Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials and Polyploid Induction
2.2. Ploidy Analysis by Flow Cytometry
2.3. Chromosome Counting
2.4. Determination of Morphological and Agronomic Traits
2.5. Stomata and Pollen Grain Observation
2.6. Flowering and Fruit Set Characteristics
2.7. Chlorophyll Determination
2.8. Photosynthetic Parameter Measurement
2.9. Element Content Determination
2.10. Statistical Analysis
3. Results
3.1. Survival Rate and Polyploid Induction
3.2. Flow Cytometry (FCM) Analysis
3.3. Chromosome Numbers and Ploidy Identification
3.4. Tetraploid Leaves Exhibit Enhanced Size, Thickness, and Chlorophyll Accumulation
3.5. Tetraploid Plants Exhibit Increased Stomatal Size, Reduced Stomatal Density, and More Chloroplasts in Guard Cells
3.6. Tetraploid Plants Possess Enhanced Photosynthetic Capacity
3.7. Floral, Capsule, and Seed Traits, and Fruiting Characteristics of Tetraploid Plants
3.8. Tetraploid Kenaf Shows Superior Agronomic Traits
3.9. Tetraploid Shows Elevated Levels of Multiple Elements
4. Discussion
4.1. Optimal Colchicine Treatment for Tetraploid Induction in Kenaf
4.2. Synergistic Use of Flow Cytometry and Chromosome Counting for Ploidy Validation
4.3. Morphological Changes in Tetraploid Kenaf and Their Implications for Fiber Production
4.4. Synergistic Improvements in Microstructure, Photosynthetic Physiology, and Element Accumulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Allario, T.; Brumos, J.; Colmenero-Flores, J.M.; Tadeo, F.; Froelicher, Y.; Talon, M.; Navarro, L.; Ollitrault, P.; Morillon, R. Large changes in anatomy and physiology between diploid Rangpur lime (Citrus limonia) and its autotetraploid are not associated with large changes in leaf gene expression. J. Exp. Bot. 2011, 62, 2507–2519. [Google Scholar] [CrossRef] [PubMed]
- Ahlem, A.; Lobna, M.F.; Mohamed, C. Soil water leaf gas exchange and biomass production of Buffelgrass (Cenchrus ciliaris L.) with two ploidy levels under arid zone. Acta Ecol. Sin. 2023, 43, 506–512. [Google Scholar] [CrossRef]
- Touchell, D.H.; Palmer, I.E.; Ranney, T.G. In Vitro Ploidy Manipulation for Crop Improvement. Front. Plant Sci. 2020, 11, 722. [Google Scholar] [CrossRef]
- Colzi, I.; Gonnelli, C.; Bettarini, I.; Selvi, F. Polyploidy affects responses to Nickel in Ni-hyperaccumulating plants: Evidence from the model species Odontarrhena bertolonii (Brassicaceae). Environ. Exp. Bot. 2023, 213, 105403. [Google Scholar] [CrossRef]
- Fakhrzad, F.; Jowkar, A. Water stress and increased ploidy level enhance antioxidant enzymes, phytohormones, phytochemicals and polyphenol accumulation of tetraploid induced wallflower. Ind. Crops Prod. 2023, 206, 117612. [Google Scholar] [CrossRef]
- Yan, K.; Xu, H.; Zhao, S.; Shan, J.; Chen, X. Saline soil desalination by honeysuckle (Lonicera japonica Thunb.) depends on salt resistance mechanism. Ecol. Eng. 2016, 88, 226–231. [Google Scholar] [CrossRef]
- Chen, P.; Chen, T.; Li, Z.; Jia, R.; Luo, D.; Tang, M.; Lu, H.; Hu, Y.; Yue, J.; Huang, Z. Transcriptome analysis revealed key genes and pathways related to cadmium-stress tolerance in Kenaf (Hibiscus cannabinus L.). Ind. Crops Prod. 2020, 158, 112970. [Google Scholar] [CrossRef]
