant Dis. 2012, 96, 211–220. [Google Scholar] [CrossRef]
- Heo, Y.; Lee, Y.; Balaraju, K.; Jeon, Y. Characterization and Evaluation of Bacillus subtilis GYUN-2311 as a Biocontrol Agent against Colletotrichum Spp. on Apple and Hot Pepper in Korea. Front. Microbiol. 2024, 14, 1322641. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.; Luan, P.; Liu, S.; Shan, Y.; Hou, Z.; Zhao, S.; Jia, S.; Li, R. Efficacy of Bacillus subtilis XZ18-3 as a Biocontrol Agent against Rhizoctonia cerealis on Wheat. Agriculture 2022, 12, 258. [Google Scholar] [CrossRef]
- Kumar, P.; Kamle, M.; Borah, R.; Mahato, D.K.; Sharma, B. Bacillus thuringiensis as Microbial Biopesticide: Uses and Application for Sustainable Agriculture. Egypt. J. Biol. Pest. Control 2021, 31, 95. [Google Scholar] [CrossRef]
- Salehi Jouzani, G.; Seifinejad, A.; Saeedizadeh, A.; Nazarian, A.; Yousefloo, M.; Soheilivand, S.; Mousivand, M.; Jahangiri, R.; Yazdani, M.; Amiri, R.M.; et al. Molecular Detection of Nematicidal Crystalliferous Bacillus thuringiensis Strains of Iran and Evaluation of Their Toxicity on Free-Living and Plant-Parasitic Nematodes. Can. J. Microbiol. 2008, 54, 812–822. [Google Scholar] [CrossRef]
- Liu, L.; Chen, Z.; Yang, Y.; Xiao, Y.; Liu, C.; Ma, Y.; Soberón, M.; Bravo, A.; Yang, Y.; Liu, K. A Single Amino Acid Polymorphism in ABCC2 Loop 1 Is Responsible for Differential Toxicity of Bacillus thuringiensis Cry1Ac Toxin in Different Spodoptera (Noctuidae) Species. Insect Biochem. Mol. Biol. 2018, 100, 59–65. [Google Scholar] [CrossRef]
- Crickmore, N.; Berry, C.; Panneerselvam, S.; Mishra, R.; Connor, T.R.; Bonning, B.C. A Structure-Based Nomenclature for Bacillus thuringiensis and Other Bacteria-Derived Pesticidal Proteins. J. Invertebr. Pathol. 2021, 186, 107438. [Google Scholar] [CrossRef]
- Chakroun, M.; Banyuls, N.; Bel, Y.; Escriche, B.; Ferré, J. Bacterial Vegetative Insecticidal Proteins (Vip) from Entomopathogenic Bacteria. Microbiol. Mol. Biol. Rev. 2016, 80, 329–350. [Google Scholar] [CrossRef]
- Gumeniuk, I.; Levishko, A.; Sherstoboeva, O.; Shchetina, S.; Polunina, O.; Bondar, V.; Demyanyuk, O. Biological Control of Phytophages by Different Strains of Bacillus thuringiensis in Apple Orchards. Ecol. Eng. Environ. Technol. 2025, 26, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Florczak, L. From Bacteria to Biopreparation—Bacillus thuringiensis in Plant Protection. Prog. Plant Prot. 2024, 64, 204–217. [Google Scholar] [CrossRef]
- Reglinski, T.; Havis, N.; Rees, H.J.; de Jong, H. The Practical Role of Induced Resistance for Crop Protection. Phytopathology 2023, 113, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Okoro, C.A.; El-Hasan, A.; Voegele, R.T. Integrating Biological Control Agents for Enhanced Management of Apple Scab (Venturia inaequalis): Insights, Risks, Challenges, and Prospects. Agrochemicals 2024, 3, 118–146. [Google Scholar] [CrossRef]
- Tziros, G.T.; Samaras, A.; Karaoglanidis, G.S. Laminarin Induces Defense Responses and Efficiently Controls Olive Leaf Spot Disease in Olive. Molecules 2021, 26, 1043. [Google Scholar] [CrossRef]
- Van Hemelrijck, W.; Hauke, K.; Creemers, P.; Mery, A.; Joubert, J.-M. Efficacy of a New Oligosaccharide Active against Scab on Apple. Acta Hortic. 2013, 1009, 45–52. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Extraction, Structure and Biofunctional Activities of Laminarin from Brown Algae. Int. J. Food Sci. Technol. 2015, 50, 24–31. [Google Scholar] [CrossRef]
