Effects of Different Organic Amendments on Aggregate-Associated Humus Carbons and Nutrients in a Paddy Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection
2.4. Aggregate Separation and Stability Calculation
2.5. SOC and Its Humus Carbon Fractions Measurements
2.6. Data Analysis
3. Results
3.1. Soil Aggregate Size Distribution and Stability
3.2. Contents of Humus Carbon in Soil Aggregates
3.3. Nutrient Contents in Soil Aggregates
3.4. Correlation Analysis
3.5. Pathway Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| PAM | polyacrylamide |
| GMD | Geometric Mean Diameter |
| MWD | mean weight diameter |
| SOC | Soil organic carbon |
| TN | total nitrogen |
| TP | total phosphorus |
| HAC | humic acid carbon |
| FAC | fulvic acid carbon |
| HUC | humin carbon |
References
- Yu, F.; Lin, Q.; Chen, X. Contents and distributions of cadmium and lead in rice from main rice cultivation areas in China. J. Ecol. Rural. Environ. 2013, 29, 24–28. [Google Scholar] [CrossRef]
- Song, W.; Shu, A.; Liu, J.; Shi, W.; Li, M.; Li, Z.; Liu, G.; Yuan, F.; Liu, Z.; Gao, Z. Effects of long-term fertilization with different substitution ratios of organic fertilizer on paddy soil. Pedosphere 2022, 32, 637–648. [Google Scholar] [CrossRef]
- Cao, X.; Liu, L.; Ma, Q.; Lu, R.; Kong, H.; Kong, Y.; Zhu, L.; Zhu, C.; Tian, W.; Jin, Q. Optimum organic fertilization enhances rice productivity and ecological multifunctionality via regulating soil microbial diversity in a double rice cropping system. Field Crops Res. 2024, 318, 109569. [Google Scholar] [CrossRef]
- Jasinska, E.; Wetzel, H.; Baumgartl, T.; Horn, R. Heterogeneity of physico-chemical properties in structured soils and its consequences. Pedosphere 2006, 16, 284–296. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, P.; Wang, J. Formation and stability mechanism of soil aggregates: Progress and prospect. Acta Pedol. Sin. 2023, 60, 627–643. [Google Scholar] [CrossRef]
- Liu, X.; He, Y.; Zhang, H.; Schroder, J.; Li, C.; Zhou, J. Impact of land use and soil fertility on distributions of soil aggregate fractions and some nutrients. Pedosphere 2010, 20, 666–673. [Google Scholar] [CrossRef]
- Wang, X.; Bian, Q.; Jiang, Y.; Zhu, L.; Chen, Y.; Liang, Y.; Sun, B. Organic amendments drive shifts in microbial community structure and keystone taxa which increase C mineralization across aggregate size classes. Soil. Biol. Biochem. 2021, 153, 108062. [Google Scholar] [CrossRef]
- Li, W.; Liu, Y.; Duan, J.; Liu, G.; Nie, X.; Li, Z. Leguminous cover orchard improves soil quality, nutrient preservation capacity, and aggregate stoichiometric balance: A 22-year homogeneous experimental site. Agric. Ecosyst. Environ. 2024, 363, 108876. [Google Scholar] [CrossRef]
- Li, W.; Yang, J.; Yao, R.; Wang, X.; Xie, W.; Xiao, P. Interactive effects of salinity and straw on the soil aggregate stability and organic carbon sequestration in saline soils in the Hetao area, China. Land. Degrad. Dev. 2024, 35, 1685–1698. [Google Scholar] [CrossRef]
- Jozefaciuk, G.; Czachor, H. Impact of organic matter, iron oxides, alumina, silica and drying on mechanical and water stability of artificial soil aggregates. Assessment of new method to study water stability. Geoderma 2014, 221, 1–10. [Google Scholar] [CrossRef]
- Yu, X.; Fu, Y.; Lu, S. Characterization of the pore structure and cementing substances of soil aggregates by a combination of synchrotron radiation X-ray micro-computed tomography and scanning electron microscopy. Eur. J. Soil. Sci. 2017, 68, 66–79. [Google Scholar] [CrossRef]
- Luo, L.; Lu, J.T.; Xu, C.; Guo, Z.; Zhang, S.Z. Study on C-Functional Groups of Soil Humus Fractions Affected by Phosphate Using C 1s Near-edge X-ray Absorption Fine Structure Spectroscopy. Chin. J. Anal. Chem. 2013, 41, 1279–1282. [Google Scholar] [CrossRef]
