Evaluation of Linear and Non-Linear Models to Describe Temperature-Dependent Development of Scopula subpunctaria (Lepidoptera: Geometridae) and Its Stage Transition Models
Abstract
1. Introduction
- (1)
- To determine the influence of temperature on the development of the immature stages of S. subpunctaria.
- (2)
- To compare two linear temperature-dependent model and estimate lower temperature threshold and thermal constant for each stage.
- (3)
- To evaluate eleven nonlinear models and select the most suitable one to depict the relationship between the developmental rate and temperature for each stage.
- (4)
- To establish stage transition models for the immature stages of S. subpunctaria.
2. Materials and Methods
2.1. Insect Rearing
2.2. Temperature-Dependent Development
2.3. Developmental Rate Model
2.3.1. Determining the Lower Temperature Threshold and Thermal Constant
2.3.2. Evaluation of Nonlinear Model
2.4. Stage Distribution Model
2.5. Stage Transition Model
2.6. Statistical Analyses
3. Results
3.1. Temperature-Dependent Development
3.2. Lower Temperature Threshold and Thermal Constant
3.3. Evaluation of Nonlinear Model
3.4. Stage Distribution Model
3.5. Stage Transition Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, W.J.; Chen, W.L.; Wei, W.; Xu, X.Q. Scanning electron microscopic observation of sensilla on the antenna of male adult Scopula subpunctaria. Chin. Bull. Entomol. 2010, 47, 938–940. [Google Scholar]
- Ma, T.; Shi, X.; Lin, N.; Wang, Z.; Xiao, Q.; Sun, Z.; Wen, X. Temporal pattern of adult emergence and sexual behavior of Scopula subpunctaria (Lepidoptera: Geometridae). Phytoparasitica 2019, 47, 17–29. [Google Scholar] [CrossRef]
- Geng, S.B.; Hou, H.L.; Wang, G.J.; Jung, C.; Yin, J.; Qiao, L. Temperature-dependent oviposition model of Scopula subpunctaria (Lepidoptera: Geometridae). J. Asia-Pac. Entomol. 2021, 24, 948–953. [Google Scholar] [CrossRef]
- Malekera, M.J.; Acharya, R.; Mostafiz, M.M.; Hwang, H.S.; Bhusal, N.; Lee, K.Y. Temperature-Dependent Development Models Describing the Effects of Temperature on the Development of the Fall Armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Insects 2022, 13, 1084. [Google Scholar] [CrossRef]
- Jafari, M.; Goldasteh, S.; Aghdam, H.R.; Zamani, A.A.; Soleyman-Nejadian, E.; Chausberger, P. Modeling Thermal Developmental Trajectories and Thermal Requirements of the Ladybird Stethorus gilvifrons. Insects 2023, 14, 11. [Google Scholar] [CrossRef]
- Hu, G.; Li, L.; Guo, Y.; Kang, C.; Wang, Y.; Zhang, Y.; Zhang, Z.; Wang, J.; Wang, Y. Temperature-dependent development of Nitidula rufipes (Linnaeus, 1767) (Coleoptera: Nitidulidae) and its significance in estimating minimum postmortem interval. Insects 2023, 14, 299. [Google Scholar] [CrossRef]
- Jung, J.K.; Kim, S.B.; Seo, B.Y.; Kim, J.; Kim, D.S. Temperature-dependent development of Helicoverpa armigera (Lepidoptera: Noctuidae) at constant temperatures: Instar pathways and stage transition models with semifield validation. J. Econ. Entomol. 2023, 116, 1689–1705. [Google Scholar] [CrossRef]