- Stathakis, T.; Economou, L.; Barda, M.; Angelioudakis, T.; Kati, V.; Karamaouna, F. Potential of Hedgerows with Aromatic Plants as Reservoirs of Natural Enemies of Pests in Orange Orchards. Insects 2023, 14, 391. [Google Scholar] [CrossRef]
- Brito, D.R.B.; Pinto-Zevallos, D.M.; de Sena Filho, J.G.; Coelho, C.R.; Nogueira, P.C.L.; de Carvalho, H.W.L.; Teodoro, A.V. Bioactivity of the Essential Oil from Sweet Orange Leaves against the Coconut Mite Aceria guerreronis (Acari: Eriophyidae) and Selectivity to a Generalist Predator. Crop Prot. 2021, 148, 105737. [Google Scholar] [CrossRef]
- Oboh, G.; Ademosun, A.O.; Olumuyiwa, T.A.; Olasehinde, T.A.; Ademiluyi, A.O.; Adeyemo, A.C. Insecticidal Activity of Essential Oil from Orange Peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and Its Inhibitory Effects on Acetylcholinesterase and Na+/K+-ATPase Activities. Phytoparasitica 2017, 45, 501–508. [Google Scholar] [CrossRef]
- Plata-Rueda, A.; Campos, J.M.; da Silva Rolim, G.; Martínez, L.C.; Dos Santos, M.H.; Fernandes, F.L.; Serrão, J.E.; Zanuncio, J.C. Terpenoid Constituents of Cinnamon and Clove Essential Oils Cause Toxic Effects and Behavior Repellency Response on Granary Weevil, Sitophilus granarius. Ecotoxicol. Environ. Saf. 2018, 156, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Yalçın, M. Perspective Chapter: Pheromone-Based Techniques in Sustainable Pest Management. In Insecticides—Advances in Insect Control and Sustainable Pest Management; IntechOpen: London, UK, 2023. [Google Scholar]
- Ferracini, C.; Pogolotti, C.; Rama, F.; Lentini, G.; Saitta, V.; Mereghetti, P.; Mancardi, P.; Alma, A. Pheromone-Mediated Mating Disruption as Management Option for Cydia Spp. in Chestnut Orchard. Insects 2021, 12, 905. [Google Scholar] [CrossRef]
- Stenberg, J.A. A Conceptual Framework for Integrated Pest Management. Trends Plant Sci. 2017, 22, 759–769. [Google Scholar] [CrossRef]
- Ferracini, C.; Pogolotti, C.; Lentini, G.; Saitta, V.; Busato, E.; Rama, F.; Alma, A. Performance of Pheromone-Baited Traps to Monitor the Seasonal Abundance of Tortrix Moths in Chestnut Groves. Insects 2020, 11, 807. [Google Scholar] [CrossRef]
- Whitfield, E.C.; Fountain, M.T. Future Semiochemical Control of Codling Moth, Cydia pomonella. Front. Hortic. 2024, 3, 1446806. [Google Scholar] [CrossRef]
- Korine, C.; Cohen, Y.; Kahnonitch, I. Insect Pest Pheromone Lures May Enhance the Activity of Insectivorous Bats in Mediterranean Vineyards and Apple Orchards. Sustainability 2022, 14, 16566. [Google Scholar] [CrossRef]
- Maas, J.; Huang, J.; Leach, H.; Wilson, J.K. Evaluating Pheromone Dispenser Density and Longevity for San Jose Scale Mating Disruption in Apple Orchards. Crop Prot. 2023, 172, 106337. [Google Scholar] [CrossRef]
- Alins, G.; Lordan, J.; Rodríguez-Gasol, N.; Arnó, J.; Peñalver-Cruz, A. Earwig Releases Provide Accumulative Biological Control of the Woolly Apple Aphid over the Years. Insects 2023, 14, 890. [Google Scholar] [CrossRef]
- García, D.; Miñarro, M.; Martínez-Sastre, R. Enhancing Ecosystem Services in Apple Orchards: Nest Boxes Increase Pest Control by Insectivorous Birds. J. Appl. Ecol. 2021, 58, 465–475. [Google Scholar] [CrossRef]
- Lisek, J.; Bryk, H.; Głos, H.; Masny, S.; Hołdaj, M.; Gorzka, D.; Tartanus, M.; Warabieda, W.; Sobieszek, B.; Bartosik, M. Program Ochrony Jabłoni. Available online: https://www.inhort.pl/files/sor/programy_ochrony/Program_ochrony_jabloni.pdf (accessed on 13 August 2025).