- Laird, D.; Martens, D.; Kingery, W. Nature of clay-humic complexes in an agricultural soil: I. Chemical, biochemical, and spectroscopic analyses. Soil. Sci. Soc. Am. J. 2001, 65, 1413–1418. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, L.; Hu, Y.; Xue, S.; Zhang, Y.; Wang, X. Soil carbon sequestration and aggregate stability improvement by tillage methods in China’s Loess Plateau. Arch. Agron. Soil. Sci. 2023, 69, 1718–1733. [Google Scholar] [CrossRef]
- Matisic, M.; Dugan, I.; Bogunovic, I. Challenges in sustainable agriculture—The role of organic amendments. Agriculture 2024, 14, 643. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.-H.; Kim, H.-U.; Owens, G.; Kim, K.-R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil. Sci. Plant Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Kim, M.-S.; Min, H.-G.; Lee, S.-H.; Kim, J.-G. The effects of various amendments on trace element stabilization in acidic, neutral, and alkali soil with similar pollution index. PLoS ONE 2016, 11, e0166335. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Wei, H.; Chai, Q.; Li, L.; Wang, Y.; Sun, J. Biological soil conditioner with reduced rates of chemical fertilization improves soil functionality and enhances rice production in vegetable-rice rotation. Appl. Soil. Ecol. 2024, 195, 105242. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X. Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0211163. [Google Scholar] [CrossRef]
- Duanis-Assaf, D.; Duanis-Assaf, T.; Zeng, G.; Meyer, R.L.; Reches, M.; Steinberg, D.; Shemesh, M. Cell wall associated protein TasA provides an initial binding component to extracellular polysaccharides in dual-species biofilm. Sci. Rep. 2018, 8, 9350. [Google Scholar] [CrossRef]
- Duan, M.; Zhang, Y.; Zhou, B.; Qin, Z.; Wu, J.; Wang, Q.; Yin, Y. Effects of Bacillus subtilis on carbon components and microbial functional metabolism during cow manure–straw composting. Bioresour. Technol. 2020, 303, 122868. [Google Scholar] [CrossRef]
- Moreno-Lora, A.; Sousa-Ortega, C.; Recena, R.; Perea-Torres, F.; Delgado, A. Microbial inoculants improve nutrients uptake and yield of durum wheat in calcareous soils under drought stress in the Mediterranean region. Arch. Agron. Soil. Sci. 2023, 69, 2233–2247. [Google Scholar] [CrossRef]
- Lu, S.; Chen, F.; Ngo, H.H.; Guo, W.; Feng, C.; Wu, J.; Zheng, B. Effect of straw and polyacrylamide on the stability of land/water ecotone soil and the field implementation. Ecol. Eng. 2016, 94, 12–21. [Google Scholar] [CrossRef]
- Mamedov, A.I.; Huang, C.-h.; Aliev, F.A.; Levy, G.J. Aggregate stability and water retention near saturation characteristics as affected by soil texture, aggregate size and polyacrylamide application. Land. Degrad. Dev. 2017, 28, 543–552. [Google Scholar] [CrossRef]
- Li, S.; Xu, H.; Ao, C. Polyacrylamide and rill flow rate effects on erosion and ammonium nitrogen losses. Water Air Soil. Poll. 2019, 230, 11. [Google Scholar] [CrossRef]
- Ji, L.; Li, L.; Si, H.; Yang, Y. The effects of polyacrylamide amendment on ability of gravelled soil to retain water and fertilizer and its consequence for yield and quality of wine grape. J. Irrig. Drain. 2020, 39, 7–15. [Google Scholar]
- Li, F.; Wang, A. Interaction effects of polyacrylamide application and slope gradient on potassium and nitrogen losses under simulated rainfall. Catena 2016, 136, 162–174. [Google Scholar] [CrossRef]
- Wu, Y.; Li, F.; Zheng, H.; Hong, M.; Hu, Y.; Zhao, B.; De, H. Effects of three types of soil amendments on yield and soil nitrogen balance of maize-wheat rotation system in the Hetao Irrigation Area, China. J. Arid. Land. 2019, 11, 904–915. [Google Scholar] [CrossRef]
- Li, S.; Wang, S.; Zhao, Z.; Telyatnikova, N.; Maxim, M. Model test study on the rainfall erosion mechanisms and reclamation potential of open-pit coal mine dump soil improved by fly ash and polyacrylamide. Eng. Geol. 2025, 344, 107837. [Google Scholar] [CrossRef]
- Kebede, B.; Tsunekawa, A.; Haregeweyn, N.; Tsubo, M.; Mulualem, T.; Mamedov, A.I.; Meshesha, D.T.; Adgo, E.; Fenta, A.A.; Ebabu, K. Effect of Polyacrylamide integrated with other soil amendments on runoff and soil loss: Case study from northwest Ethiopia. Int. Soil. Water Conserv. Res. 2022, 10, 487–496. [Google Scholar] [CrossRef]