- Sedaghat, M.; Kheradmand, K.; Sedaratian-Jahromi, A.; Yazdanpanah, S.; Fathipour, Y. Temperature-dependent development of Neoseiulus californicus (Acari: Phytoseiidae) on Tetranychus urticae (Acari: Tetranychidae) at nine constant temperatures. Int. J. Acarol. 2025, 51, 303–310. [Google Scholar] [CrossRef]
- Andreadis, S.S.; Spanoudis, C.G.; Zakka, G.; Aslanidou, B.; Noukari, S.; Savopoulou-Soultani, M. Effect of temperature on rate of development, survival and adult longevity of Phthorimaea operculella (Lepidoptera: Gelechiidae). Eur. J. Entomol. 2017, 114, 35–41. [Google Scholar] [CrossRef]
- Sampaio, F.; Batista, M.M.; Marchioro, C.A. Temperature-dependent reproduction of Spodoptera eridania: Developing an oviposition model for a novel invasive species. Pest Manag. Sci. 2024, 80, 1118–1125. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Su, H.; Lyu, B.; Lu, H.; Tang, J.; Zhuo, Z.; Yang, F. Effects of temperature and supplementary food on the development and fecundity of the Eulophid parasitoid Tetrastichus howardi on Spodoptera frugiperda (Lepidoptera: Noctuidae). Int. J. Pest Manag. 2024, 70, 146–157. [Google Scholar] [CrossRef]
- Kopecká, A.; Kouřimská, L.; Škvorová, P.; Kurečka, M.; Kulma, M. Effect of temperature on the nutritional quality and growth parameters of yellow mealworm (Tenebrio molitor L.): A preliminary study. Appl. Sci. 2024, 14, 2610. [Google Scholar] [CrossRef]
- Park, C.G.; Choi, B.R.; Cho, J.R.; Kim, J.H.; Ahn, J.J. Thermal effects on the development, fecundity and life table parameters of Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) on barley. J. Asia-Pac. Entomol. 2017, 20, 767–775. [Google Scholar] [CrossRef]
- Roy, M.; Brodeur, J.; Cloutier, C. Relationship between temperature and developmental rate of Stethorus punctillum (Coleoptera: Coccinellidae) and its prey Tetranychus mcdanieli (Acarina: Tetranychidae). Environ. Entomol. 2002, 31, 177–187. [Google Scholar] [CrossRef]
- Golizadeh, A.; Zalucki, M.P. Estimating temperature-dependent developmental rates of potato tuberworm, Phthorimaea operculella (Lepidoptera: Gelechiidae). Insect Sci. 2012, 19, 609–620. [Google Scholar] [CrossRef]
- Wagner, T.L.; Wu, H.I.; Sharpe, P.J.; Schoolfield, R.M.; Coulson, R.N. Modeling insect development rates: A literature review and application of a biophysical model. Ann. Entomol. Soc. Am. 1984, 77, 208–220. [Google Scholar] [CrossRef]
- Ludwig, D. The effects of temperature on the development of an insect (Popillia japonica Newman). Physiol. Zool. 1928, 1, 358–389. [Google Scholar] [CrossRef]
- Logan, J.A.; Wollkind, D.J.; Hoyt, S.C.; Tanigoshi, L.K. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 1976, 5, 1133–1140. [Google Scholar] [CrossRef]
- Sharpe, P.J.; DeMichele, D.W. Reaction kinetics of poikilotherm development. J. Theor. Biol. 1977, 64, 649–670. [Google Scholar] [CrossRef]