- Wise, J.C.; Wise, A.G.; Rakotondravelo, M.; Vandervoort, C.; Seeve, C.; Fabbri, B. Trunk Injection Delivery of DsRNA for RNAi-Based Pest Control in Apple Trees. Pest. Manag. Sci. 2022, 78, 3528–3533. [Google Scholar] [CrossRef]
- Scott, J.G.; Michel, K.; Bartholomay, L.C.; Siegfried, B.D.; Hunter, W.B.; Smagghe, G.; Zhu, K.Y.; Douglas, A.E. Towards the Elements of Successful Insect RNAi. J. Insect Physiol. 2013, 59, 1212–1221. [Google Scholar] [CrossRef] [PubMed]
- Zotti, M.; dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA Interference Technology in Crop Protection against Arthropod Pests, Pathogens and Nematodes. Pest. Manag. Sci. 2018, 74, 1239–1250. [Google Scholar] [CrossRef] [PubMed]
- Flynt, A.S. Insecticidal RNA Interference, Thinking beyond Long DsRNA. Pest. Manag. Sci. 2021, 77, 2179–2187. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gu, L.; Ireland, S.; Garczynski, S.F.; Knipple, D.C. Phenotypic Screen for RNAi Effects in the Codling Moth Cydia pomonella. Gene 2015, 572, 184–190. [Google Scholar] [CrossRef]
- Mogilicherla, K.; Howell, J.L.; Palli, S.R. Improving RNAi in the Brown Marmorated Stink Bug: Identification of Target Genes and Reference Genes for RT-QPCR. Sci. Rep. 2018, 8, 3720. [Google Scholar] [CrossRef]
- Whyard, S.; Singh, A.D.; Wong, S. Ingested Double-Stranded RNAs Can Act as Species-Specific Insecticides. Insect Biochem. Mol. Biol. 2009, 39, 824–832. [Google Scholar] [CrossRef]
- Castellanos, N.L.; Smagghe, G.; Sharma, R.; Oliveira, E.E.; Christiaens, O. Liposome Encapsulation and EDTA Formulation of DsRNA Targeting Essential Genes Increase Oral RNAi-caused Mortality in the Neotropical Stink Bug Euschistus heros. Pest. Manag. Sci. 2019, 75, 537–548. [Google Scholar] [CrossRef]
- Ujváry, I. Pest Management Research in Hungary at the Turn of the New Millennium: Evolving with Changes. Pest. Manag. Sci. 2003, 59, 375. [Google Scholar] [CrossRef]
- Schröpfer, S.; Lempe, J.; Emeriewen, O.F.; Flachowsky, H. Recent Developments and Strategies for the Application of Agrobacterium-Mediated Transformation of Apple Malus × Domestica Borkh. Front. Plant Sci. 2022, 13, 928292. [Google Scholar] [CrossRef]
- Stowe, E.; Dhingra, A. Development of the Arctic® Apple. In Plant Breeding Reviews; Wiley: Hoboken, NJ, USA, 2021; pp. 273–296. [Google Scholar]
- Wu, R.; Cooney, J.; Tomes, S.; Rebstock, R.; Karunairetnam, S.; Allan, A.C.; Macknight, R.C.; Varkonyi-Gasic, E. RNAi-Mediated Repression of Dormancy-Related Genes Results in Evergrowing Apple Trees. Tree Physiol. 2021, 41, 1510–1523. [Google Scholar] [CrossRef]
- Willow, J.; Smagghe, G. RNAi Applications toward Environmentally Sustainable Food Security. Curr. Opin. Environ. Sci. Health 2025, 45, 100612. [Google Scholar] [CrossRef]