- Meng, F.; Dou, S.; Yin, X.; Zhang, G.; Zhong, S. Effects of maize stalk biochar on humus composition and humic acid structure in black soil. J. Agro Environ. Sci. 2016, 35, 122–128. [Google Scholar] [CrossRef]
- Bao, S. Soil and Agricultural Chemistry Analysis; China Agriculture Press: Beijing, China, 2000. [Google Scholar]
- Gu, W.; Wang, Y.; Sun, Y.; Liu, Z.; Wang, W.; Wu, D.; Zhang, Y.; Sun, W.; Wang, X.; Feng, Z. Assessing the formation and stability of paddy soil aggregate driven by organic carbon and Fe/Al oxides in rice straw cyclic utilization strategies: Insight from a six-year field trial. Sci. Total Environ. 2024, 951, 175607. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, Y.; Sun, Y.; Li, X.; Wang, N.; Wang, X.; Meng, T. Interaction force mechanism for the improvement of reclaimed soil aggregate stability in abandoned homestead by different organic-inorganic soil conditioners. Front. Environ. Sci. 2023, 11, 1207887. [Google Scholar] [CrossRef]
- Mamedov, A.; Wagner, L.; Huang, C.; Norton, L.; Levy, G. Polyacrylamide effects on aggregate and structure stability of soils with different clay mineralogy. Soil. Sci. Soc. Am. J. 2010, 74, 1720–1732. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Du, J.; Pei, X.; Du, P.; Zhou, L. Effects of several polymeric materials on the improvement of the sandy soil under rainfall simulation. J. Environ. Manag. 2023, 345, 118847. [Google Scholar] [CrossRef]
- Nadler, A.; Perfect, E.; Kay, B. Effect of polyacrylamide application on the stability of dry and wet aggregates. Soil. Sci. Soc. Am. J. 1996, 60, 555–561. [Google Scholar] [CrossRef]
- Qiang, M.; Zhang, X.; Zhuang, X.; Zhang, H. Effect of Organic Amendment and Mineral Fertilizer on Soil Aggregate Stability and Maize Yield on the Loess Plateau of China. Pol. J. Environ. Stud. 2024, 33, 2255–2265. [Google Scholar] [CrossRef]
- Lützow, M.v.; Kögel-Knabner, I.; Ekschmitt, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions–a review. Eur. J. Soil. Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Kang, X.; Bate, B.; Chen, R.-P.; Yang, W.; Wang, F. Physicochemical and mechanical properties of polymer-amended kaolinite and fly ash–kaolinite mixtures. J. Mater. Civ. Civil. Eng. 2019, 31, 04019064. [Google Scholar] [CrossRef]
- Keiluweit, M.; Gee, K.; Denney, A.; Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil. Biol. Biochem. 2018, 118, 42–50. [Google Scholar] [CrossRef]
- Li, C.; Cao, Z.; Chang, J.; Zhang, Y.; Zhu, G.; Zong, N.; He, Y.; Zhang, J.; He, N. Elevational gradient affect functional fractions of soil organic carbon and aggregates stability in a Tibetan alpine meadow. Catena 2017, 156, 139–148. [Google Scholar] [CrossRef]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral–organic associations: Formation, properties, and relevance in soil environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar] [CrossRef]
- Ahmad, A.; Martsinovich, N. Atomic-scale modelling of organic matter in soil: Adsorption of organic molecules and biopolymers on the hydroxylated α-Al2O3 (0001) surface. Philos. Trans. Math. Phys. Eng. Sci. 2023, 381, 20220254. [Google Scholar] [CrossRef]
- Kravchenko, A.; Guber, A.; Razavi, B.; Koestel, J.; Quigley, M.; Robertson, G.; Kuzyakov, Y. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. 2019, 10, 3121. [Google Scholar] [CrossRef]
- Yin, X.; Weitzel, F.; Jimenez-Lopez, C.; Griesshaber, E.; Fernandez-Diaz, L.; Rodríguez-Navarro, A.; Ziegler, A.; Schmahl, W.W. Directing effect of bacterial extracellular polymeric substances (EPS) on calcite organization and EPS–carbonate composite aggregate formation. Cryst. Growth Des. 2020, 20, 1467–1484. [Google Scholar] [CrossRef]
- Six, J.; Bossuyt, H.; Degryze, S.; Denef, K. A history of research on the link between (micro) aggregates, soil biota, and soil organic matter dynamics. Soil. Till. Res. 2004, 79, 7–31. [Google Scholar] [CrossRef]