- Harcourt, D.G.; Yee, J.M. Polynomial algorithm for predicting the duration of insect life stages. Environ. Entomol. 1982, 11, 581–584. [Google Scholar] [CrossRef]
- Hilbert, D.W.; Logan, J.A. Empirical model of nymphal development for the migratory grasshopper, Melanoplus sanguinipes (Orthoptera: Acrididae). Environ. Entomol. 1983, 12, 1–5. [Google Scholar] [CrossRef]
- Lactin, D.J.; Holliday, N.J.; Johnson, D.L.; Craigen, R. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 1995, 24, 68–75. [Google Scholar] [CrossRef]
- Briere, J.F.; Pracros, P.; Le Roux, A.Y.; Pierre, J.S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 1999, 28, 22–29. [Google Scholar] [CrossRef]
- Damos, P.T.; Savopoulou-Soultani, M. Temperature-dependent bionomics and modeling of Anarsia lineatella (Lepidoptera: Gelechiidae) in the laboratory. J. Econ. Entomol. 2008, 101, 1557–1567. [Google Scholar] [CrossRef]
- Damos, P.T.; Savopoulou-Soultani, M. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012, 2012, 123405. [Google Scholar] [CrossRef]
- Régnier, B.; Legrand, J.; Rebaudo, F. Modeling temperature-dependent development rate in insects and implications of experimental design. Environ. Entomol. 2022, 51, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.; Jung, C. Temperature-dependent development of immature Phyllonorycter ringoniella (Lepidoptera: Gracillariidae) and its stage transition models. J. Econ. Entomol. 2018, 111, 1813–1823. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, J.H.; Yiem, M.S. Temperature-dependent development of Carposina sasakii (Lepidoptera: Carposinidae) and its stage emergence models. Environ. Entomol. 2001, 30, 298–305. [Google Scholar] [CrossRef]
- Zhang, W.; Shen, L.; Jiang, F.; Li, G. Outburst reason and control of Scopula subpunctaria in 2009, Sichuan, China. Sichuan Agric. Sci. Technol. 2009, 8, 38–39. [Google Scholar]
- Zhang, F.M.; Hong, F.; Pan, P.L.; Yin, J.; Zhao, Q.; Jin, Y.L. Ultramorphology of Sensilla on the Proboscis in Adults of Two Geometridae Moths. J. Henan Agric. Sci. 2019, 48, 85–90. [Google Scholar]
- Geng, S.B.; Hou, H.H.; He, S.J.; Qiao, L.; Pan, P.L.; Yin, J.; Jin, Y.L. Effects of Nutrition Supplementation on Longevity and Fecundity of Scopula subpunctaria. J. Tea Sci. 2020, 40, 501–509. [Google Scholar]
- Yuan, T.T.; Luo, Z.J.; Luo, Z.X.; Cai, X.M.; Bian, L.; Xiu, C.L.; Fu, N.X.; Chen, Z.M.; Zhang, L.W.; Li, Z.Q. Olfactory gene families in Scopula subpunctaria and candidates for Type-II sex pheromone detection. Int. J. Mol. Sci. 2022, 23, 15775. [Google Scholar] [CrossRef]
- Zhang, F.M.; You, W.C.; Guo, S.B.; Chen, J.H.; Shi, H.Z.; Geng, S.B.; Zhou, Z.; Qiao, L. Analysis of the antennal transcriptome and olfaction-related genes of Scopula subpunctaria (Herrich-Schaeffer). J. Environ. Entomol. 2025, 47, 504–514. [Google Scholar]
- Chen, J.H.; Wen, X.R.; Wang, C.X.; Zhang, Q.Q.; Liu, H.M.; Ning, W.G.; Guo, S.B. Predation and Predilection of Eocanthecona furcellata to Larvae of Scopula subpunctaria (Lepidoptera: Geometridae). J. Tea Sci. 2025, 45, 87–98. [Google Scholar]
