Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Laboratory Measurements
2.3. Acquisition of Environment Variables
2.3.1. Remote Sensing Data
2.3.2. Acquisition of Spectral Indices from Sentinel-2
2.3.3. Vegetation Temporal Metrics Derived from Sentinel-2
2.3.4. Sentinel-1 and DEM Predictor Variables
2.4. Modeling
2.4.1. Variable Selection
2.4.2. Modeling Method and Evaluation Indicators
2.5. SHAP Analysis and Feature Importance
3. Results
3.1. Descriptive Statistics and Spatial Autocorrelation Analysis
3.2. Environment Variable Selection
3.3. Estimation of Soil Salinity Content Under Different Model Strategies
3.4. SHAP Value and Feature Importance Analysis
3.5. Soil Salinity Maps
4. Discussion
4.1. Influence of Vegetation Information on Soil Salinity Mapping
4.2. Research Uncertainties and Limitations
5. Conclusions
- The proposed OVTS framework derived from Savitzky-Golay-filtered NDVI time-series (PCs and extremum features) effectively captures vegetation response to salt stress, overcoming spectral interference from agricultural activities (e.g., spring tillage residue coverage). This reduces low-salinity overestimation compared to single-temporal approaches.
- The LightGBM model integrating spectral and vegetation temporal features within the OVTS framework significantly enhanced the spatial coherence of salinity gradients and effectively improved spatial refinement capabilities. It achieved optimal validation accuracy (R2 = 0.77, RMSE = 0.26 g/kg), with a 13% increase in R2 and a 27.7% reduction in RMSE compared to spectral only models.
- SHAP analysis reveals that vegetation factors and topographic factors serve as key predictors in both framework strategies. When vegetation temporal features are incorporated, they emerge as crucial predictive factors that effectively mitigate strong interference from spring tillage and residue cover, thereby maximizing the signal-to-noise ratio. The July–September vegetation characteristic window was identified as the optimal period for remote sensing-based inversion of soil salinity. The peak vegetation biomass during this period demonstrates a significant negative correlation with soil salinity levels in the following spring, indicating a clear lagged inhibitory effect of vegetation physiological activity on salt accumulation during this timeframe.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Shokri, N.; Hassani, A.; Sahimi, M. Multi-Scale Soil Salinization Dynamics From Global to Pore Scale: A Review. Rev. Geophys. 2024, 62, e2023RG000804. [Google Scholar] [CrossRef]
- Nachshon, U. Cropland Soil Salinization and Associated Hydrology: Trends, Processes and Examples. Water 2018, 10, 1030. [Google Scholar] [CrossRef]
- Pessoa, L.G.M.; Freire, M.B.G.d.S.; Green, C.H.M.; Miranda, M.F.A.; de A. Filho, J.C.; Pessoa, W.R.L.S. Assessment of soil salinity status under different land-use conditions in the semiarid region of Northeastern Brazil. Ecol. Indic. 2022, 141, 109139. [Google Scholar] [CrossRef]
- Hassani, A.; Azapagic, A.; Shokri, N. Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proc. Natl. Acad. Sci. USA 2020, 117, 33017–33027. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.; Jiapaer, G.; Bao, A.; Zheng, G.; Jiang, L.; Yuan, Y.; Huang, X. Using Synthetic Remote Sensing Indicators to Monitor the Land Degradation in a Salinized Area. Remote Sens. 2021, 13, 2851. [Google Scholar] [CrossRef]