- Kögel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil. Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Zheng, S.; Dou, S.; Duan, H. Effects of straw enrichment and deep incorporation on humus composition and humic acid structure of black soil profile in Northeast China. Appl. Ecol. Environ. Res. 2022, 20, 1051–1063. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Trivedi, P.; Rochester, I.J.; Trivedi, C.; Van Nostrand, J.D.; Zhou, J.; Karunaratne, S.; Anderson, I.C.; Singh, B.K. Soil aggregate size mediates the impacts of cropping regimes on soil carbon and microbial communities. Soil. Biol. Biochem. 2015, 91, 169–181. [Google Scholar] [CrossRef]
- Abulaiti, A.; She, D.; Liu, Z.; Sun, X.; Wang, H. Application of biochar and polyacrylamide to revitalize coastal saline soil quality to improve rice growth. Environ. Sci. Pollut. Res. 2023, 30, 18731–18747. [Google Scholar] [CrossRef]
- An, S.; Mentler, A.; Mayer, H.; Blum, W.E. Soil aggregation, aggregate stability, organic carbon and nitrogen in different soil aggregate fractions under forest and shrub vegetation on the Loess Plateau, China. Catena 2010, 81, 226–233. [Google Scholar] [CrossRef]
- Aoyama, Y.; Sato, N.; Toyotama, A.; Okuzono, T.; Yamanaka, J. Particle adsorption on polymer gel surface driven by van der waals attraction. Bull. Chem. Soc. Jpn. 2022, 95, 314–324. [Google Scholar] [CrossRef]
- Hong, D.; Chang, D.; Shao, C.; Cui, W.; Lu, X.; Dong, W.; Fan, H.; Wang, K.; Liu, Y. Effects of polymer conditioner and nitrogen fertilizer application on nitrogen absorption and utilization of drip-irrigated wheat in arid areas. Agronomy 2024, 14, 232. [Google Scholar] [CrossRef]
- Zhang, Y.; Ye, C.; Su, Y.; Peng, W.; Lu, R.; Liu, Y.; Huang, H.; He, X.; Yang, M.; Zhu, S. Soil Acidification caused by excessive application of nitrogen fertilizer aggravates soil-borne diseases: Evidence from literature review and field trials. Agric. Ecosyst. Environ. 2022, 340, 108176. [Google Scholar] [CrossRef]
- Mengel, K. Turnover of organic nitrogen in soils and its availability to crops. Plant Soil 1996, 181, 83–93. [Google Scholar] [CrossRef]
- Gavelaki, F.; Favaretto, N.; de Albuquerque, C.G.; Motta, A.C.V.; da Rocha, G.; Pauletti, V. Phosphorus adsorption in subtropical Histosol and Inceptisol with contrasting organic matter contents and clay mineralogy. Catena 2025, 249, 108682. [Google Scholar] [CrossRef]




| Treatment | >2 mm | 2–0.25 mm | 0.25–0.053 mm | <0.053 mm | R0.25 | GMD | MWD |
|---|---|---|---|---|---|---|---|
| CK | 8.62 ± 0.43 d | 29.21 ± 0.56 d | 34.21 ± 0.63 a | 27.92 ± 0.71 a | 37.83 ± 0.92 d | 0.32 ± 0.01 d | 1.62 ± 0.03 d |
| MC | 10.31 ± 0.24 c | 34.53 ± 0.34 c | 28.42 ± 0.33 b | 26.93 ± 0.36 a | 44.84 ± 0.23 c | 0.39 ± 0.00 c | 1.89 ± 0.01 c |
| FT | 12.83 ± 0.45 a | 41.32 ± 0.56 b | 22.01 ± 0.32 d | 23.98 ± 0.55 b | 54.15 ± 0.81 b | 0.55 ± 0.02 b | 2.25 ± 0.03 b |
| PM | 11.83 ± 0.82 b | 48.46 ± 0.42 a | 26.93 ± 0.21 c | 12.93 ± 0.17 c | 60.29 ± 0.82 a | 0.83 ± 0.03 a | 2.60 ± 0.02 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Shao, X.; Wu, Z.; Li, W. Effects of Different Organic Amendments on Aggregate-Associated Humus Carbons and Nutrients in a Paddy Soil. Agronomy 2025, 15, 2302. https://doi.org/10.3390/agronomy15102302
Wang Q, Shao X, Wu Z, Li W. Effects of Different Organic Amendments on Aggregate-Associated Humus Carbons and Nutrients in a Paddy Soil. Agronomy. 2025; 15(10):2302. https://doi.org/10.3390/agronomy15102302
Chicago/Turabian StyleWang, Qilin, Xiaohou Shao, Zhaomeng Wu, and Wei Li. 2025. "Effects of Different Organic Amendments on Aggregate-Associated Humus Carbons and Nutrients in a Paddy Soil" Agronomy 15, no. 10: 2302. https://doi.org/10.3390/agronomy15102302
APA StyleWang, Q., Shao, X., Wu, Z., & Li, W. (2025). Effects of Different Organic Amendments on Aggregate-Associated Humus Carbons and Nutrients in a Paddy Soil. Agronomy, 15(10), 2302. https://doi.org/10.3390/agronomy15102302