- Sattler, M.C.; Carvalho, C.R.; Clarindo, W.R. The polyploidy and its key role in plant breeding. Planta 2015, 243, 281–296. [Google Scholar] [CrossRef]
- Tsai, Y.T.; Chen, P.Y.; To, K.Y. Induction of polyploidy and metabolic profiling in the medicinal herb Wedelia chinensis. Plants 2021, 10, 1232. [Google Scholar] [CrossRef]
- Yan, H.-J.; Xiong, Y.; Zhang, H.-Y.; He, M.-L. In Vitro induction and morphological characteristics of octoploid plants in Pogostemon cablin. Breed. Sci. 2016, 66, 169–174. [Google Scholar] [CrossRef]
- Bharati, R.; Fernández-Cusimamani, E.; Gupta, A.; Novy, P.; Moses, O.; Severová, L.; Svoboda, R.; Šrédl, K. Oryzalin induces polyploids with superior morphology and increased levels of essential oil production in Mentha spicata L. Ind. Crops Prod. 2023, 198, 116683. [Google Scholar] [CrossRef]
- Xu, C.-g.; Tang, T.-x.; Chen, R.; Liang, C.-h.; Liu, X.-y.; Wu, C.-l.; Yang, Y.-s.; Yang, D.-p.; Wu, H. A comparative study of bioactive secondary metabolite production in diploid and tetraploid Echinacea purpurea (L.) Moench. Plant Cell Tissue Organ Cult. 2013, 116, 323–332. [Google Scholar] [CrossRef]
- Guan, X.; Song, Q.; Chen, Z.J. Polyploidy and small RNA regulation of cotton fiber development. Trends Plant Sci. 2014, 19, 516–528. [Google Scholar] [CrossRef] [PubMed]
- Wendel, J.F.; Cronn, R.C. Polyploidy and the evolutionary history of cotton. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2003; pp. 139–186. [Google Scholar] [CrossRef]
- Yuan, Y.; Scheben, A.; Edwards, D.; Chan, T.-F. Toward haplotype studies in polyploid plants to assist breeding. Mol. Plant 2021, 14, 1969–1972. [Google Scholar] [CrossRef] [PubMed]
- Bhattarai, K.; Kareem, A.; Deng, Z. In Vivo induction and characterization of polyploids in gerbera daisy. Sci. Hortic. 2021, 282, 110054. [Google Scholar] [CrossRef]
- Thayyil, P.; Remani, S.; Raman, G.T. Potential of a tetraploid line as female parent for developing yellow- andred-fleshed seedless watermelon. Turk. J. Agric. For. 2016, 40, 75–82. [Google Scholar] [CrossRef]
- Wang, P.; Yang, Y.; Lei, C.; Xia, Q.; Wu, D.; He, Q.; Jing, D.; Guo, Q.; Liang, G.; Dang, J. A female fertile triploid loquat line produces fruits with less seed and aneuploid germplasm. Sci. Hortic. 2023, 319, 112141. [Google Scholar] [CrossRef]
- Noor Abbas, A.-G.; Nora Aznieta Abdul Aziz, F.; Abdan, K.; Azline Mohd Nasir, N.; Fahim Huseien, G. Experimental study on durability properties of kenaf fibre-reinforced geopolymer concrete. Constr. Build. Mater. 2023, 396, 132160. [Google Scholar] [CrossRef]
- Ramesh, M. Kenaf (Hibiscus cannabinus L.) fibre based bio-materials: A review on processing and properties. Prog. Mater. Sci. 2016, 78–79, 1–92. [Google Scholar] [CrossRef]
- Szulczyk, K.R.; Badeeb, R.A. Nontraditional sources for biodiesel production in Malaysia: The economic evaluation of hemp, jatropha, and kenaf biodiesel. Renew. Energy 2022, 192, 759–768. [Google Scholar] [CrossRef]
- Abdul Khalil, H.P.S.; Yusra, A.F.I.; Bhat, A.H.; Jawaid, M. Cell wall ultrastructure, anatomy, lignin distribution, and chemical composition of Malaysian cultivated kenaf fiber. Ind. Crops Prod. 2010, 31, 113–121. [Google Scholar] [CrossRef]