- Bian, L.; Wang, J.; Liu, J.; Han, B. Spatiotemporal Changes of Soil Salinization in the Yellow River Delta of China from 2015 to 2019. Sustainability 2021, 13, 822. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, P.; Cao, W.; Fu, S.; Zhang, J.; Li, X.; Guo, J.; Huang, Z.; Chen, X. Long-Term Assessment of Soil Salinization Patterns in the Yellow River Delta Using Landsat Imagery from 2003 to 2021. Land 2025, 14, 24. [Google Scholar] [CrossRef]
- Yang, Q.; Fan, X.; Wang, L.; Tang, Y.; Huang, L. Detection of soil salinity distribution and its change in the Yellow River Delta comparing 2006 and 2022. Land Degrad. Dev. 2024, 35, 4288–4303. [Google Scholar] [CrossRef]
- Guo, B.; Xu, M.; Zhang, R. Evolution Patterns and Dominant Factors of Soil Salinization in the Yellow River Delta Based on Long-Time-Series and Similar Phenological-Fusion Images. Remote Sens. 2024, 16, 3332. [Google Scholar] [CrossRef]
- Xie, X.; Cai, J.; Yang, X.; Qiu, H.; Liu, Y.; Zhang, Y. Integrated assessment of soil quality and contaminant risks in salinized farmland adjacent to an oil-exploitation zone: Insights from the Yellow River Delta. Sci. Rep. 2024, 14, 29369. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, H.; Pang, X.; Liu, H.; Wang, Q. Characteristics of soil salinity in the typical area of Yellow River Delta and its control measures. IOP Conf. Ser. Earth Environ. Sci. 2017, 64, 012078. [Google Scholar] [CrossRef]
- Sahbeni, G.; Ngabire, M.; Musyimi, P.K.; Székely, B. Challenges and Opportunities in Remote Sensing for Soil Salinization Mapping and Monitoring: A Review. Remote Sens. 2023, 15, 2540. [Google Scholar] [CrossRef]
- Bandak, S.; Movahedi-Naeini, S.A.; Mehri, S.; Lotfata, A. A longitudinal analysis of soil salinity changes using remotely sensed imageries. Sci. Rep. 2024, 14, 10383. [Google Scholar] [CrossRef]
- Cao, X.; Chen, W.; Ge, X.; Chen, X.; Wang, J.; Ding, J. Multidimensional soil salinity data mining and evaluation from different satellites. Sci. Total Environ. 2022, 846, 157416. [Google Scholar] [CrossRef]
- Sirpa-Poma, J.W.; Satge, F.; Zola, R.P.; Resongles, E.; Perez-Flores, M.; Flores Colque, M.G.; Molina-Carpio, J.; Ramos, O.; Bonnet, M.P. Complementarity of Sentinel-1 and Sentinel-2 Data for Soil Salinity Monitoring to Support Sustainable Agriculture Practices in the Central Bolivian Altiplano. Sustainability 2024, 16, 6200. [Google Scholar] [CrossRef]
- Tola, D.; Satgé, F.; Pillco Zolá, R.; Sainz, H.; Condori, B.; Miranda, R.; Yujra, E.; Molina-Carpio, J.; Hostache, R.; Espinoza-Villar, R. Soil Salinity Mapping of Plowed Agriculture Lands Combining Radar Sentinel-1 and Optical Sentinel-2 with Topographic Data in Machine Learning Models. Remote Sens. 2024, 16, 3456. [Google Scholar] [CrossRef]
- He, Y.; Yin, H.; Xiang, R.; Chen, H.; Du, R.; Zhang, Z. Monitoring soil salinity based on Sentinel-1/2 remote sensing parameters and two-dimensional space theory. Infrared Phys. Technol. 2024, 140, 105361. [Google Scholar] [CrossRef]