- Germing, K.; Navarrete, C.A.D.; Schiermeyer, A.; Hommen, U.; Zühl, L.; Eilebrecht, S.; Eilebrecht, E. Crop Protection by RNA Interference: A Review of Recent Approaches, Current State of Developments and Use as of 2013. Environ. Sci. Eur. 2025, 37, 15. [Google Scholar] [CrossRef]
- Vatanparast, M.; Merkel, L.; Amari, K. Exogenous Application of DsRNA in Plant Protection: Efficiency, Safety Concerns and Risk Assessment. Int. J. Mol. Sci. 2024, 25, 6530. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, B.; Smagghe, G.; Arpaia, S.; Christiaens, O.; Dietz-Pfeilstetter, A.; Jones, H.; Kostov, K.; Sabbadini, S.; Opsahl-Sorteberg, H.-G.; Ventura, V.; et al. RNAi: What Is Its Position in Agriculture? J. Pest. Sci. 2020, 93, 1125–1130. [Google Scholar] [CrossRef]
- Dong, G.; Fan, Z. CRISPR/Cas-Mediated Germplasm Improvement and New Strategies for Crop Protection. Crop Health 2024, 2, 2. [Google Scholar] [CrossRef]
- Li, S.; Lin, D.; Zhang, Y.; Deng, M.; Chen, Y.; Lv, B.; Li, B.; Lei, Y.; Wang, Y.; Zhao, L.; et al. Genome-Edited Powdery Mildew Resistance in Wheat without Growth Penalties. Nature 2022, 602, 455–460. [Google Scholar] [CrossRef]
- Niu, Y.; Huang, X.; He, Z.; Zhang, Q.; Meng, H.; Shi, H.; Feng, B.; Zhou, Y.; Zhang, J.; Lu, G.; et al. Phosphorylation of OsTGA5 by Casein Kinase II Compromises Its Suppression of Defense-Related Gene Transcription in Rice. Plant Cell 2022, 34, 3425–3442. [Google Scholar] [CrossRef]
- Sun, C.; Wang, Y.; Yang, X.; Tang, L.; Wan, C.; Liu, J.; Chen, C.; Zhang, H.; He, C.; Liu, C.; et al. MATE Transporter GFD1 Cooperates with Sugar Transporters, Mediates Carbohydrate Partitioning and Controls Grain-filling Duration, Grain Size and Number in Rice. Plant Biotechnol. J. 2023, 21, 621–634. [Google Scholar] [CrossRef]
- Kieu, N.P.; Lenman, M.; Wang, E.S.; Petersen, B.L.; Andreasson, E. Mutations Introduced in Susceptibility Genes through CRISPR/Cas9 Genome Editing Confer Increased Late Blight Resistance in Potatoes. Sci. Rep. 2021, 11, 4487. [Google Scholar] [CrossRef]
- Galli, M.; Martiny, E.; Imani, J.; Kumar, N.; Koch, A.; Steinbrenner, J.; Kogel, K. CRISPR/SpCas9-Mediated Double Knockout of Barley Microrchidia MORC1 and MORC6a Reveals Their Strong Involvement in Plant Immunity, Transcriptional Gene Silencing and Plant Growth. Plant Biotechnol. J. 2022, 20, 89–102. [Google Scholar] [CrossRef]
- Yoon, Y.-J.; Venkatesh, J.; Lee, J.-H.; Kim, J.; Lee, H.-E.; Kim, D.-S.; Kang, B.-C. Genome Editing of eIF4E1 in Tomato Confers Resistance to Pepper Mottle Virus. Front. Plant Sci. 2020, 11, 1098. [Google Scholar] [CrossRef]
- Liu, T.; Ji, J.; Cheng, Y.; Zhang, S.; Wang, Z.; Duan, K.; Wang, Y. CRISPR/Cas9-mediated Editing of GmTAP1 Confers Enhanced Resistance to Phytophthora sojae in Soybean. J. Integr. Plant Biol. 2023, 65, 1609–1612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Cheng, J.; Lin, Y.; Fu, Y.; Xie, J.; Li, B.; Bian, X.; Feng, Y.; Liang, W.; Tang, Q.; et al. Editing Homologous Copies of an Essential Gene Affords Crop Resistance against Two Cosmopolitan Necrotrophic Pathogens. Plant Biotechnol. J. 2021, 19, 2349–2361. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, Q.; Yang, X.; Xu, J.; Liu, G.; Yao, X.; Ren, R.; Xu, J.; Lou, L. CRISPR/Cas9-Mediated Mutagenesis of Clpsk1 in Watermelon to Confer Resistance to Fusarium oxysporum f.Sp. niveum. Plant Cell Rep. 2020, 39, 589–595. [Google Scholar] [CrossRef]
