The Effects of Tree Growth Forms on the Photosynthetic Activity and Fruit Quality of ‘Korla Fragrant’ Pear
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Plant Materials
2.3. Test Methods
2.3.1. Determination of Tree Parameters
2.3.2. Determination of Photosynthetic Parameters
2.3.3. Determination of the Exterior Quality of Pear Fruit
2.3.4. Determination of the Internal Quality Parameters of Pear Fruit
2.3.5. Determination of Pear Fruit Yield
2.4. Data Processing and Analysis
3. Results
3.1. Tree Parameter Analysis of Different Tree Growth Forms of ‘Korla Fragrant’ Pear Trees
3.2. Photosynthetic Activity Analysis of Different Tree Growth Forms of ‘Korla Fragrant’ Pear Trees
3.3. Exterior Quality Analysis of Different Tree Growth Forms of ‘Korla Fragrant’ Pear Trees
3.4. Internal Quality Analysis of Different Tree Growth Forms of ‘Korla Fragrant’ Pear Trees
3.5. Yield Analysis of Different Tree Growth Forms of ‘Korla Fragrant’ Pear Trees
3.6. Correlation Analysis of Tree Parameters, Photosynthetic Activity, Exterior Quality, and Internal Quality of ‘Korla Fragrant’ Pear Trees with Different Tree Growth Forms
3.7. Principal Component Analysis of ‘Korla Fragrant’ Pear Trees with Different Tree Growth Forms
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Tree Parameters | Tree Growth Forms | Average Value | Standard Deviation | Levene’s Test for Equality of Variances | Difference Test | |||
---|---|---|---|---|---|---|---|---|
F-Values | p-Values | t-Values | Degree of Freedom | p-Values | ||||
Crotch angle | A | 65.9300 | 9.5062 | 1.2633 | 0.2466 | 0.6837 | 198 | 0.4949 |
B | 65.0600 | 8.4576 | ||||||
Equilibrium angle | A | 65.1600 | 9.6930 | 1.0922 | 0.6617 | 7.0255 | 198 | 0.0001 |
B | 75.0100 | 10.1300 | ||||||
Geotropic angle | A | 43.1400 | 12.0529 | 1.1371 | 0.5239 | 1.0470 | 198 | 0.2964 |
B | 41.4100 | 11.3031 | ||||||
Trunk height | A | 55.6100 | 8.8001 | 1.2069 | 0.3511 | 8.1312 | 198 | 0.0001 |
B | 44.9800 | 9.6678 | ||||||
Trunk circumference | A | 33.3600 | 3.3368 | 1.1176 | 0.5813 | 131.8910 | 198 | 0.0001 |
B | 93.9400 | 3.1564 | ||||||
Tree height | A | 4.2310 | 0.3127 | 1.4704 | 0.0565 | 21.9313 | 198 | 0.0001 |
B | 5.1200 | 0.2579 | ||||||
Number of long fruit branches | A | 40.4000 | 3.9132 | 1.2533 | 0.2630 | 27.9192 | 198 | 0.0001 |
B | 24.0000 | 4.3809 | ||||||
number of middle fruit branches | A | 30.7000 | 3.4333 | 1.3794 | 0.1112 | 16.1889 | 198 | 0.0001 |
B | 23.4000 | 2.9233 | ||||||
Number of short fruit branches | A | 97.0000 | 5.1522 | 1.3491 | 0.1381 | 110.9037 | 198 | 0.0001 |
B | 21.6000 | 4.4359 |
References
- Gong, Y.; Yang, Y.; Zhou, Z.; Jiang, X.; Tan, L.; Xiong, B. Effects of Different Canopy and Tree Shape on Fruit Quality of Huangguogan. IOP Conf. Ser. Earth Environ. Sci. 2020, 474, 32005. [Google Scholar] [CrossRef]
- Willaume, M.; Lauri, P.E.; Sinoquet, H. Light interception in apple trees influenced by canopy architecture manipulation. Trees 2004, 18, 705–713. [Google Scholar] [CrossRef]
