Effective Yield Protection in Organic Potato Cultivation Through the Application of Diverse Strategies Utilizing Basic Substances
Abstract
1. Introduction
1.1. Basic Substances
Substance | Source/Description | Primary Use |
---|---|---|
Baking soda (Sodium bicarbonate) | A common household compound | Fungicide, especially against powdery mildew |
Vinegar (Acetic acid) | Natural product from fermentation | Bactericide and herbicide |
Chitosan hydrochloride | Derived from chitin (shells of crustaceans) | Elicitor of plant defense mechanisms |
Fructose | Natural sugar | Improves microbial activity in compost teas |
Lecithins | Derived from soybeans or sunflower | Fungicide, improves plant resistance |
Nettle extract (Urtica dioica) | Plant extract | General plant tonic and insect repellent |
Whey | By-product of cheese production | Fungicide against downy mildew |
Horsetail (Equisetum arvense) | Traditional plant extract | Fungicide, strengthens plant cell walls |
Sucrose | Table sugar | Attracts beneficial insects, feeds microbes |
1.2. Key Basic Substances for Potato Protection
1.3. Own Elaboration
2. Materials and Methods
2.1. Laboratory Experiments
2.2. Greenhouse Experiments
2.3. Field Experiment Design in 2022
2.4. Field Experiment Design in 2023
2.5. Statistical Analysis
3. Results
3.1. Laboratory Experiments
3.2. Greenhouse Experiment
3.3. Field Experiments in 2022
3.4. Field Experiments in 2023
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lalaymia, I.; Naveau, F.; Arguelles Arias, A.; Ongena, M.; Picaud, T.; Declerck, S.; Calonne-Salmon, M. Screening and efficacy evaluation of antagonistic fungi against Phytophthora infestans and combination with arbuscular mycorrhizal fungi for biocontrol of late blight in potato. Front. Agron. 2022, 4, 948309. [Google Scholar] [CrossRef]
- Axel, C.; Zannini, E.; Coffey, A.; Guo, J.; Waters, D.M.; Arendt, E.K. Eco-friendly control of potato late blight causative agent and the potential role of lactic acid bacteria: A review. Appl. Microbiol. Biotechnol. 2012, 96, 37–48. [Google Scholar] [CrossRef]
- Romanazzi, G.; Orçonneau, Y.; Moumni, M.; Davillerd, Y.; Marchand, P.A. Basic substances, a sustainable tool to complement and eventually replace synthetic pesticides in the management of pre- and post-harvest diseases: Reviewed instructions for users. Molecules 2022, 27, 3484. [Google Scholar] [CrossRef]
- Toffolatti, S.L.; Davillerd, Y.; D’Isita, I.; Facchinelli, C.; Germinara, G.S.; Ippolito, A.; Khamis, Y.; Kowalska, J.; Maddalena, G.; Marchand, P.; et al. Are basic substances a key to sustainable pest and disease management in agriculture? An open-field perspective. Plants 2023, 12, 3152. [Google Scholar] [CrossRef]
- Marchand, P.A. Basic substances: An opportunity for approval of low-concern substances under EU pesticide regulation. Pest Manag. Sci. 2015, 71, 1197–1200. [Google Scholar] [CrossRef]
- Marchand, P.A. Basic substances under EC 1107/2009 phytochemical regulation: Experience with non-biocide and food products as biorationals. J. Plant Prot. Res. 2016, 56, 312–318. [Google Scholar] [CrossRef]
- Wulf, F.; Podhorna, J.; Bandte, M.; Rybak, M.; Büttner, C. Potential of basic substances in plant protection to reduce Podosphaera pannosa in cut roses. J. Plant Dis. Prot. 2023, 130, 571–578. [Google Scholar] [CrossRef]
- Marchand, P.A. Basic substances under EU pesticide regulation: An opportunity for organic production? Org. Farm. 2017, 3, 16–19. [Google Scholar] [CrossRef]
- Regulation (EC) No 1107/2009 Concerning the Placing of Plant Protection Products on the Market. Available online: https://eur-lex.europa.eu/ (accessed on 7 August 2025).
- Basic Substances—European Commission Database. Available online: https://food.ec.europa.eu (accessed on 7 August 2025).
- European Pesticide Database. Available online: https://ec.europa.eu/food/plants/pesticides/eu-pesticides-database_en (accessed on 7 August 2025).