- Nishimura, A.; Katayama, H.; Kawahara, Y.; Sugimura, Y. Characterization of kenaf phloem fibers in relation to stem growth. Ind. Crops Prod. 2012, 37, 547–552. [Google Scholar] [CrossRef]
- Morris, J.B.; Dierig, D.; Heinitz, C.; Hellier, B.; Bradley, V.; Marek, L. Vulnerability of U.S. new and industrial crop genetic resources. Ind. Crops Prod. 2023, 206, 117364. [Google Scholar] [CrossRef]
- Kyriakidou, M.; Tai, H.H.; Anglin, N.L.; Ellis, D.; Strömvik, M.V. Current Strategies of Polyploid Plant Genome Sequence Assembly. Front. Plant Sci. 2018, 9, 1660. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Gao, C.; Jin, J.; Wang, Y.; Jia, X.; Ma, H.; Zhang, Y.; Zhang, H.; Qi, B.; Xu, J. Induction and identification of tetraploids of pear plants (Pyrus bretschneideri and Pyrus betulaefolia). Sci. Hortic. 2022, 304, 111322. [Google Scholar] [CrossRef]
- Taratima, W.; Rohmah, K.N.; Plaikhuntod, K.; Maneerattanarungroj, P.; Trunjaruen, A. Optimal protocol for In Vitro polyploid induction of Cymbidium aloifolium (L.) Sw. BMC Plant Biol. 2023, 23, 295. [Google Scholar] [CrossRef]
- Yang, J.-w.; Liu, Z.-h.; Qu, Y.-z.; Zhang, Y.-z.; Li, H.-c. Cytological study on haploid male fertility in maize. J. Integr. Agric. 2022, 21, 3158–3168. [Google Scholar] [CrossRef]
- Eng, W.-H.; Ho, W.-S. Polyploidization using colchicine in horticultural plants: A review. Sci. Hortic. 2019, 246, 604–617. [Google Scholar] [CrossRef]
- Farhadi, N.; Panahandeh, J.; Motallebi-Azar, A.; Mokhtarzadeh, S. Production of autotetraploid plants by In Vitro chromosome engineering in Allium hirtifolium. Hortic. Plant J. 2023, 9, 986–998. [Google Scholar] [CrossRef]
- Sabooni, N.; Gharaghani, A.; Jowkar, A.; Eshghi, S. Successful polyploidy induction and detection in blackberry species by using an In Vitro protocol. Sci. Hortic. 2022, 295, 110850. [Google Scholar] [CrossRef]
- Glowacka, K.; Jeżowski, S.; Kaczmarek, Z. In Vitro induction of polyploidy by colchicine treatment of shoots and preliminary characterisation of induced polyploids in two Miscanthus species. Ind. Crops Prod. 2010, 32, 88–96. [Google Scholar] [CrossRef]
- Huy, N.P.; Tam, D.T.T.; Luan, V.Q.; Tung, H.T.; Hien, V.T.; Ngan, H.T.M.; Duy, P.N.; Nhut, D.T. In Vitro polyploid induction of Paphiopedilum villosum using colchicine. Sci. Hortic. 2019, 252, 283–290. [Google Scholar] [CrossRef]
- Prasath, D.; Nair, R.R.; Babu, P.A. Effect of colchicine induced tetraploids of ginger (Zingiber officinale Roscoe) on cytology, rhizome morphology, and essential oil content. J. Appl. Res. Med. Aromat. Plants 2022, 31, 100422. [Google Scholar] [CrossRef]
- Diem, L.T.; Phong, T.H.; Tung, H.T.; Khai, H.D.; Anh, T.T.L.; Mai, N.T.N.; Cuong, D.M.; Luan, V.Q.; Que, T.; Phuong, H.T.N.; et al. Tetraploid induction through somatic embryogenesis in Panax vietnamensis Ha et Grushv by colchicine treatment. Scientia Horticulturae 2022, 303, 111254. [Google Scholar] [CrossRef]