- Yuan, Y.; Yang, W.; Chen, J.; Wei, J.; Xu, S.; Lu, X. Influence of Different Tree Shapes on Tree Structure, Fruit Quality and Yield of ‘Kuerle Xiangli’. North Hortic. 2025, 2, 1–10. [Google Scholar]
- Zhang, H.; Yang, X.; Ji, X.; Wang, Y.; Shi, M.; Wang, X.; Wang, Z.; Zhang, L.; Wang, X. Effects of tree shape on canopy structure, photosynthetic characteristics and fruit quality of early cultivated nectarine. J. Fruit Sci. 2024, 41, 470–480. [Google Scholar]
- Liu, L.; Li, Q.; Gao, D.; Wei, Z.; Shi, C.; Wang, Z.; Liu, J. Effects of tree shapes on growth, yield and quality of peach. J. Fruit Sci. 2022, 39, 36–46. [Google Scholar]
- Grechi, I.; Sauge, M.H.; Sauphanor, B.; Hilgert, N.; Senoussi, R.; Lescourret, F. How does winter pruning affect peach tree–Myzus persicae interactions? Entomol. Exp. Appl. 2008, 128, 369–379. [Google Scholar] [CrossRef]
- Liu, S.; Ling, H.; Zhao, Z.; Hou, Y.; Zhai, R.; Yang, C.; Xu, L.; Wang, Z. Effects of Different Tree Shapes on Canopy Structure, Photosynthetic Characteristics, Fruit Quality of ‘Dangshan’ pear. J. Fruit Resour. 2022, 3, 41–49. [Google Scholar]
- Zhang, J.; Serra, S.S.; Leisso, R.; Musacchi, S. Effect of light microclimate on the quality of ‘d’Anjou’ pears in mature open-centre tree architecture. Biosyst. Eng. 2016, 141, 1–11. [Google Scholar] [CrossRef]
- Zhao, M.; Sun, W.; Li, H.; Wang, W.; Cao, G.; Wang, F. The Effects of the Tree Structure of Zaosu Pear on the Transport and Distribution of Photosynthetic Assimilates and Fruit Quality Under Desert-Area Conditions. Agronomy 2022, 12, 2440. [Google Scholar] [CrossRef]
- An, B.; Gu, N.; Liu, X.; Zhang, Y.; Song, H.; Li, F. Effects of Different Tree Shapes on Canopy Structure and Photosynthetic Capacity of Plum. North Hortic. 2019, 29–35. [Google Scholar]
- Wang, Y.; Li, H.; Zhao, W.; Chang, G.; Kang, L.; Li, X.; Liang, S.; Gao, N. Analysis on Seasonal Canopy Characteristies Variation, Leaf Quality and Photosynthetic Characteristics of Different Apple Tree Shapes. Heilongjiang Agric. Sci. 2019, 5, 100–103. [Google Scholar]
- Afonso, S.; Ribeiro, C.; Bacelar, E.; Ferreira, H.; Oliveira, I.; Silva, A.P.; Gonçalves, B. Influence of training system on physiological performance, biochemical composition and antioxidant parameters in apple tree (Malus domestica Borkh.). Sci. Hortic. 2017, 225, 394–398. [Google Scholar] [CrossRef]
- Huang, G.; Tang, Z.; Peng, Y.; Wang, Y.; Li, W. Effects of Different Tree Shapes on Photosynthesis and Fruit Quality of ‘Lijiang Snow Peach’. Tianjin Agric. Sci. 2015, 21, 103–106. [Google Scholar]
- Giuliani, R.; Nerozzi, F.; Magnanini, E.; Corelli-Grappadelli, L. Influence of environmental and plant factors on canopy photosynthesis and transpiration of apple trees. Tree Physiol. 1997, 17, 637–645. [Google Scholar] [CrossRef]
- Marsal, J.; Johnson, S.; Casadesus, J.; Lopez, G.; Girona, J.; Stockle, C. Fraction of canopy intercepted radiation relates differently with crop coefficient depending on the season and the fruit tree species. Agric. For. Meteorol. 2014, 184, 1–11. [Google Scholar] [CrossRef]