- Ikemoto, T.; Takai, K. A new linearized formula for the law of total effective temperature and the evaluation of line-fitting methods with both variables subject to error. Environ. Entomol. 2000, 29, 671–682. [Google Scholar] [CrossRef]
- Kontodimas, D.C.; Eliopoulos, P.A.; Stathas, G.J.; Economou, L.P. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): Evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 2004, 33, 1–11. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Damos, P.T.; Savopoulou-Soultani, M. Development and statistical evaluation of models in forecasting moth phenology of major lepidopterous peach pest complex for Integrated Pest Management programs. Crop Prot. 2010, 29, 1190–1199. [Google Scholar] [CrossRef]
- Marchioro, C.A.; Krechemer, F.S.; Foerster, L.A. Estimating the development rate of the tomato leaf miner, Tuta absoluta (Lepidoptera: Gelechiidae), using linear and non-linear models. Pest Manag. Sci. 2017, 73, 1486–1493. [Google Scholar] [CrossRef]
- Weibull, W.; Sweden, S. A statistical distribution of function of wide applicability. J. Appl. Mech. 1951, 103, 293–297. [Google Scholar] [CrossRef]
- Jandel Scientific. TableCurve 2D; Version 4.0; Automated Curve Fitting and Equation Discovery; Jandel Scientific: San Rafel, CA, USA, 1996. [Google Scholar]
- Choi, K.S.; Kim, D.S. Temperature-dependent development of Ascotis selenaria (Lepidoptera: Geometridae) and its stage emergence models with field validation. Crop Prot. 2014, 66, 72–79. [Google Scholar] [CrossRef]
- SAS Institute. Statistics; Version 9.3; SAS/STAT User’s Guide; SAS Institute: Cary, NC, USA, 2013. [Google Scholar]
- von Schmalensee, L.; Süess, P.; Roberts, K.T.; Gotthard, K.; Lehmann, P. A quantitative model of temperature-dependent diapause progression. Proc. Natl. Acad. Sci. USA 2024, 121, e2407057121. [Google Scholar] [CrossRef]
- Kim, D.S.; Lee, J.H. A population model for the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), in a Korean orchard system. Ecol. Modell. 2010, 221, 268–280. [Google Scholar] [CrossRef]
- Seo, Y.D.; Kim, D.S. Temperature-driven models of Aculops pelekassi (Acari: Eriophyidae) based on its development and fecundity on detached citrus leaves in the laboratory. J. Asia-Pac. Entomol. 2014, 17, 135–142. [Google Scholar] [CrossRef]
Temperature (°C) | Number of Insects Completing the Developmental Stages | Developmental Duration (Days, Mean ± SE) | ||||||
---|---|---|---|---|---|---|---|---|
Egg | Larva | Pupa | Total Immature | Egg | Larva | Pupa | Total Immature | |
13 | 255 | 185 | 162 | 162 | 20.3 ± 0.09a | 52.3 ± 0.28a | 33.3 ± 0.30a | 105.8 ± 0.32a |
16 | 207 | 166 | 152 | 152 | 18.2 ± 0.11b | 42.2 ± 0.31b | 24.9 ± 0.39b | 85.5 ± 0.44b |
19 | 260 | 200 | 182 | 182 | 9.4 ± 0.07c | 28.2 ± 0.21c | 14.8 ± 0.17c | 52.3 ± 0.28c |
22 | 229 | 172 | 156 | 156 | 8.6 ± 0.12d | 21.5 ± 0.17d | 11.4 ± 0.10d | 41.2 ± 0.20d |
25 | 279 | 228 | 210 | 210 | 7.0 ± 0.04e | 17.9 ± 0.10e | 9.8 ± 0.07e | 34.6 ± 0.11e |