- Su, H.; Wang, Y.; Xu, J.; Omar, A.A.; Grosser, J.W.; Calovic, M.; Zhang, L.; Feng, Y.; Vakulskas, C.A.; Wang, N. Generation of the Transgene-Free Canker-Resistant Citrus Sinensis Using Cas12a/CrRNA Ribonucleoprotein in the T0 Generation. Nat. Commun. 2023, 14, 3957. [Google Scholar] [CrossRef]
- Tripathi, J.N.; Ntui, V.O.; Shah, T.; Tripathi, L. CRISPR/Cas9-mediated Editing of DMR6 Orthologue in Banana (Musa Spp.) Confers Enhanced Resistance to Bacterial Disease. Plant Biotechnol. J. 2021, 19, 1291–1293. [Google Scholar] [CrossRef]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of Broad Virus Resistance in Non-transgenic Cucumber Using CRISPR/Cas9 Technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef]
- Gomez, M.A.; Lin, Z.D.; Moll, T.; Chauhan, R.D.; Hayden, L.; Renninger, K.; Beyene, G.; Taylor, N.J.; Carrington, J.C.; Staskawicz, B.J.; et al. Simultaneous CRISPR/Cas9-mediated Editing of Cassava EIF4E Isoforms NCBP-1 and NCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence. Plant Biotechnol. J. 2019, 17, 421–434. [Google Scholar] [CrossRef]
- Wu, G.; Fu, X. Editing Rice Negative Regulation Resistance Gene OsEDR1 by CRISPR/Cas9 and Analysis of Its Function. Chin. J. Appl. Environ. Biol. 2019, 25, 1375–1380. [Google Scholar]
- Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.; Chadha-Mohanty, P. Novel Alleles of Rice EIF4G Generated by CRISPR/Cas9-targeted Mutagenesis Confer Resistance to Rice Tungro Spherical Virus. Plant Biotechnol. J. 2018, 16, 1918–1927. [Google Scholar] [CrossRef]
- Li, C.; Zhou, L.; Wu, B.; Li, S.; Zha, W.; Li, W.; Zhou, Z.; Yang, L.; Shi, L.; Lin, Y.; et al. Improvement of Bacterial Blight Resistance in Two Conventionally Cultivated Rice Varieties by Editing the Noncoding Region. Cells 2022, 11, 2535. [Google Scholar] [CrossRef]
- Lu, H.; Luo, T.; Fu, H.; Wang, L.; Tan, Y.; Huang, J.; Wang, Q.; Ye, G.; Gatehouse, A.M.R.; Lou, Y.; et al. Resistance of Rice to Insect Pests Mediated by Suppression of Serotonin Biosynthesis. Nat. Plants 2018, 4, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.; Ji, Z.; Hao, W.; Tang, Y.; Wei, Y.; Hu, Y.; Zhao, K.; Wang, C. Molecular Identification of Rice Bacterial Blight Susceptible Gene Xig1 and Creation of Disease Resistant Resources. Acta Agron. Sin. 2020, 46, 1332–1339. [Google Scholar]
- De Carvalho, A.P.A.; Conte-Junior, C.A. Nanoencapsulation Application to Prolong Postharvest Shelf Life. Curr. Opin. Biotechnol. 2022, 78, 102825. [Google Scholar] [CrossRef]