- Van der Meer, M.; Lee, H.; de Visser, P.; Heuvelink, E.; Marcelis, L. Consequences of interplant trait variation for canopy light absorption and photosynthesis. Front. Plant Sci. 2023, 14, 1012718. [Google Scholar] [CrossRef]
- Ladon, T.; Chandel, J.S.; Sharma, N.C.; Verma, P. Optimizing apple orchard management: Investigating the impact of planting density, training systems and fertigation levels on tree growth, yield and fruit quality. Sci. Hortic. 2024, 334, 113329. [Google Scholar] [CrossRef]
- Anthony, B.M.; Minas, I.S. Canopy architecture impact on peach tree physiology, vigor diffusion, productivity and fruit quality. Sci. Hortic. 2025, 342, 114025. [Google Scholar] [CrossRef]
- Hao, J.; Chen, H.; Cao, H.; Dong, X.; Jia, H. Effects of Shading on Photosynthesis and Fruit Quality of Peach. J. Henan Agric. Sci. 2014, 43, 116–120. [Google Scholar]
- He, F.; Wang, F.; Wei, Q.; Wang, X.; Zhang, Q. Relationship Between Distribution of Relative Light Intensity in Canopy and Yield and Quality of Peach Fruit. Sci. Agric. Sin. 2008, 41, 502–507. [Google Scholar]
- Tustin, D.S.; Breen, K.C.; Van Hooijdonk, B.M. Light utilisation, leaf canopy properties and fruiting responses of narrow-row, planar cordon apple orchard planting systems—A study of the productivity of apple. Sci. Hortic. 2022, 294, 110778. [Google Scholar] [CrossRef]
- Yue, W.; Shu-chai, S.; Ma, L.; Shao-yan, Y.; Yu-wei, W.; Wang, X. Effects of canopy microclimate on fruit yield and quality of Camellia oleifera. Sci. Hortic. 2018, 235, 132–141. [Google Scholar] [CrossRef]
- Xu, H.; Liu, M.; Dong, S.; Wu, Y.; Zhang, H. Diversity and geographical variations of germplasm resources of Armeniaca mandshurica. Chin. J. Plant Ecol. 2019, 43, 585–600. [Google Scholar] [CrossRef]
- Zhang, G.; He, S.; Tang, W.; Li, G.; Zhang, J.; Niu, J. Investigation and Analysis of Evaluation Indexes of Spindle Tree Structure of Lingwu Long Jujube in Wulipo. J. Ningxia Agric. For. Sci. Technol. 2014, 55, 23–24. [Google Scholar]
- Zhang, X.; Yan, M.; Sun, Y.; Zhou, X.; Yuan, Z.; Li, X.; Lin, M.; Wu, C. Textural Characteristics and Anatomical Structure of Hard- and Soft-Fleshed Jujube Fruits. Agriculture 2024, 14, 2304. [Google Scholar] [CrossRef]
- Li, J. Study on molybdenum blue method of L-VC test by spectrometry. Food Sci. 2000, 21, 42–45. [Google Scholar]
- Pu, Y.; Ding, T.; Wang, W.; Xiang, Y.; Ye, X.; Li, M.; Liu, D. Effect of harvest, drying and storage on the bitterness, moisture, sugars, free amino acids and phenolic compounds of jujube fruit (Zizyphus jujuba cv. Junzao). J. Sci. Food Agric. 2018, 98, 628–634. [Google Scholar] [CrossRef]
