Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment
Abstract
1. Introduction
2. Materials and Methods
2.1. Bacterial Strains, Culture Conditions, and Inoculum Preparation
2.2. Fungal Phytopathogen Strain Culture Conditions and Inoculum Preparation
2.3. In Vitro Inhibitory Effect of Phosphate-Solubilizing Bacterial Strains on Fungal Peanut Pathogen Growth (Antibiosis)
2.4. Peanut Seeds Surface Disinfection and Germination
2.5. Evaluation of Induction of Systemic Resistance
2.6. Combined Stress Assay
2.7. Total Peroxidase (PX) Activity Determination
2.8. Phenolic Compounds (PC) Determination
2.9. Quantification of Phosphorus Content in Vegetal Tissue
2.10. Statistical Analysis
3. Results
3.1. In Vitro Evaluation of the Antimicrobial Activity of Serratia sp. S119 and Enterobacter sp. J49 Against the Pathogen Sclerotium rolfsii
3.2. Induction of Systemic Resistance (ISR) in Peanut Plants by the PSB Strains Serratia sp. S119 and Enterobacter sp. J49
3.3. Elicitation of Early Total Peroxidase Activity and Phenolic Compounds Accumulation in Peanut Plants by Enterobacter sp. J49 Inoculation
3.4. Inoculation of Native Phosphate Solubilizing Bacteria Enterobacter sp. J49 to Mitigate the Simultaneous Effect of Pathogen S. rolfsii (Biotic) and P Deficiency (Abiotic) Stresses
4. Discussion
4.1. Native Phosphate Solubilizing Bacteria as Inducers of Peanut Systemic Resistance Against S. rolfsii
4.2. The Phosphate Solubilizing Bacterium Enterobacter sp. J49 Mitigates the Effect of the Phytopathogen S. rolfsii on Peanut Plants Growing Under P-Deficient Conditions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, A.; Dubey, A. Rhizosphere microbiome: Engineering bacterial competitiveness for enhancing crop production. J. Adv. Res. 2020, 24, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Pandey, P.; Senthil-Kumar, M. Plant-pathogen interaction in the presence of abiotic stress: What do we know about plant responses? Plant Physiol. Rep. 2019, 24, 541–549. [Google Scholar] [CrossRef]
- Manghwar, H.; Zaman, W. Plant biotic and abiotic stresses. Life 2024, 14, 372. [Google Scholar] [CrossRef]
- Moura, A.B.; Backhouse, D.; de Souza Júnior, I.T.; Gomes, C.B. Soilborne Pathogens. In Subsoil Constraints for Crop Production; Oliveira, T.S.d., Bell, R.W., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Yang, K.M.; Chao, L.K.; Wu, C.-S.; Ye, Z.-S.; Chen, H.-C. Headspace solid-phase microextraction analysis of volatile components in peanut oil. Molecules 2021, 26, 3306. [Google Scholar] [CrossRef]
- Pandey, M.K.; Monyo, E.; Ozias-Akins, P.; Liang, X.; Guimarães, P.; Nigam, S.N.; Upadhyaya, H.D.; Janila, P.; Zhang, X.; Guo, B.; et al. Advances in Arachis genomics for peanut improvement. Biotechnol. Adv. 2012, 30, 639–651. [Google Scholar] [CrossRef]
- United States Department of Agriculture (USDA) 2025. United States Department of Agriculture (USDA). Available online: https://ipad.fas.usda.gov/countrysummary/Default.aspx?id=AR&crop=Peanut (accessed on 2 May 2025).
- Giordano, F.; Pastor, N.; Palacios, S.; Oddino, C.; Torres, A. Peanut leaf spot caused by Nothopassalora personata. Trop. Plant Pathol. 2021, 46, 139–151. [Google Scholar] [CrossRef]
- Marinelli, A.; March, G.; Oddino, C. Enfermedades fúngicas del maní. In El Cultivo del Maní en Córdoba, 2nd ed.; Fernandez, E., Giayetto, O., Eds.; UNRC: Las Higueras, Argentina, 2017; ISBN 978-987-423-736-1. [Google Scholar]
- Sistema Nacional de Vigilancia y Monitoreo de Plagas. Available online: https://www.sinavimo.gob.ar/plaga/athelia-rolfsii (accessed on 30 July 2025).