- Lamichhane, J.R.; Messéan, A.; Ricci, P. Research and innovation priorities as indicated in the European Union’s roadmap for sustainable plant protection. Crop Prot. 2019, 115, 31–40. [Google Scholar] [CrossRef]
- Bringezu, T.; Ufer, S. Basic substances as safe tools in plant protection—Their role and limitations. Agronomy 2020, 10, 1672. [Google Scholar] [CrossRef]
- Hommes, M.; Junge, R. Enhancing low-risk plant protection strategies: The role of basic substances. Sustain. Agric. Rev. 2021, 44, 155–172. [Google Scholar]
- Hari, A.; Echchgadda, G.; Benjelloun, M.; Lahmamsi, H.; Belabess, Z.; Laasli, S.-E.; Mokrini, F.; Lazraq, A.; Lahlali, R. Sustainable plant-based control strategies for late blight disease of potato. CABI Rev. 2025, 20, 0001. [Google Scholar] [CrossRef]
- Kowalska, J.; Roszkowski, S.; Krzymińska, J. Substancje podstawowe—Efektywna ochrona upraw/Basic substances—An effective tool for crop protection. Prog. Plant Prot. 2021, 61, 139–146. [Google Scholar] [CrossRef]
- Huang, X.; You, Z.; Luo, Y.; Yang, C.; Ren, J.; Liu, Y.; Wei, G.; Dong, P.; Ren, M. Antifungal activity of chitosan against Phytophthora infestans, the pathogen of potato late blight. Int. J. Biol. Macromol. 2021, 166, 1365–1376. [Google Scholar] [CrossRef]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. EFSA Portal. Available online: https://www.efsa.europa.eu/ (accessed on 7 August 2025).
- Kowalska, J.; Krzymińska, J.; Matysiak, K.; Jakubowska, M. Screening for antagonistic yeasts to manage Alternaria spp. in organic farming. Agriculture 2022, 12, 1693. [Google Scholar] [CrossRef]
- Yuen, J.E.; Forbes, G.A. Estimating the level of Susceptibility to Phytophthora infestans in Potato Genotypes. Phytopathology 2009, 99, 782–786. [Google Scholar] [CrossRef]
- Daaboub, A.; Radouane, N.; Tahiri, A.; Belabess, Z.; Amiri, S.; Kowalska, J.; Lahlali, R. Biological control using beneficial microorganisms as an alternative to synthetic fungicides for managing late blight disease. Potato Res. 2022, 65, 991–1013. [Google Scholar] [CrossRef]
- Tiwari, I.; Shah, K.K.; Tripathi, S.; Modi, B.; Subedi, S.; Shrestha, J. Late blight of potato and its management through the application of different fungicides and organic amendments: A review. J. Agric. Nat. Resour. 2021, 4, 301–320. [Google Scholar] [CrossRef]
- El-Anany, A.M.A. Studies on intercropping systems of garlic and green onion to potatoes and impact on growth, yield, and resistance to late blight disease. Ann. Agric. Sci. Moshtohor 2021, 59, 57–74. [Google Scholar] [CrossRef]
- Freimoser, F.M.; Rueda-Mejia, M.P.; Tilocca, B.; Migheli, Q. Biocontrol yeasts: Mechanisms and applications. World J. Microbiol. Biotechnol. 2019, 35, 154. [Google Scholar] [CrossRef] [PubMed]
- Hadwiger, L.A.; McDonel, H.; Glawe, D. Wild yeast strains as prospective candidates to induce resistance against potato late blight (Phytophthora infestans). Am. J. Potato Res. 2015, 92, 379–386. [Google Scholar] [CrossRef]
- de Vries, S.; von Dahlen, J.K.; Schnake, A.; Ginschel, S.; Schulz, B.; Rose, L.E. Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiol. Ecol. 2018, 94, fiy037. [Google Scholar] [CrossRef] [PubMed]
- Penaud, V.; Alahmad, A.; De Vrieze, M.; Bouteiller, M.; Eude, M.; Bernardon-Mery, A.; Trinsoutrot-Gattin, I.; Laval, K.; Gauthier, A. In vitro biocontrol potential of a plant extract-based formulation against infection structures of Phytophthora infestans along with lower non-target effects. Front. Microbiol. 2025, 16, 1569281. [Google Scholar] [CrossRef]