- Kuang, Y.; Xu, Y.; Zhang, L.; Hou, E.; Shen, W. Dominant Trees in a Subtropical Forest Respond to Drought Mainly via Adjusting Tissue Soluble Sugar and Proline Content. Front. Plant Sci. 2017, 8, 802. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; He, W.; Liu, Z.; Li, R.; Wu, J.; Liao, T.; Jiang, Y. Comprehensive Evaluation of ‘Renong No.1’ Phyllanthus emblica L. Quality Based on Principal Component Analysis. Sci. Technol. Food Ind. 2023, 44, 318–325. [Google Scholar]
- Song, Q.; Zhang, G.; Zhu, X. Optimal crop canopy architecture to maximise canopy photosynthetic CO2 uptake under elevated CO2—A theoretical study using a mechanistic model of canopy photosynthesis. Funct. Plant Biol. FPB 2013, 40, 108–124. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Jiao, J.; Li, Y.; Li, Y.; Zhang, S. The Grey Relatedness Analysis Between the Modular Structure of Clonal Population of Calligonum mongolicum and the Environmental Factors in the Minqin Desert. Sci. Silvae Sin. 2012, 48, 141–149. [Google Scholar]
- Sharma, R.R.; Patel, V.B.; Krishna, H. Relationship between light, fruit and leaf mineral content with albinism incidence in strawberry (Fragaria × ananassa Duch.). Sci. Hortic. 2006, 109, 66–70. [Google Scholar] [CrossRef]
- Niu, R.; Zhao, X.; Wang, C.; Zhang, F.; Zhang, X.; Wang, F. Effects of canopy characteristics on fruit yield and quality with different training systems in nectarines. J. Fruit Sci. 2019, 36, 1667–1674. [Google Scholar]
- Shi, P.; Liu, H.; Bai, H.; Guo, D.; Tao, J.; Fan, C. Study on 3D Trunk Model Construction of Peach Tree Canopies and Light Interception and Space Distribution of Fruit Quality. Acta Agric. Boreali-Occident. Sin. 2016, 25, 1371–1378. [Google Scholar]
- Kishore, K.; Singh, H.S.; Nath, V.; Baig, M.J.; Murthy, D.S.; Acharya, G.C.; Behera, S. Influence of canopy architecture on photosynthetic parameters and fruit quality of mango in tropical region of India. Hortic. Environ. Biotechnol. 2023, 64, 557–569. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Liu, Y.; Shi, X.; Wang, Y.; Zhang, C.; Zhao, Z. The effect of fruit bagging on the color, phenolic compounds and expression of the anthocyanin biosynthetic and regulatory genes on the ‘Granny Smith’ apples. Eur. Food Res. Technol. 2013, 237, 875–885. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, Y.; Su, S.; Yang, S.; Ma, L.; Zhang, L.; Wang, X. Effects of Tree Shape on the Microclimate and Fruit Quality Parameters of Camellia oleifera Abel. Forests 2019, 10, 563. [Google Scholar] [CrossRef]
- Ye, S.; Liu, T.; Niu, Y. Effects of organic fertilizer on water use, photosynthetic characteristics, and fruit quality of pear jujube in northern Shaanxi. Open Chem. 2020, 18, 537–545. [Google Scholar] [CrossRef]
- Gullo, G.; Motisi, A.; Zappia, R.; Dattola, A.; Diamanti, J.; Mezzetti, B. Rootstock and fruit canopy position affect peach [Prunus persica (L.) Batsch] (cv. Rich May) plant productivity and fruit sensorial and nutritional quality. Food Chem. 2014, 153, 234–242. [Google Scholar] [CrossRef]
- Hamadziripi, E.T.; Theron, K.I.; Muller, M.; Steyn, W.J. Apple Compositional and Peel Color Differences Resulting from Canopy Microclimate Affect Consumer Preference for Eating Quality and Appearance. Hortscience 2014, 49, 384–392. [Google Scholar] [CrossRef]