- Zhu, W.; Dong, Z.; Chen, X.; Cao, J.; Zhang, W.; Sun, R.; Teixeira da Silva, J.A.; Yu, X. Induction of 2n pollen by colchicine during microsporogenesis to produce polyploids in herbaceous peony (Paeonia lactiflora Pall.). Sci. Hortic. 2022, 304, 111264. [Google Scholar] [CrossRef]
- Ding, L.; Liu, R.; Gao, Y.; Xiao, J.; Lv, Y.; Zhou, J.; Zhang, Q. Effect of tetraploidization on morphological and fertility characteristics in Iris × norrisii Lenz. Sci. Hortic. 2023, 322, 112403. [Google Scholar] [CrossRef]
- Mo, L.; Chen, J.-h.; Chen, F.; Xu, Q.-w.; Tong, Z.-k.; Huang, H.-h.; Dong, R.-h.; Lou, X.-z.; Lin, E.-p. Induction and characterization of polyploids from seeds of Rhododendron fortunei Lindl. J. Integr. Agric. 2020, 19, 2016–2026. [Google Scholar] [CrossRef]
- Wang, L.-J.; Cao, Q.-Z.; Zhang, X.-Q.; Jia, G.-X. Effects of polyploidization on photosynthetic characteristics in three Lilium species. Sci. Hortic. 2021, 284, 110098. [Google Scholar] [CrossRef]
- Beranová, K.; Bharati, R.; Žiarovská, J.; Bilčíková, J.; Hamouzová, K.; Klíma, M.; Fernández-Cusimamani, E. Morphological, Cytological, and Molecular Comparison between Diploid and Induced Autotetraploids of Callisia fragrans (Lindl.) Woodson. Agronomy 2022, 12, 2520. [Google Scholar] [CrossRef]
- Mosa, K.A.; El-Naggar, M.; Ramamoorthy, K.; Alawadhi, H.; Elnaggar, A.; Wartanian, S.; Ibrahim, E.; Hani, H. Copper Nanoparticles Induced Genotoxicty, Oxidative Stress, and Changes in Superoxide Dismutase (SOD) Gene Expression in Cucumber (Cucumis sativus) Plants. Front. Plant Sci. 2018, 9, 872. [Google Scholar] [CrossRef]
- Bilgin, A.K.; Cengiz, M.F.; Karakaş-Budak, B.; Gümüş, C.; Kılıç, S.A.; Perinçek, F.; Basançelebi, O.; Sezik, E.; Certel, M. Elemental compositions and stable isotope signatures for determining the geographical origin of salep orchids collected from different regions of Turkey. J. Appl. Res. Med. Aromat. Plants 2023, 37, 100505. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An Overview of Tubulin Inhibitors That Interact with the Colchicine Binding Site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.-x.; Wei, C.-l.; Qi, J.-m.; Chen, X.-b.; Su, J.-g.; Li, A.-Q.; Tao, A.-f.; Wu, W.-r. Genetic linkage map construction for kenaf using SRAP, ISSR and RAPD markers. Plant Breed. 2011, 130, 679–687. [Google Scholar] [CrossRef]
- Lanquar, V.; Ramos, M.S.; Lelièvre, F.; Barbier-Brygoo, H.; Krieger-Liszkay, A.; Krämer, U.; Thomine, S. Export of Vacuolar Manganese by AtNRAMP3 and AtNRAMP4 Is Required for Optimal Photosynthesis and Growth under Manganese Deficiency. Plant Physiol. 2010, 152, 1986–1999. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, I.C.F.R.; Barros, L.; Soares, M.E.; Bastos, M.L.; Pereira, J.A. Antioxidant activity and phenolic contents of Olea europaea L. leaves sprayed with different copper formulations. Food Chem. 2007, 103, 188–195. [Google Scholar] [CrossRef]
- Herlihy, J.H.; Long, T.A.; McDowell, J.M. Iron homeostasis and plant immune responses: Recent insights and translational implications. J. Biol. Chem. 2020, 295, 13444–13457. [Google Scholar] [CrossRef]
- Aqafarini, A.; Lotfi, M.; Norouzi, M.; Karimzadeh, G. Induction of tetraploidy in garden cress: Morphological and cytological changes. Plant Cell Tissue Organ Cult. 2019, 137, 627–635. [Google Scholar] [CrossRef]