- Mehmood, B.; Azad, A.; Rahim, N.; Arif, S.; Khan, M.R.; Hussain, A.; Tariq-Khan, M.; Younis, M.T.; Bashir, A.; Ahmed, S.; et al. Management of late blight of potato caused by Phytophthora infestans through botanical aqueous extracts. Int. J. Phytopathol. 2022, 11, 35–42. [Google Scholar] [CrossRef]
- Sumartini, S. Efficacy of onion (Allium cepa L.) extract as a biofungicide to control scab disease (Sphaceloma batatas) of sweet potato (Ipomoea batatas). J. Exp. Biol. Agric. Sci. 2014, 2, 397–402. [Google Scholar]
- Catuna (Petrar), T.; Odagiu, A.; Balint, C.; Dârjan, S.; Bordea, D.; Bordea, S. Testing the anti-alternariosis effect of aqueous extract of Allium cepa L. in potato. ProEnvironment 2021, 14, 87–90. [Google Scholar]
- Khairy, A.M.; Tohamy, M.R.A.; Zayed, M.A.; Mahmoud, S.F.; El-Tahan, A.M.; El-Saadony, M.T.; Mesiha, P.K. Eco-friendly application of nano-chitosan for controlling potato and tomato bacterial wilt. Saudi J. Biol. Sci. 2022, 29, 2199–2209. [Google Scholar] [CrossRef]
- Pichyangkura, R.; Chadchawan, S. Biostimulant activity of chitosan in horticulture. Sci. Hortic. 2015, 196, 49–65. [Google Scholar] [CrossRef]
- Hassan, O.; Chang, T. Chitosan for eco-friendly control of plant disease. Asian J. Plant Pathol. 2017, 11, 53–70. [Google Scholar] [CrossRef]
- Chirkov, S.N.; Il’ina, A.V.; Surgucheva, N.A.; Letunova, E.V.; Varitsev, Y.A.; Tatarinova, N.Y.; Varlamov, V.P. Effect of chitosan on systemic viral infection and some defence responses in potato plants. Russ. J. Plant Physiol. 2001, 48, 774–779. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.F.; Kennedy, J.F.; Jiang, M.; Cai, Q.; Wu, X. Chitosan induces resistance to tuber rot in stored potato caused by Alternaria tenuissima. Int. J. Biol. Macromol. 2019, 140, 851–857. [Google Scholar] [CrossRef]
- Rabea, E.I.; Badawy, M.E.T.; Stevens, C.V.; Smagghe, G.; Steurbaut, W. Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 2003, 4, 1457–1465. [Google Scholar] [CrossRef]
- Acar, O.; Aki, C.; Erdugan, H. Fungal and bacterial diseases control with Elexa Plant Booster. Fresenius Environ. Bull. 2008, 17, 797–802. [Google Scholar]
- Nechwatal, J.; Zellner, M. Potential suitability of various leaf treatment products as copper substitutes for the control of late blight (Phytophthora infestans) in organic potato farming. Potato Res. 2015, 58, 261–276. [Google Scholar] [CrossRef]
- Hadwiger, L.A.; McBride, P.O. Low-level copper plus chitosan applications provide protection against late blight of potato. Plant Health Prog. 2006, 7, 22. [Google Scholar] [CrossRef]
- Żabka, M.; Pavela, R. The dominance of chitosan hydrochloride over modern natural agents or basic substances in efficacy against Phytophthora infestans, and its safety for the non-target model species Eisenia fetida. Horticulturae 2021, 7, 366. [Google Scholar] [CrossRef]
- Trebbi, G.; Negri, L.; Bosi, S.; Dinelli, G.; Cozzo, R.; Marotti, I. Evaluation of Equisetum arvense (horsetail macerate) as a copper substitute for pathogen management in field-grown organic tomato and durum wheat cultivations. Agriculture 2021, 11, 5. [Google Scholar] [CrossRef]
Basic Substance | Crop | Pathogen | Preparation/Concentration of the Spray Liquid, Decoction | Application Method | No. of Treatments |
---|---|---|---|---|---|
Allium cepa extract | Tomato, potato | Alternaria solani | 100% decoction of 50 g onion/L water | Leaf spraying BBCH21 to BBCH85 | 3–5 |
Tomato | P. infestans | 100% decoction of 50 g onion/L water | Leaf spraying BBCH21 to BBCH75 | 3–5 | |
Equisetum arvense L. | Tomato | Alternaria solani | 2 g/L plant homogenate extracted with hot water and filtered to be used | Leaf spraying BBCH51-BBCH59 | 2 |
Potato | P. infestans | 2.25 g/L plant homogenate extracted with hot water and filtered to be used | Leaf spraying BBCH51-BBCH59 | 4–8 | |