- Camiletti, B.X.; Camacho, N.M.; Paredes, A.J.; Allemandi, D.A.; Palma, S.D.; Grosso, N.R. Self-dispersible nanocrystals of azoxystrobin and cyproconazole with increased efficacy against soilborne fungal pathogens isolated from peanut crops. Powder Technol. 2020, 372, 455–465. [Google Scholar] [CrossRef]
- Yan, L.; Wang, Z.; Song, W.; Fan, P.; Kang, Y.; Lei, Y.; Wan, L.; Huai, D.; Chen, Y.; Wang, X.; et al. Genome sequencing and comparative genomic analysis of highly and weakly aggressive strains of Sclerotium rolfsii, the causal agent of peanut stem rot. BMC Genom. 2021, 22, 276. [Google Scholar] [CrossRef]
- Villarreal-Delgado, M.F.; Villa-Rodríguez, E.D.; Cira-Chávez, L.A.; Estrada-Alvarado, M.I.; Parra-Cota, F.I.; de los Santos-Villalobos, S. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Mex. J. Phytopathol. 2018, 36, 95–130. [Google Scholar] [CrossRef]
- Fenta, L.; Mekonnen, H. Microbial biofungicides as a substitute for chemical fungicides in the control of phytopathogens: Current perspectives and research directions. Scientifica 2024, 1, 5322696. [Google Scholar] [CrossRef] [PubMed]
- Manoharan, B.; Narayanasamy, S.; Joshi, J.B.; Jegadeesan, S.; Qi, S.; Dai, Z.; Du, D.; Natesan, S.; Uthandi, S. Molecular events and defense mechanism against biotic stress induced by bio-priming of beneficial microbes. In Microbial Biocontrol: Molecular Perspective in Plant Disease Management, 1st ed; Bastas, K.K., Kumar, A., Sivakumar, U., Eds.; Springer: Singapore, 2023; pp. 61–87. ISBN 978-981-993-946-6. [Google Scholar]
- Conrath, U. Molecular aspects of defense priming. Trends Plant Sci. 2011, 16, 524–531. [Google Scholar] [CrossRef]
- Tamm, L.; Thürig, B.; Fliessbach, A.; Goltlieb, A.E.; Karavani, S.; Cohen, Y. Elicitors and soil management to induce resistance against fungal plant diseases. NJAS Wagen. J. Life Sci. 2011, 58, 131–137. [Google Scholar] [CrossRef]
- Karthikeyan, M.; Radhika, K.; Mathiyazhagan, S.; Bhaskaran, R.; Samiyappan, R.; Velazhahan, R. Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz. J. Plant Physiol. 2006, 18, 367–373. [Google Scholar] [CrossRef]
- Kamle, M.; Borah, R.; Bora, H.; Jaiswal, A.K.; Singh, R.K.; Kumar, P. Systemic Acquired Resistance (SAR) and Induced Systemic Resistance (ISR): Role and Mechanism of Action Against Phytopathogens. In Fungal Biotechnology and Bioengineering; Hesham, A.L., Upadhyay, R., Sharma, G., Manoharachary, C., Gupta, V., Eds.; Fungal Biology; Springer: Cham, Switzerland, 2020; pp. 457–470. [Google Scholar] [CrossRef]
- Schenk, S.T.; Hernández-Reyes, C.; Samans, B.; Stein, E.; Neumann, C.; Schikora, M.; Schikora, A. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 2014, 26, 2708–2723. [Google Scholar] [CrossRef]
- Sharma, C.K.; Vishnoi, V.K.; Dubey, R.C.; Maheshwari, D.K. A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere 2018, 5, 71–75. [Google Scholar] [CrossRef]
- Suresh, P.; Shanmugaiah, V.; Rajagopal, R.; Muthusamy, K.; Ramamoorthy, V. Pseudomonas fluorescens VSMKU3054 mediated induced systemic resistance in tomato against Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 2022, 119, 101836. [Google Scholar] [CrossRef]
- Jain, S.; Varma, A.; Tuteja, N.; Choudhary, D.K. Plant growth-promoting microbial mediated induced systemic resistance in plants: Induction, mechanism, and expression. In Microbial-Mediated Induced Systemic Resistance in Plants; Choudhary, D.K., Varma, A., Eds.; Springer: Singapore, 2016; pp. 213–226. ISBN 978-981-100-388-2. [Google Scholar]
- Anzuay, M.S.; Ludueña, L.M.; Angelini, J.G.; Fabra, A.; Taurian, T. Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L.) growth and phosphorus acquisition. Symbiosis 2015, 66, 89–97. [Google Scholar] [CrossRef]
- Anzuay, M.S.; Ruiz Ciancio, M.G.; Ludueña, L.M.; Angelini, J.G.; Barros, G.; Pastor, N.; Taurian, T. Growth promotion of peanut (Arachis hypogaea L.) and maize (Zea mays L.) plants by single and mixed cultures of efficient phosphate solubilizing bacteria that are tolerant to abiotic stress and pesticides. Microbiol. Res. 2017, 199, 98–109. [Google Scholar] [CrossRef]
- Sainz Rozas, H.; Eyherabide, M.; Larrea, G.; Martínez Cuesta, N.; Angelini, H.; Reussi Calvo, N.; Wyngaard, N. Relevamiento y determinación de propiedades químicas en suelos de aptitud agrícola de la región pampeana. In Proceedings of the Simposio Fertilidad, Rosario, Argentina, 8–9 May 2019. [Google Scholar]
- Brito, L.F.; López, M.G.; Straube, L.; Passaglia, L.M.P.; Wendisch, V.F. Inorganic phosphate solubilization by rhizosphere bacterium Paenibacillus sonchi: Gene expression and physiological functions. Front. Microbiol. 2020, 11, 588605. [Google Scholar] [CrossRef]
- Patel, M.; Rangani, J.; Kumari, A.; Parida, A.K. Mineral nutrient homeostasis, photosynthetic performance, and modulations of antioxidative defense components in two contrasting genotypes of Arachis hypogaea L. (peanut) for mitigation of nitrogen and/or phosphorus starvation. J. Biotechnol. 2020, 323, 136–158. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical P cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Fertilizar. Available online: https://fertilizar.org.ar/ (accessed on 25 April 2023).