- Jiang, X.; Duan, H.; Liao, J.; Guo, P.; Huang, C.; Xue, X. Comparative research on multi-algorithm of soil salinity monitoring based on Gaofen-5, Sentinel-1, and Sentinel-2. Int. J. Remote Sens. 2023, 44, 4704–4726. [Google Scholar] [CrossRef]
- Zhu, K.; Sun, Z.; Zhao, F.; Yang, T.; Tian, Z.; Lai, J.; Zhu, W.; Long, B. Relating Hyperspectral Vegetation Indices with Soil Salinity at Different Depths for the Diagnosis of Winter Wheat Salt Stress. Remote. Sens. 2021, 13, 250. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, A.; Zhu, C.; Dang, H.; Zheng, C.; Zhang, J.; Cao, C. Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System. Agronomy 2024, 14, 2564. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Remote sensing prediction and characteristic analysis of cultivated land salinization in different seasons and multiple soil layers in the coastal area. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102838. [Google Scholar] [CrossRef]
- Yang, N.; Yang, S.; Cui, W.; Zhang, Z.; Zhang, J.; Chen, J.; Ma, Y.; Lao, C.; Song, Z.; Chen, Y. Effect of spring irrigation on soil salinity monitoring with UAV-borne multispectral sensor. Int. J. Remote Sens. 2021, 42, 8952–9878. [Google Scholar] [CrossRef]
- Ramos, T.B.; Castanheira, N.; Oliveira, A.R.; Paz, A.M.; Darouich, H.; Simionesei, L.; Farzamian, M.; Gonçalves, M.C. Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. Application to Lezíria Grande, Portugal. Agric. Water Manag. 2020, 241, 106387. [Google Scholar] [CrossRef]
- Zhang, T.; Zeng, S.; Gao, Y.; Ouyang, Z.; Li, B.; Fang, C.; Zhao, B. Using hyperspectral vegetation indices as a proxy to monitor soil salinity. Ecol. Indic. 2011, 11, 1552–1562. [Google Scholar] [CrossRef]
- Dehaan, R.L.; Taylor, G.R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar] [CrossRef]
- Cui, X.; Han, W.; Zhang, H.; Dong, Y.; Ma, W.; Zhai, X.; Zhang, L.; Li, G. Estimating and mapping the dynamics of soil salinity under different crop types using Sentinel-2 satellite imagery. Geoderma 2023, 440, 116738. [Google Scholar] [CrossRef]
- Xiao, S.; Nurmemet, I.; Zhao, J. Soil salinity estimation based on machine learning using the GF-3 radar and Landsat-8 data in the Keriya Oasis, Southern Xinjiang, China. Plant Soil 2024, 498, 451–469. [Google Scholar] [CrossRef]
- Wang, N.; Xue, J.; Peng, J.; Biswas, A.; He, Y.; Shi, Z. Integrating Remote Sensing and Landscape Characteristics to Estimate Soil Salinity Using Machine Learning Methods: A Case Study from Southern Xinjiang, China. Remote Sens. 2020, 12, 4118. [Google Scholar] [CrossRef]
- Wu, W.; Zucca, C.; Muhaimeed, A.; AI-Shafie, W.; AI-Quraishi, A.; Nangia, V.; Zhu, M.; Liu, G. Soil salinity prediction and mapping by machine learning regression in Central Mesopotamia, Iraq. Land Degrad. Dev. 2018, 29, 4005–4014. [Google Scholar] [CrossRef]
- Wang, F.; Shi, Z.; Biswas, A.; Yang, S.; Ding, J. Multi-algorithm comparison for predicting soil salinity. Geoderma 2020, 365, 114211. [Google Scholar] [CrossRef]
- Xie, J.; Shi, C.; Liu, Y.; Wang, Q.; Zhong, Z.; He, S.; Wang, X. Soil salinization prediction through feature selection and machine learning at the irrigation district scale. Front. Earth Sci. 2024, 12, 1488504. [Google Scholar] [CrossRef]