- Escrich, A.; Hidalgo, D.; Bonfill, M.; Palazon, J.; Sanchez-Muñoz, R.; Moyano, E. Polyploidy as a strategy to increase taxane production in yew cell cultures: Obtaining and characterizing a Taxus baccata tetraploid cell line. Plant Sci. 2023, 334, 111776. [Google Scholar] [CrossRef]
- Kruthika, H.S.; Rukmangada, M.S.; Naik, V.G. Genome size, chromosome number variation and its correlation with stomatal characters for assessment of ploidy levels in a core subset of mulberry (Morus spp.) germplasm. Gene 2023, 881, 147637. [Google Scholar] [CrossRef]
- Ochatt, S.J. Flow cytometry in plant breeding. Cytom. Part A 2008, 73, 581–598. [Google Scholar] [CrossRef]
- Roux, N.; Toloza, A.; Radecki, Z.; Zapata-Arias, F.J.; Dolezel, J. Rapid detection of aneuploidy in Musa using flow cytometry. Plant Cell Rep. 2002, 21, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, Y.; Narikiyo, K.; Fujita, C.; Okubo, H. Ploidy variation of progenies from intra- and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalis L.). Sex. Plant Reprod. 2004, 17, 157–164. [Google Scholar] [CrossRef]
- Dong, B.; Wang, H.; Liu, T.; Cheng, P.; Chen, Y.; Chen, S.; Guan, Z.; Fang, W.; Jiang, J.; Chen, F. Whole genome duplication enhances the photosynthetic capacity of Chrysanthemum nankingense. Mol. Genet. Genom. 2017, 292, 1247–1256. [Google Scholar] [CrossRef]
- Wang, L.; Luo, Z.; Wang, L.; Deng, W.; Wei, H.; Liu, P.; Liu, M. Morphological, cytological and nutritional changes of autotetraploid compared to its diploid counterpart in Chinese jujube (Ziziphus jujuba Mill.). Sci. Hortic. 2019, 249, 263–270. [Google Scholar] [CrossRef]
- Stanton, C.; Sanders, D.; Krämer, U.; Podar, D. Zinc in plants: Integrating homeostasis and biofortification. Mol. Plant 2022, 15, 65–85. [Google Scholar] [CrossRef]
- Gomes-Junior, R.A.; Moldes, C.A.; Delite, F.S.; Gratão, P.L.; Mazzafera, P.; Lea, P.J.; Azevedo, R.A. Nickel elicits a fast antioxidant response in Coffea arabica cells. Plant Physiol. Biochem. 2006, 44, 420–429. [Google Scholar] [CrossRef] [PubMed]
Concentration (%) | Treatment Duration (h) | Survival Rate (%) | Mutation Rate (%) |
---|---|---|---|
0 | 4 | 100 a | 0 |
0 | 8 | 98.28 a | 0 |
0 | 12 | 97.17 a | 0 |
0.1 | 4 | 64.82 b | 30.51 c |
0.1 | 8 | 44.14 d | 26.30 d |
0.1 | 12 | 26.39 f | 18.78 e |
0.2 | 4 | 50.64 c | 35.48 b |
0.2 | 8 | 35.84 e | 29.98 c |
0.2 | 12 | 13.90 g | 13.10 g |
0.3 | 4 | 37.83 e | 37.59 a |
0.3 | 8 | 18.00 g | 17.72 f |
0.3 | 12 | 8.00 h | 8.00 h |
Diploid | Tetraploid | |
---|---|---|
Leaf Length (mm) | 116.45 ± 7.81 a | 118.37 ± 9.32 a |
Leaf Width (mm) | 130.36 ± 12.26 b | 142.41 ± 6.16 a |
Leaf Petiole Length (mm) | 138.94 ± 30.53 a | 101.77 ± 4.10 b |
Leaf Thickness (mm) | 0.181 ± 0.020 b | 0.265 ± 0.035 a |
Leaf Spacing (cm) | 5.90 ± 0.52 a | 4.67 ± 0.32 b |
Chlorophyll a (μg/cm2) | 24.69 ± 0.21 b | 25.59 ± 0.04 a |
Chlorophyll b (μg/cm2) | 3.49 ± 0.29 b | 5.20 ± 0.22 a |
Total Chlorophyll (μg/cm2) | 28.18 ± 0.38 b | 30.79 ± 0.23 a |
Diploid | Tetraploid | |
---|---|---|
Average number of stomata per field of view (1000×) | 14.4 ± 1.8 a | 4.4 ± 0.5 b |