- Chen, Y.; Sun, R.; Sun, T.; Liang, Y.; Jiang, Y.; Sun, B. Organic amendments shift the phosphorus-correlated microbial co-occurrence pattern in the peanut rhizosphere network during long-term fertilization regimes. Appl. Soil Ecol. 2018, 124, 229–239. [Google Scholar] [CrossRef]
- Anzuay, M.S.; Pin Viso, N.; Ludueña, L.M.; Morla, F.D.; Angelini, J.G.; Taurian, T. Plant beneficial rhizobacteria community structure changes through developmental stages of peanut and maize. Rhizosphere 2021, 19, 100407. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus 2013, 2, 587. [Google Scholar] [CrossRef]
- Skrzypczak, D.; Izydorczyk, G.; Taf, R.; Moustakas, K.; Chojnacka, K. Cellulose-based fertilizers for sustainable agriculture: Effective methods for increasing crop yield and soil health. Ind. Crops Prod. 2023, 205, 117500. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, F.; Ma, L. Phosphate-solubilizing bacteria from safflower rhizosphere and their effect on seedling growth. Open Life Sci. 2019, 14, 246–254. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2020, 21, 49–68. [Google Scholar] [CrossRef]
- Wan, W.; Qin, Y.; Wu, H.; Zuo, W.; He, H.; Tan, J.; Wang, Y.; He, D. Isolation and characterization of phosphorus solubilizing bacteria with multiple phosphorus sources utilizing capability and their potential for lead immobilization in soil. Front. Microbiol. 2020, 11, 752. [Google Scholar] [CrossRef]
- Pan, L.; Cai, B. Phosphate-solubilizing bacteria: Advances in their physiology, molecular mechanisms and microbial community effects. Microorganisms 2023, 11, 2904. [Google Scholar] [CrossRef]
- Oteino, N.; Lally, R.D.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.J.; Dowling, D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 745. [Google Scholar] [CrossRef]
- Taurian, T.; Anzuay, M.S.; Angelini, J.G.; Tonelli, M.L.; Ludueña, L.M.; Pena, D.; Ibáñez, F.; Fabra, A. Phosphate-solubilizing peanut associated bacteria: Screening for plant growth promoting activities. Plant Soil 2010, 329, 421–431. [Google Scholar]
- Ludueña, L.M.; Valdés, P.F.; Anzuay, M.S.; Dalmasso, R.; Angelini, J.G.; Tejerizo, G.T.; Taurian, T. Impact of phosphorus deficiency on the interaction between the biofertilizer strain Serratia sp. S119 with peanut (Arachis hypogaeae L.) and maize (Zea mays L.) plants. Plant Soil 2023, 487, 639–653. [Google Scholar] [CrossRef]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: New York, NY, USA, 1972; ISBN 978-087-969-106-6. [Google Scholar]
- Somasegaran, P.; Hoben, H.J. Handbook for Rhizobia: Methods in Legume–Rhizobium Technology, 1st ed; Springer: New York, NY, USA, 1994; pp. 3–6. ISBN 978-146-138-377-2. [Google Scholar]
- Meena, P.N.; Meena, A.K.; Tiwari, R.K.; Lal, M.K.; Kumar, R. Biological Control of Stem Rot of Groundnut Induced by Sclerotium rolfsii sacc. Pathogens 2024, 13, 632. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tonelli, M.L.; Taurian, T.; Ibáñez, F.; Angelini, J.; Fabra, A. Selection and in vitro characterization of biocontrol agents with potential to protect peanut plants against fungal pathogens. J. Plant Pathol. 2010, 92, 73–82. [Google Scholar]
- Vincent, J.M. A Manual for the Practical Study of Root Nodule Bacteria; International Biological Programme Blackwell Scientific Publications: Oxford, UK, 1970; ISBN 978-063-206-410-6. [Google Scholar]
- Figueredo, M.S.; Tonelli, M.L.; Ibáñez, F.; Morla, F.; Cerioni, G.; Tordable, M.d.C.; Fabra, A. Induced systemic resistance and symbiotic performance of peanut plants challenged with fungal pathogens and co-inoculated with the biocontrol agent Bacillus sp. CHEP5 and Bradyrhizobium sp. SEMIA6144. Microbiol. Res. 2017, 197, 65–73. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil; University of California, College of Agriculture: Berkeley, CA, USA, 1950; Volume 347. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Sosa Alderete, L.G.S.; Talano, M.A.; Ibáñez, S.G.; Purro, S.; Agostini, E.; Milrad, S.R.; Medina, M.I. Cadmium-induced oxidative stress and antioxidative response in transgenic tobacco plants expressing sunflower HaMT2 metallothionein. J. Biotechnol. 2009, 139, 273–279. [Google Scholar]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall: New Delhi, India, 1973; pp. 134–182. [Google Scholar]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, C.W. InfoStat versión 2020. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. 2020. Available online: http://www.infostat.com.ar (accessed on 7 July 2025).