- Arshad, S.; Kazmi, J.; Harsanyi, E.; Nazli, F.; Hassan, W.; Shaikh, S.; Al-Dalahmeh, M.; Mohammed, S. Predictive Modeling of soil salinity integrating remote sensing and soil variables: An ensembled deep learning approach. Energy Nexus 2025, 17, 100374. [Google Scholar] [CrossRef]
- Mzid, N.; Boussadia, O.; Albrizio, R.; Stellacci, A.M.; Braham, M.; Todorovic, M. Salinity Properties Retrieval from Sentinel-2 Satellite Data and Machine Learning Algorithms. Agronomy 2023, 13, 716. [Google Scholar] [CrossRef]
- Ge, X.; Ding, J.; Teng, D.; Wang, J.; Huo, T.; Xie, J.; Wang, J.; He, B.; Han, L. Updated soil salinity with fine spatial resolution and high accuracy: The synergy of Sentinel-2 MSI, environmental covariates and hybrid machine learning approaches. CATENA 2022, 212, 106054. [Google Scholar] [CrossRef]
- Zhang, H.; Fu, X.; Zhang, Y.; Qi, Z.; Zhang, H.; Xu, Z. Mapping Multi-Depth Soil Salinity Using Remote Sensing-Enabled Machine Learning in the Yellow River Delta, China. Remote Sens. 2023, 15, 5640. [Google Scholar] [CrossRef]
- Li, Y.; Chang, C.; Wang, Z.; Zhao, G. Upscaling remote sensing inversion and dynamic monitoring of soil salinization in the Yellow River Delta, China. Ecol. Indic. 2023, 148, 110087. [Google Scholar] [CrossRef]
- Li, J.; Zhang, T.; Shao, Y.; Ju, Z. Comparing Machine Learning Algorithms for Soil Salinity Mapping Using Topographic Factors and Sentinel-1/2 Data: A Case Study in the Yellow River Delta of China. Remote Sens. 2023, 15, 2332. [Google Scholar] [CrossRef]
- Ouzemou, J.E.; Laamrani, A.; El Battay, A.; Whalen, J.K. Predicting Soil Salinity Based on Soil/Water Extracts in a Semi-Arid Region of Morocco. Soil Syst. 2025, 9, 3. [Google Scholar] [CrossRef]
- Guo, B.; Yang, X.; Yang, M.; Sun, D.; Zhu, W.; Zhu, D.; Wang, J. Mapping soil salinity using a combination of vegetation index time series and single-temporal remote sensing images in the Yellow River Delta, China. CATENA 2023, 231, 107313. [Google Scholar] [CrossRef]
- Taghizadeh-Mehrjardi, R.; Minasny, B.; Sarmadian, F.; Malone, B.P. Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma 2014, 213, 15–28. [Google Scholar] [CrossRef]
- Ma, S.L.; He, B.Z.; Ge, X.Y.; Luo, X.F. Spatial prediction of soil salinity based on the Google Earth Engine platform with multitemporal synthetic remote sensing images. Ecol. Inform. 2023, 75, 102111. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Hongyan, C.; Gengxing, Z.; Jingchun, C.; Ruiyan, W.; Mingxiu, G. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Trans. Chin. Soc. Agric. Eng. 2015, 31, 107–114. [Google Scholar] [CrossRef]
- Wu, W.; Al-Shafie, W.M.; Mhaimeed, A.S.; Ziadat, F.M.; Nangia, V.; Payne, W.B. Soil salinity mapping by multiscale remote sensing in Mesopotamia, Iraq. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4442–4452. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Crippen, R.E. Calculating the vegetation index faster. Remote Sens. Environ. 1990, 34, 71–73. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA GSFC: Greenbelt, MD, USA, 1974. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Wang, N.; Peng, J.; Chen, S.; Huang, J.; Li, H.; Biswas, A.; He, Y.; Shi, Z. Improving remote sensing of salinity on topsoil with crop residues using novel indices of optical and microwave bands. Geoderma 2022, 422, 115935. [Google Scholar] [CrossRef]