- Sun, T.; Wen, B.; Wang, C.; Tian, J.; Hao, Z.; Lin, Y.; Wen, Y.; Zhang, F. Effect of 5-Aminolevulinic Acid on the Quality and Volatile Metabolites of Korla Fragrant Pear Fruit. Food Sci. 2024, 45, 8–17. [Google Scholar]
- Xu, Y.; Tian, L.; Cao, Y.; Dong, X.; Zhang, Y.; Huo, H.; Qi, D.; Xu, J.; Liu, C. Evaluation of flesh texture of seven pear varieties at different ripening stages. J. Fruit Sci. 2023, 40, 2112–2123. [Google Scholar]
- González-Talice, J.; Yuri, J.A.; Del Pozo, A. Relations among pigments, color and phenolic concentrations in the peel of two Gala apple strains according to canopy position and light environment. Sci. Hortic. 2013, 151, 83–89. [Google Scholar] [CrossRef]
- Serra, S.; Sullivan, N.; Mattheis, J.P.; Musacchi, S.; Rudell, D.R. Canopy attachment position influences metabolism and peel constituency of European pear fruit. BMC Plant Biol. 2018, 18, 364. [Google Scholar] [CrossRef]
- Obata, T.; Florian, A.; Timm, S.; Bauwe, H.; Fernie, A.R. On the metabolic interactions of (photo)respiration. J. Exp. Bot. 2016, 67, 3003–3014. [Google Scholar] [CrossRef]
- Postma, J.A.; Hecht, V.L.; Hikosaka, K.; Nord, E.A.; Pons, T.L.; Poorter, H. Dividing the pie: A quantitative review on plant density responses. Plant Cell Environ. 2021, 44, 1072–1094. [Google Scholar] [CrossRef]
- Zhao, L.; Yan, S.; Wang, Y.; Xu, G.; Zhao, D. Evaluation of the Effect of Preharvest Melatonin Spraying on Fruit Quality of ‘Yuluxiang’ Pear Based on Principal Component Analysis. Foods 2023, 12, 3507. [Google Scholar] [CrossRef] [PubMed]
Tree Growth Forms | Number of Fruits Per Plant | Yield Per Plant (kg) | Yield Per Unit Area (t·ha−1) |
---|---|---|---|
Trunk shape | 182.57 ± 12.55 | 17.87 ± 1.34 | 2.10 ± 0.12 ** |
Small-canopy shape | 191.39 ± 20.70 ** | 26.42 ± 2.95 ** | 1.76 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Yan, M.; Liu, X.; He, D.; Cui, H.; Xin, C.; Wu, C.; Li, X. The Effects of Tree Growth Forms on the Photosynthetic Activity and Fruit Quality of ‘Korla Fragrant’ Pear. Agronomy 2025, 15, 2348. https://doi.org/10.3390/agronomy15102348
Zhang X, Yan M, Liu X, He D, Cui H, Xin C, Wu C, Li X. The Effects of Tree Growth Forms on the Photosynthetic Activity and Fruit Quality of ‘Korla Fragrant’ Pear. Agronomy. 2025; 15(10):2348. https://doi.org/10.3390/agronomy15102348
Chicago/Turabian StyleZhang, Xiaodong, Min Yan, Xiaoning Liu, Duliang He, Haiwei Cui, Chenyu Xin, Cuiyun Wu, and Xiangyu Li. 2025. "The Effects of Tree Growth Forms on the Photosynthetic Activity and Fruit Quality of ‘Korla Fragrant’ Pear" Agronomy 15, no. 10: 2348. https://doi.org/10.3390/agronomy15102348
APA StyleZhang, X., Yan, M., Liu, X., He, D., Cui, H., Xin, C., Wu, C., & Li, X. (2025). The Effects of Tree Growth Forms on the Photosynthetic Activity and Fruit Quality of ‘Korla Fragrant’ Pear. Agronomy, 15(10), 2348. https://doi.org/10.3390/agronomy15102348