Stomatalarea (μm2) | 38.47 ± 10.59 b | 70.09 ± 12.59 a |
Number of chloroplasts in the stomata guard cells | 12.50 ± 1.65 b | 19.65 ± 2.12 a |
Sample | Diploid | Tetraploid |
---|---|---|
Flower Diameter (mm) | 135.10 ± 10.50 b | 148.44 ± 3.82 a |
Petal Length (mm) | 67.42 ± 2.10 b | 73.51 ± 2.04 a |
Petal Width (mm) | 42.15 ± 1.04 b | 48.80 ± 1.38 a |
Pollen Grain Diameter (mm) | 0.114 ± 0.008 b | 0.146 ± 0.007 a |
Capsule Width (mm) | 16.43 ± 0.16 b | 18.94 ± 0.59 a |
Capsule Height (mm) | 12.59 ± 0.37 b | 15.30 ± 0.36 a |
Aspect Ratio of Fruit (%) | 76.60 b | 80.80 a |
Capsule setting percentage (%) | 80.52 ± 1.78 a | 40.91 ± 5.94 b |
Days to seedling emergence (days) | 3 | 4 |
Days to bud appearance (days) | 132 | 140 |
Days to flowering (days) | 143 | 155 |
Days to maturity (days) | 181 | 194 |
Number of Seeds per Capsule | 15.10 ± 2.23 a | 5.00 ± 0.71 b |
Seed Length (mm) | 5.48 ± 0.21 b | 6.27 ± 0.20 a |
Seed Width (mm) | 3.53 ± 0.26 b | 4.47 ± 0.11 a |
Weight of 100 Seeds (g) | 3.19 ± 0.36 b | 4.26 ± 0.29 a |
Agronomic Traits | Diploid | Tetraploid |
---|---|---|
Plant height (m) | 4.96 ± 0.09 a | 4.59 ± 0.07 b |
Stem diameter (mm) | 20.50 ± 1.82 b | 23.14 ± 3.71 a |
Fresh bark thickness (mm) | 1.77 ± 0.18 b | 2.56 ± 0.35 a |
Fresh weight per plant (kg) | 1.32 ± 0.10 b | 2.04 ± 0.13 a |
Fresh stem weight per plant (kg) | 0.82 ± 0.103 b | 1.20 ± 0.24 a |
Fresh bark weight per plant (kg) | 0.44 ± 0.05 b | 0.61 ± 0.04 a |
Single plant dry weight (kg) | 0.48 ± 0.04 b | 0.86 ± 0.11 a |
Dry stem weight per plant (kg) | 0.22 ± 0.02 b | 0.35 ± 0.03 a |
Dry bark weight per plant (kg) | 0.11 ± 0.01 b | 0.17 ± 0.01 a |
Dry bark ratio to fresh stem (%) | 10.30 ± 0.16 b | 13.20 ± 0.11 a |
Fresh bark dry rate (%) | 24.09 ± 0.22 b | 27.32 ± 0.17 a |
Element Content (μg/g) | 2× | 4× |
---|---|---|
Ca | 10,428.54 ± 191.53 a | 8529.64 ± 76.25 b |
Cu | 4.36 ± 0.22 b | 7.39 ± 1.55 a |
Fe | 171.57 ± 20.22 b | 233.05 ± 25.87 a |
K | 90,763.43 ± 2181.65 b | 95071.47 ± 1203.50 a |
Mg | 3705.87 ± 164.06 a | 3345.65 ± 13.22 b |
Mn | 5.54 ± 0.56 b | 11.9 ± 1.56 a |
Na | 892.45 ± 22.96 b | 1572.8 ± 110.04 a |
Ni | 1.55 ± 0.10 b | 1.87 ± 0.25 a |
P | 3266.88 ± 62.27 b | 3666.3 ± 32.62 a |
Zn | 32.54 ± 0.71 b | 37.15 ± 2.20 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.; Li, X.; Luo, D.; Pan, J.; Rehman, M.; Chen, P. Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization. Agronomy 2025, 15, 2337. https://doi.org/10.3390/agronomy15102337
Chen T, Li X, Luo D, Pan J, Rehman M, Chen P. Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization. Agronomy. 2025; 15(10):2337. https://doi.org/10.3390/agronomy15102337
Chicago/Turabian StyleChen, Tao, Xin Li, Dengjie Luo, Jiao Pan, Muzammal Rehman, and Peng Chen. 2025. "Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization" Agronomy 15, no. 10: 2337. https://doi.org/10.3390/agronomy15102337
APA StyleChen, T., Li, X., Luo, D., Pan, J., Rehman, M., & Chen, P. (2025). Colchicine-Induced Tetraploid Kenaf (Hibiscus cannabinus L.) for Enhanced Fiber Production and Biomass: Morphological and Physiological Characterization. Agronomy, 15(10), 2337. https://doi.org/10.3390/agronomy15102337