- Khan, N.M.; Rastoskuev, V.V.; Sato, Y.; Shiozawa, S. Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agric. Water Manag. 2005, 77, 96–109. [Google Scholar] [CrossRef]
- Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional scale soil salinity evaluation using Landsat 7, western San Joaquin Valley, California, USA. Geoderma Reg. 2014, 2–3, 82–90. [Google Scholar] [CrossRef]
- Major, D.J.; Baret, F.; Guyot, G. A ratio vegetation index adjusted for soil brightness. Int. J. Remote Sens. 1990, 11, 727–740. [Google Scholar] [CrossRef]
- Alhammadi, M.S.; Glenn, E.P. Detecting date palm trees health and vegetation greenness change on the eastern coast of the United Arab Emirates using SAVI. Int. J. Remote Sens. 2008, 29, 1745–1765. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of advanced land imaging (EO-1) sensor. Commun. Soil Sci. Plant Anal. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Kumar, K.; Prasad, K.S.H.; Arora, M.K. Estimation of water cloud model vegetation parameters using a genetic algorithm. Hydrol. Sci. J. 2012, 57, 776–789. [Google Scholar] [CrossRef]
- Bhatti, M.T.; Gilani, H.; Ashraf, M.; Iqbal, M.S.; Munir, S. Field validation of NDVI to identify crop phenological signatures. Precis. Agric. 2024, 25, 2245–2270. [Google Scholar] [CrossRef]
- Liu, X.; Ji, L.; Zhang, C.; Liu, Y. A method for reconstructing NDVI time-series based on envelope detection and the Savitzky-Golay filter. Int. J. Digit. Earth 2022, 15, 553–584. [Google Scholar] [CrossRef]
- Bellón, B.; Bégué, A.; Lo Seen, D.; De Almeida, C.A.; Simões, M. A Remote Sensing Approach for Regional-Scale Mapping of Agricultural Land-Use Systems Based on NDVI Time Series. Remote Sens. 2017, 9, 600. [Google Scholar] [CrossRef]
- Ayari, E.; Kassouk, Z.; Lili-Chabaane, Z.; Ouaadi, N.; Baghdadi, N.; Zribi, M. NDVI estimation using Sentinel-1 data over wheat fields in a semiarid Mediterranean region. GISci. Remote Sens. 2024, 61, 2357878. [Google Scholar] [CrossRef]
- Shi, S.; Wang, N.; Chen, S.; Hu, B.; Peng, J.; Shi, Z. Digital mapping of soil salinity with time-windows features optimization and ensemble learning model. Ecol. Inform. 2025, 85, 102982. [Google Scholar] [CrossRef]
- Jiang, Z.; Yang, S.; Dong, S.; Pang, Q.; Smith, P.; Abdalla, M.; Zhang, J.; Wang, G.; Xu, Y. Simulating soil salinity dynamics, cotton yield and evapotranspiration under drip irrigation by ensemble machine learning. Front. Plant Sci. 2023, 14, 1210102. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, P.; Sun, J.; Lu, Z.; Yang, H.; Liu, J.; Xia, J.; Li, T. Composition, seasonal variation, and salinization characteristics of soil salinity in the Chenier Island of the Yellow River Delta. Glob. Ecol. Conserv. 2020, 24, e01318. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, G.; Gao, M.; Chang, C. Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China. Environ. Monit. Assess. 2017, 189, 80. [Google Scholar] [CrossRef]
- Liu, H.; Guo, B.; Yang, X.; Zhao, J.; Li, M.; Huo, Y.; Wang, J. High spatiotemporal resolution vegetation index time series can facilitate enhanced remote sensing monitoring of soil salinization. Plant Soil 2025, 510, 305–327. [Google Scholar] [CrossRef]