- De León-Zapata, M.A.; Pastrana-Castro, L.; Barbosa-Pereira, L.; Rua-Rodríguez, M.L.; Saucedo, S.; Ventura-Sobrevilla, J.M.; Salinas-Jasso, T.A.; Rodríguez-Herrera, R.; Aguilar, C.N. Nanocoating with Extract of Tarbush to Retard Fuji Apples Senescence. Postharvest Biol. Technol. 2017, 134, 67–75. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of Antimicrobial Nanoemulsions as Edible Coatings: Impact on Safety and Quality Attributes of Fresh-Cut Fuji Apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Saeed, A. Applications of Nanobiotechnology in Plant Sciences. Biomed. J. Sci. Tech. Res. 2021, 35, 27236–27240. [Google Scholar] [CrossRef]
- Gupta, A.; Rayeen, F.; Mishra, R.; Tripathi, M.; Pathak, N. Nanotechnology Applications in Sustainable Agriculture: An Emerging Eco-Friendly Approach. Plant Nano Biol. 2023, 4, 100033. [Google Scholar] [CrossRef]
- Gupta, A.; Mishra, R.; Rai, S.; Bano, A.; Pathak, N.; Fujita, M.; Kumar, M.; Hasanuzzaman, M. Mechanistic Insights of Plant Growth Promoting Bacteria Mediated Drought and Salt Stress Tolerance in Plants for Sustainable Agriculture. Int. J. Mol. Sci. 2022, 23, 3741. [Google Scholar] [CrossRef]
- Gupta, A.; Dubey, P.; Kumar, M.; Roy, A.; Sharma, D.; Khan, M.M.; Bajpai, A.B.; Shukla, R.P.; Pathak, N.; Hasanuzzaman, M. Consequences of Arsenic Contamination on Plants and Mycoremediation-Mediated Arsenic Stress Tolerance for Sustainable Agriculture. Plants 2022, 11, 3220. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Bano, A.; Rai, S.; Mishra, R.; Singh, M.; Sharma, S.; Pathak, N. Mechanistic Insights of Plant-Microbe Interaction towards Drought and Salinity Stress in Plants for Enhancing the Agriculture Productivity. Plant Stress 2022, 4, 100073. [Google Scholar] [CrossRef]
- Kumar, M.; Giri, V.P.; Pandey, S.; Gupta, A.; Patel, M.K.; Bajpai, A.B.; Jenkins, S.; Siddique, K.H.M. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. Int. J. Mol. Sci. 2021, 22, 12245. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Yalcin, M.; Faizan, M.; Albalawi, T. Response of Tomato to Silicon Dioxide Nanoparticles under Salinity: Impact on Photosynthesis, Antioxidant Enzymes Activity, Stress Biomarkers and Osmoregulatory Substances. Plant Nano Biol. 2025, 13, 100171. [Google Scholar] [CrossRef]
- Regulation 2015/2283; Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on Novel Foods, Amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and Repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001. European Union: Brussels, Belgium, 2015. Available online: https://eur-lex.europa.eu/eli/reg/2015/2283/oj (accessed on 13 August 2025).
- Food and Drug Administration. Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients That Are Color Additives. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/guidance-industry-assessing-effects-significant-manufacturing-process-changes-including-emerging (accessed on 13 August 2025).