28 | 227 | 139 | 112 | 112 | 6.0 ± 0.04f | 15.9 ± 0.14f | 8.1 ± 0.08f | 29.7 ± 0.20f |
31 | 209 | 58 | 38 | 38 | 5.4 ± 0.09g | 15.4 ± 0.16f | 8.5 ± 0.15f | 29.3 ± 0.21f |
33 | 135 | - * | - | - | 9.6 ± 0.22 | - | - | - |
Stage | Method | Linear Regression | LT (°C) | K (DD) | ||
---|---|---|---|---|---|---|
Equation | r2 | p | ||||
Egg | Ordinary | 1/D = − 0.0749 + 0.0087 T | 0.955 | 0.0010 | 8.61 | 114.94 |
Ikemoto | DT = 97.923 + 10.409 D | 0.965 | 0.0028 | 10.41 | 97.92 | |
Larva | Ordinary | 1/D = − 0.0278 + 0.0033 T | 0.991 | 0.0004 | 8.40 | 302.11 |
Ikemoto | DT = 286.989 + 9.072 D | 0.991 | 0.0004 | 9.07 | 286.99 | |
Pupa | Ordinary | 1/D = − 0.0627 + 0.0067 T | 0.988 | 0.0006 | 9.39 | 149.93 |
Ikemoto | DT = 139.231 + 10.233 D | 0.989 | 0.0005 | 10.23 | 139.23 | |
Total immature | Ordinary | 1/D = − 0.0158 + 0.0018 T | 0.989 | 0.0005 | 8.85 | 558.99 |
Ikemoto | DT = 518.977 + 9.741 D | 0.988 | 0.0006 | 9.74 | 518.97 |
Model | θ * | Egg | Larva | Pupa | Total Immature | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adj. r2 | AIC | BIC | Rank | Adj. r2 | AIC | BIC | Rank | Adj. r2 | AIC | BIC | Rank | Adj. r2 | AIC | BIC | Rank | ||
Logan-3 | 5 | 0.922 | −75.98 | −67.50 | 2 | 0.976 | −90.55 | −83.87 | 10 | 0.959 | −77.29 | −70.61 | 7 | 0.963 | −96.21 | −89.53 | 9 |
Logan-6 | 4 | 0.913 | −73.83 | −65.43 | 3 | 0.985 | −91.09 | −84.36 | 8 | 0.967 | −75.83 | −69.10 | 9 | 0.975 | −96.17 | −89.44 | 10 |
Logan-10 | 5 | 0.790 | −68.02 | −59.54 | 7 | 0.985 | −93.72 | −87.05 | 2 | 0.943 | −74.97 | −68.29 | 11 | 0.966 | −96.69 | −90.02 | 8 |
Lactin-1 | 3 | 0.896 | −72.11 | −63.79 | 4 | 0.990 | −93.13 | −86.34 | 3 | 0.978 | −77.84 | −71.06 | 5 | 0.983 | −97.99 | −91.21 | 6 |
Lactin-2 | 4 | 0.853 | −69.63 | −61.23 | 5 | 0.988 | −92.75 | −86.02 | 4 | 0.974 | −77.51 | −70.78 | 6 | 0.979 | −97.36 | −90.63 | 7 |
Briere-1 | 3 | 0.835 | −68.43 | −60.11 | 6 | 0.988 | −91.78 | −85.00 | 7 | 0.980 | −78.54 | −71.75 | 3 | 0.985 | −98.64 | −91.85 | 3 |
Briere-2 | 4 | 0.945 | −77.51 | −69.11 | 1 | 0.987 | −91.84 | −85.11 | 6 | 0.978 | −78.67 | −71.94 | 2 | 0.981 | −98.08 | −91.35 | 5 |
3rd-order polynomial | 4 | 0.755 | −65.57 | −57.17 | 10 | 0.996 | −100.31 | −93.58 | 1 | 0.976 | −78.27 | −71.54 | 4 | 0.986 | −100.26 | −93.53 | 1 |
Simplified beta type | 3 | 0.805 | −67.07 | −58.75 | 8 | 0.989 | −92.14 | −85.36 | 5 | 0.982 | −79.22 | −72.43 | 1 | 0.986 | −99.12 | −92.34 | 2 |
Inverse second-order polynomial | 3 | 0.766 | −65.64 | −57.32 | 9 | 0.987 | −90.94 | −84.15 | 9 | 0.967 | −75.09 | −68.31 | 10 | 0.977 | −95.71 | −88.93 | 11 |
Biophysical | 4 ** | 0.920 | −84.14 | −77.41 | 11 | 0.941 | −76.75 | −70.02 | 8 | 0.964 | −98.37 | −91.64 | 4 |
Model | Parameter | Egg | Larva | Pupa | Total Immature |
---|---|---|---|---|---|
Logan-10 | α | 0.369583912 | 0.18297454 | 0.28257244 | 0.12540107 |
k | 15012000 | 232.52114988 | 311.7746717 | 170.983033 | |
ρ | 0.585155887 | 0.20000218 | 0.2221569 | 0.19952189 | |
Tmax | 31.61119936 | 21.5246653 | 22.3878743 | 12.5555097 | |
ΔT | 2.010732873 | 14.6180631 | 14.6837764 | 18.5193126 | |