- Whitney, K.; Scudiero, E.; El-Askary, H.M.; Skaggs, T.H.; Allali, M.; Corwin, D.L. Validating the use of MODIS time series for salinity assessment over agricultural soils in California, USA. Ecol. Indic. 2018, 93, 889–898. [Google Scholar] [CrossRef]
- Chen, H.; Zhao, G.; Li, Y.; Wang, D.; Ma, Y. Monitoring the seasonal dynamics of soil salinization in the Yellow River delta of China using Landsat data. Nat. Hazards Earth Syst. Sci. 2019, 19, 1499–1508. [Google Scholar] [CrossRef]
- Chu, R.; Ma, R.; Chen, D. Impacts of Summer Afforestation and Multi-Stage Drip Irrigation on Soil and Vegetation in Coastal Saline Soils. Agronomy 2025, 15, 1192. [Google Scholar] [CrossRef]
Catalog | Predictors | Abbreviations | Formulations | Reference |
---|---|---|---|---|
Original Bands | Blue | B | / | Sentinel-2 |
Green | G | / | Sentinel-2 | |
Red | R | / | Sentinel-2 | |
Red Edge1 | VRE1 | / | Sentinel-2 | |
Red Edge2 | VRE2 | / | Sentinel-2 | |
Red Edge3 | VRE3 | / | Sentinel-2 | |
Nir | NIR | / | Sentinel-2 | |
Red Edge4 | VRE4 | / | Sentinel-2 | |
SWIR1 | SWIR1 | / | Sentinel-2 | |
SWIR2 | SWIR2 | / | Sentinel-2 | |
Soil property indices | Clay Index | CLEX | SWIR1/SWIR2 | (Taghizadeh-Mehrjardi et al., 2014) [41] |
Carbonate Index | GAEX | G/B | (Taghizadeh-Mehrjardi et al., 2014) [41] | |
Gypsum Index | GYEX | (SWIR1 − NIR)/(SWIR2 + NIR) | (Taghizadeh-Mehrjardi et al., 2014) [41] | |
Vegetation indices | Extended EVI | EEVI | 2.5 * [(NIR + SWIR2-R)/(NIR + SWIR2 + 6 * R − 7.5 * B + 1)] | (Ma et al., 2023) [42] |
Soil Adjusted Vegetation Index | SAVI | [(NIR − R) * 1.5]/(NIR + R + 0.5) | (Huete, 1988) [43] | |
Extended NDVI | ENDVI | (NIR + SWIR2-R)/(NIR + SWIR2 + R) − | (Chen et al., 2015) [44] | |
Generalized Difference Vegetation Index | GDVI | (NIR2 − R2)/(NIR2 + R2) | (Wu et al., 2014) [45] | |
Global Vegetation Moisture Index | GVMI | [(NIR + 0.1) − (SWIR1 +0.02)]/[(NIR + 0.1) + (SWIR1 + 0.02)] | (Ceccato et al., 2002) [46] | |
Infrared Percentage Vegetation Index | IPVI | NIR/(NIR + R) | (Crippen, 1990) [47] | |
Normalized difference vegetation index | NDVI | (NIR − R)/(NIR + R) | (Rouse Jr et al., 1974) [48] | |
Normalized difference water index | NDWI | (G − NIR)/(G + NIR) | (McFeeters, 1996) [49] | |
Enhanced Residues Soil Salinity Index | ERSSI | G2/B * SWIR1 | (Wang, et al., 2022) [50] | |
Salinity indices | Brightness Index | BI | (G2 + B2)0.5 | (Khan et al., 2005) [51] |
Salinity index I | S1 | B/R | (Khan et al., 2005) [51] | |
Salinity index II | S2 | (B − R)/(B + R) | (Khan et al., 2005) [51] | |
Salinity index III | S3 | G * R/B | (Khan et al., 2005) [51] | |
Salinity index V | S5 | B * R/G | (Khan et al., 2005) [51] | |
Salinity index VI | S6 | R * NIR/G | (Khan et al., 2005) [51] | |
Salinity Index 1 | SI1 | (G + R)0.5 | (Khan et al., 2005) [51] | |
Salinity Index 2 | SI2 | (NIR2 + G2 + R2)0.5 | (Khan et al., 2005) [51] | |
Salinity Index 3 | SI3 | (G2 + R2)0.5 | (Khan et al., 2005) [51] | |
Salinity Index 4 | SI4 | SWIR1/NIR | (Douaoui et al., 2006) [52] | |
Canopy Response Salinity Index | CRSI | [(NIR * R − G * B)/(NIR * R + G * B)]0.5 | (Scudiero et al., 2014) [53] | |
Normalized Difference Salinity Index | NDSI | (NIR − SWIR1)/(NIR + SWIR1) | (Major et al., 2007) [54] | |