Potato | Alternaria solani | 2.25 g/L plant homogenate extracted with hot water and filtered to be used | Leaf spraying BBCH1-BBCH9 | 4–8 | |
Lecithin | Tomato | P. infestans | 990–1030 g/L | Leaf spraying BBCH10-BBCH90 | 3–12 |
Sunflower oil | Potato | P. infestans | 0.1–0.5/100 L water | Leaf spraying BBCH19–BBCH60 and BBCH69–BBCH70 | 1–7 |
Urtica spp. | Potato | P. infestans | 75 g fresh plant or 15 g dried/L of boiling water | Leaf spraying until BBCH49 | 1–6 |
Days | Unmodified RBA (Control) | RBA Modified with 1% Sunflower Oil | RBA Modified with 5% Onion Bulb Extract |
---|---|---|---|
5 | 52.96 ± 4.98 a * | 32.60 ± 4.04 b | 29.62 ± 3.28 b |
6 | 63.71 ± 2.52 a | 44.07 ± 4.22 b | 44.82 ± 3.30 b |
7 | 67.04 ± 2.89 a | 48.89 ± 3.86 b | 50.73 ± 4.17 b |
8 | 75.56 ± 2.52 a | 50.38 ± 4.01 b | 53.71 ± 4.39 b |
Combination | Treatment | Potato Variety—Yield (t/ha) | |||
---|---|---|---|---|---|
Lilly | Vineta | Tajfun | Mean | ||
a | Cu | 18.33 ± 1.29 ab * | 21.46 ± 2.64 ab | 16.29 ± 1.21 ab | 18.69 b |
b | Cu/sunflower oil | 22.60 ± 2.13 a | 23.02 ± 3.50 ab | 18.64 ± 2.08 a | 21.42 a |
c | Cu/onion | 18.42 ± 3.00 ab | 24.37 ± 1.64 a | 17.83 ± 0.97 a | 20.20 ab |
d | Onion | 19.86 ± 1.97 ab | 24.11 ± 2.75 a | 15.89 ± 1.54 ab | 19.95 ab |
e | Sunflower oil | 18.79 ± 3.56 ab | 23.86 ± 2.33 a | 18.91 ± 1.20 a | 20.52 ab |
f | Cu/chitosan | 22.09 ± 2.81 a | 22.50 ± 2.84 ab | 16.98 ± 0.76 ab | 20.52 ab |
g | Chitosan | 22.36 ± 3.14 a | 25.46 ± 2.52 a | 17.86 ± 1.55 a | 21.89 a |
h | Untreated control | 14.34 ± 0.56 b | 16.54 ± 0.64 b | 13.35 ± 1.79 b | 14.74 c |
Mean | 19.60 B | 22.66 A | 16.97 C |
Combination | Treatment | Yield (t/ha) |
---|---|---|
a | Sunflower oil emulsified solution | 24.1 ± 1.52 b * |
b | Onion water extract | 24.8 ± 1.40 ab |
c | Chitosan | 24.7 ± 1.24 ab |
d | Cu (2 kg) | 28.8 ± 2.04 a |
e | Cu (T1, T3)/sunflower oil (T2, T4) | 26.2 ± 1.25 ab |
f | Cu (T1, T3)/onion (T2, T4) | 26.9 ± 1.61 ab |
g | Cu (T1, T3)/chitosan (T2, T4) | 26.2 ± 1.50 ab |
h | Untreated control | 23.2 ± 1.67 b |
Treatment | Potato Cultivar—Yield (t/ha) | |||
---|---|---|---|---|
Satina | Jelly | Jurek | Mean | |
Cu | 19.75 ± 3.28 ab * | 13.57 ± 1.41 a | 23.53 ± 1.97 a | 18.95 a |
Yeast | 20.21 ± 0.68 a | 9.75 ± 2.58 ab | 22.41 ± 1.97 a | 17.46 ab |
Cu/sunflower oil | 21.46 ± 1.01 a | 8.20 ± 2.51 b | 22.80 ± 2.17 a | 17.48 ab |
Untreated control | 15.38 ± 1.72 b | 7.99 ± 1.64 b | 13.56 ± 1.44 b | 12.31 b |
Mean | 19.2 ab | 9.88 b | 20.57 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalska, J.; Tyburski, J.; Krzymińska, J.; Jakubowska, M. Effective Yield Protection in Organic Potato Cultivation Through the Application of Diverse Strategies Utilizing Basic Substances. Agronomy 2025, 15, 2178. https://doi.org/10.3390/agronomy15092178
Kowalska J, Tyburski J, Krzymińska J, Jakubowska M. Effective Yield Protection in Organic Potato Cultivation Through the Application of Diverse Strategies Utilizing Basic Substances. Agronomy. 2025; 15(9):2178. https://doi.org/10.3390/agronomy15092178
Chicago/Turabian StyleKowalska, Jolanta, Józef Tyburski, Joanna Krzymińska, and Magdalena Jakubowska. 2025. "Effective Yield Protection in Organic Potato Cultivation Through the Application of Diverse Strategies Utilizing Basic Substances" Agronomy 15, no. 9: 2178. https://doi.org/10.3390/agronomy15092178
APA StyleKowalska, J., Tyburski, J., Krzymińska, J., & Jakubowska, M. (2025). Effective Yield Protection in Organic Potato Cultivation Through the Application of Diverse Strategies Utilizing Basic Substances. Agronomy, 15(9), 2178. https://doi.org/10.3390/agronomy15092178