- Nile, S.H.; Baskar, V.; Selvaraj, D.; Nile, A.; Xiao, J.; Kai, G. Nanotechnologies in Food Science: Applications, Recent Trends, and Future Perspectives. Nano-Micro Lett. 2020, 12, 45. [Google Scholar] [CrossRef]
- Rao, P.S.; Raman, A.; Sankara Rao, M.S.; Radha, K.; Ahmed, R. Enhancing Orchard Cultivation Through Drone Technology and Deep Stream Algorithms in Precision Agriculture. Int. J. Adv. Comput. Sci. Appl. 2024, 15, 781–795. [Google Scholar] [CrossRef]
- Abdullahi, H.S.; Mahieddine, F.; Sheriff, R.E. Technology Impact on Agricultural Productivity: A Review of Precision Agriculture Using Unmanned Aerial Vehicles. In International Conference on Wireless and Satellite Systems; Springer International Publishing: Cham, Switzerland, 2015; pp. 388–400. [Google Scholar]
- Abdulridha, J.; Ampatzidis, Y.; Roberts, P.; Kakarla, S.C. Detecting Powdery Mildew Disease in Squash at Different Stages Using UAV-Based Hyperspectral Imaging and Artificial Intelligence. Biosyst. Eng. 2020, 197, 135–148. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Apolo-Apolo, O.E.; Pérez-Ruiz, M.; Martínez-Guanter, J.; Valente, J. A Cloud-Based Environment for Generating Yield Estimation Maps From Apple Orchards Using UAV Imagery and a Deep Learning Technique. Front. Plant Sci. 2020, 11, 1086. [Google Scholar] [CrossRef]
- He, L.; Fang, W.; Zhao, G.; Wu, Z.; Fu, L.; Li, R.; Majeed, Y.; Dhupia, J. Fruit Yield Prediction and Estimation in Orchards: A State-of-the-Art Comprehensive Review for Both Direct and Indirect Methods. Comput. Electron. Agric. 2022, 195, 106812. [Google Scholar] [CrossRef]
- Jemaa, H.; Bouachir, W.; Leblon, B.; LaRocque, A.; Haddadi, A.; Bouguila, N. UAV-Based Computer Vision System for Orchard Apple Tree Detection and Health Assessment. Remote Sens. 2023, 15, 3558. [Google Scholar] [CrossRef]
- Chandel, N.S.; Rajwade, Y.A.; Dubey, K.; Chandel, A.K.; Subeesh, A.; Tiwari, M.K. Water Stress Identification of Winter Wheat Crop with State-of-the-Art AI Techniques and High-Resolution Thermal-RGB Imagery. Plants 2022, 11, 3344. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Zahid, A.; He, L.; Martin, P. Opportunities and Possibilities of Developing an Advanced Precision Spraying System for Tree Fruits. Sensors 2021, 21, 3262. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.K. Technological Improvements in Electrostatic Spraying and Its Impact to Agriculture during the Last Decade and Future Research Perspectives—A Review. Eng. Agric. Environ. Food 2016, 9, 92–100. [Google Scholar] [CrossRef]
- Zanin, A.R.A.; Neves, D.C.; Teodoro, L.P.R.; da Silva Júnior, C.A.; da Silva, S.P.; Teodoro, P.E.; Baio, F.H.R. Reduction of Pesticide Application via Real-Time Precision Spraying. Sci. Rep. 2022, 12, 5638. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Lai, Q.; Zhang, Z. Review of Variable-Rate Sprayer Applications Based on Real-Time Sensor Technologies. In Automation in Agriculture—Securing Food Supplies for Future Generations; InTech: London, UK, 2018. [Google Scholar]
- Bardin, M.; Sakhr, A.; Comby, M.; Lopez-Ferber, M.; Graillot, B.; Siegwart, M.; Nicot, P. Is the efficacy of biological control against plant diseases likely to be more durable than that of chemical pesticides? Front. Plant Sci. 2015, 6, 566. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szpyrka, E.; Migdal-Pecharroman, S.; Książek-Trela, P. Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture. Agronomy 2025, 15, 2373. https://doi.org/10.3390/agronomy15102373
Szpyrka E, Migdal-Pecharroman S, Książek-Trela P. Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture. Agronomy. 2025; 15(10):2373. https://doi.org/10.3390/agronomy15102373
Chicago/Turabian StyleSzpyrka, Ewa, Sergio Migdal-Pecharroman, and Paulina Książek-Trela. 2025. "Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture" Agronomy 15, no. 10: 2373. https://doi.org/10.3390/agronomy15102373
APA StyleSzpyrka, E., Migdal-Pecharroman, S., & Książek-Trela, P. (2025). Biological Strategies and Innovations in Pest Control and Fruit Storage in Apple Orchards: A Step Towards Sustainable Agriculture. Agronomy, 15(10), 2373. https://doi.org/10.3390/agronomy15102373