Salinization Remote Sensing Index | SRSI | [(NDVI − 1)2 + SI2]0.5 | (Alhammadi and Glenn, 2008) [55] | |
Salinity index VII | S7 | (SWIR1 − SWIR2)/(SWIR1 + SWIR2) | (Bannari et al., 2008) [56] | |
Soil Salinity and Sodicity Indices1 | SSS_1 | R-NIR | (Bannari et al., 2008) [56] | |
Soil Salinity and Sodicity Indices2 | SSS_2 | (R * NIR − NIR2)/R | (Bannari et al., 2008) [56] | |
Radar indices | Backscattering coefficients of VH band | VH | (ơ0 − ơ0veg_VH)/L | (Kumar et al., 2012) [57] |
Backscattering coefficients of VV band | VV | (ơ0 − ơ0veg_VV)/L | (Kumar et al., 2012) [57] | |
TC | Tasseled cap transformation of Sentinel-2 bands | TC1,TC2,TC3 | / | / |
OVTS | Principal components of NDVI time-series | NDVI_PC1, NDVI_PC2, NDVI_PC3 | / | / |
Maximum, minimum, and mean of NDVI time-series | NDVI_max, NDVI_min, NDVI_mean | / | / | |
Terrain indices | Derivative Topographic Metrics | Aspect, Elevation, Slope | / | / |
Models | N_Estimators | Learning Rate | Max Depth | Reg_Alpha | Reg_Lambda | Subsample |
---|---|---|---|---|---|---|
XGBoost | 100 | 0.1 | 3 | 2 | 3 | 0.6 |
CatBoost | 100 | 0.1 | 6 | / | 3 | 0.6 |
LightGBM | 100 | 0.05 | 10 | 1 | 1 | 0.6 |
Data | N | Max | Min | Mean | STD | CV | Skewness |
---|---|---|---|---|---|---|---|
Total data | 119 | 16.49 | 0.45 | 3.11 | 3.61 | 1.16 | 2.01 |
Modeling data | 95 | 14.16 | 0.45 | 2.69 | 2.96 | 1.1 | 2.06 |
Verification data | 24 | 16.49 | 0.71 | 4.77 | 5.22 | 1.09 | 1.27 |
Scheme 1. | Indices Combination |
---|---|
Optical Signatures (OS) | CRSI,S1,S2,S7,SI2,DEM,B2, B3,B8,B12,BI,CLEX,ERSSI,EEVI |
Optical Vegetation Type Signatures (OVTS) | NDVI_PC1,NDVI_max,NDVI_mean,CRSI,S1,S2,S7,SI2,DEM,B2,B3,BI,ERSSI,EEVI |
Datasets | Model | Calibration | Validation | ||
---|---|---|---|---|---|
R2 | RMSE | R2 | RMSE | ||
Optical Signatures (OS) | XGBoost | 0.80 | 0.39 | 0.64 | 0.63 |
CatBoost | 0.74 | 0.45 | 0.58 | 0.69 | |
LightGBM | 0.89 | 0.08 | 0.68 | 0.36 | |
Optical Vegetation Type Signatures (OVTS) | XGBoost | 0.82 | 0.37 | 0.70 | 0.57 |
CatBoost | 0.81 | 0.38 | 0.68 | 0.60 | |
LightGBM | 0.92 | 0.067 | 0.77 | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, T.; Feng, W.; Han, L.; Gao, R.; Wang, F.; Ma, S.; Han, D.; Zhang, Z.; Yan, S.; et al. Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta. Agronomy 2025, 15, 2292. https://doi.org/10.3390/agronomy15102292
Zhang J, Liu T, Feng W, Han L, Gao R, Wang F, Ma S, Han D, Zhang Z, Yan S, et al. Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta. Agronomy. 2025; 15(10):2292. https://doi.org/10.3390/agronomy15102292
Chicago/Turabian StyleZhang, Junyong, Tao Liu, Wenjie Feng, Lijing Han, Rui Gao, Fei Wang, Shuang Ma, Dongrui Han, Zhuoran Zhang, Shuai Yan, and et al. 2025. "Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta" Agronomy 15, no. 10: 2292. https://doi.org/10.3390/agronomy15102292
APA StyleZhang, J., Liu, T., Feng, W., Han, L., Gao, R., Wang, F., Ma, S., Han, D., Zhang, Z., Yan, S., Yang, J., Wang, J., & Wang, M. (2025). Integrating Multi-Temporal Sentinel-1/2 Vegetation Signatures with Machine Learning for Enhanced Soil Salinity Mapping Accuracy in Coastal Irrigation Zones: A Case Study of the Yellow River Delta. Agronomy, 15(10), 2292. https://doi.org/10.3390/agronomy15102292