Topt | 29.21 | 30.52 | 29.52 | 30.74 | |
Lactin-1 | ρ | 0.170162484 | 0.15097219 | 0.16439678 | 0.15169148 |
Tmax | 34.84809776 | 36.2640752 | 35.2401609 | 36.3094117 | |
ΔT | 5.869139753 | 6.61874375 | 6.07655787 | 6.58979692 | |
Topt | 28.98 | 29.64 | 29.16 | 29.72 | |
Lactin-2 | ρ | 0.160603639 | 0.11831839 | 0.11118654 | 0.10218944 |
Tmax | 35.11256752 | 38.5338873 | 38.4834116 | 40.1557488 | |
ΔT | 6.215585126 | 8.43263416 | 8.93582277 | 9.76431074 | |
λ | −0.00544366 | −0.0141233 | −0.0502311 | −0.0144183 | |
Topt | 28.89 | 30.09 | 29.52 | 30.38 | |
Briere-1 | a | 0.000120594 | 0.0000294493 | 0.0000705029 | 0.000016594 |
Tmin | 8.19549661 | 4.25813298 | 7.08951066 | 5.27901386 | |
Tmax | 34.3700706 | 38.1968281 | 36.2294195 | 37.7622876 | |
Topt | 28.45 | 31.00 | 29.79 | 30.79 | |
Briere-2 | a | 0.00016442 | 0.0000595 | 0.00013764 | 0.000033227 |
Tmin | −1.586829 | 1.02724264 | 4.24356967 | 2.41313463 | |
Tmax | 33.0129531 | 33.1589323 | 32.1854061 | 32.9974716 | |
d | 7.41364712 | 4.73023501 | 5.020426 | 4.67706889 | |
Topt | 30.88 | 30.04 | 29.48 | 29.93 | |
Simplified beta type | ρ | 0.00578986 | 0.002769 | 0.00453869 | 0.00138198 |
α | 3.63180641 | 4.30782715 | 3.93422199 | 4.20528039 | |
β | 3.46366565 | 2.62869997 | 3.04926494 | 2.75205603 | |
Topt | 28.18 | 31.00 | 29.63 | 30.84 |
Stage | Parameter (Mean ± SE) | r2 | |
---|---|---|---|
a | b | ||
Egg | 0.9886 ± 0.00751 | 9.5506 ± 0.89202 | 0.934 |
Larva | 1.0128 ± 0.00237 | 12.2890 ± 0.45325 | 0.977 |
Pupa | 1.0132 ± 0.00458 | 8.3567 ± 0.40481 | 0.970 |
Total immature | 1.0088 ± 0.00143 | 21.3284 ± 0.82102 | 0.974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, S.; Song, J.; Hou, H.; Zhang, P.; Zhang, F.; Qiao, L.; Liu, X.; Jung, C. Evaluation of Linear and Non-Linear Models to Describe Temperature-Dependent Development of Scopula subpunctaria (Lepidoptera: Geometridae) and Its Stage Transition Models. Agronomy 2025, 15, 2306. https://doi.org/10.3390/agronomy15102306
Geng S, Song J, Hou H, Zhang P, Zhang F, Qiao L, Liu X, Jung C. Evaluation of Linear and Non-Linear Models to Describe Temperature-Dependent Development of Scopula subpunctaria (Lepidoptera: Geometridae) and Its Stage Transition Models. Agronomy. 2025; 15(10):2306. https://doi.org/10.3390/agronomy15102306
Chicago/Turabian StyleGeng, Shubao, Junchuan Song, Heli Hou, Pei Zhang, Fangmei Zhang, Li Qiao, Xiaoguang Liu, and Chuleui Jung. 2025. "Evaluation of Linear and Non-Linear Models to Describe Temperature-Dependent Development of Scopula subpunctaria (Lepidoptera: Geometridae) and Its Stage Transition Models" Agronomy 15, no. 10: 2306. https://doi.org/10.3390/agronomy15102306
APA StyleGeng, S., Song, J., Hou, H., Zhang, P., Zhang, F., Qiao, L., Liu, X., & Jung, C. (2025). Evaluation of Linear and Non-Linear Models to Describe Temperature-Dependent Development of Scopula subpunctaria (Lepidoptera: Geometridae) and Its Stage Transition Models. Agronomy, 15(10), 2306. https://doi.org/10.3390/agronomy15102306