- Rasul, M.; Yasmin, S.; Zubair, M.; Mahreen, N.; Yousaf, S.; Arif, M.; Sajid, Z.I.; Mirza, M.S. Phosphate solubilizers as antagonists for bacterial leaf blight with improved rice growth in phosphorus deficit soil. Biol. Control 2019, 136, 103997. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Xiao, Q.; Chen, J. Effect of phosphate-solubilizing bacteria on the gene expression and inhibition of bacterial fruit blotch in melon. Sci. Hortic. 2021, 282, 110018. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, Y.; Zhao, S.; Yin, X.; Chein, J.; Wang, M.; Cai, Y.; Niu, Q. A novel peroxiredoxin from the antagonistic endophytic bacterium Enterobacter sp. V1 contributes to cotton resistance against Verticillium dahliae. Plant Soil 2020, 454, 395–409. [Google Scholar] [CrossRef]
- Soenens, A.; Imperial, J. Capacidades de biocontrol del género Serratia. Phytochem. Rev. 2020, 19, 577–587. [Google Scholar] [CrossRef]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef]
- Adam, M.; Heier, H.; Hallmann, J. Bacterial Antagonists of Fungal Pathogens Also Control Root-Knot Nematodes by Induced Systemic Resistance of Tomato Plants. PLoS ONE 2014, 9, e90402. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.; Bakker, P.A. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef]
- Pang, Y.; Liu, X.; Ma, Y.; Chernin, L.; Berg, G.; Gao, K. Induction of systemic resistance, root colonization and biocontrol activities of the rhizospheric strain of Serratia plymuthica are dependent on N-acyl homoserine lactones. Eur. J. Plant Pathol. 2009, 124, 261–268. [Google Scholar] [CrossRef]
- Singh, R.P.; Jha, P.N. The Multifarious PGPR Serratia marcescens CDP-13 Augments Induced Systemic Resistance and Enhanced Salinity Tolerance of Wheat (Triticum aestivum L.). PLoS ONE 2016, 11, e0155026. [Google Scholar] [CrossRef] [PubMed]
- Son, J.-S.; Sumayo, M.; Kang, H.-U.; Kim, B.-S.; Kwon, D.-K.; Ghim, S.-Y. Induced of Systemic Resistance against Gray Leaf Spot in Pepper by Enterobacter Species Isolated from Family Gramineae Plants in Dok-do. Microbiol. Biotechnol. Lett. 2012, 40, 135–143. [Google Scholar] [CrossRef]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar]
- Jetiyanon, K.; Plianbangchang, P. Lipopolysaccharide of Enterobacter asburiae strain RS83: A bacterial determinant for induction of early defensive enzymes in Lactuca sativa against soft rot disease. Biol. Control 2013, 67, 301–307. [Google Scholar]
- Arora, S.; Jha, P.N. Drought-Tolerant Enterobacter bugandensis WRS7 Induces Systemic Tolerance in Triticum aestivum L. (Wheat) Under Drought Conditions. J. Plant Growth Regul. 2023, 42, 7715–7730. [Google Scholar] [CrossRef]
- Ramamoorthy, V.; Viswanathan, R.; Raguchander, T.; Prakasam, V.; Samiyappan, R. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 2001, 20, 1–11. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Sengupta, S.; Fritschi, F.B.; Azad, R.K.; Nechushtai, R.; Mittler, R. The impact of multifactorial stress combination on plant growth and survival. New Phytol. 2021, 230, 1034–1048. [Google Scholar] [CrossRef]
- Zandalinas, S.I.; Mittler, R. Plant responses to multifactorial stress combination. New Phytol. 2022, 234, 1161–1167. [Google Scholar] [CrossRef]
- Jing, Z.; Liu, N.; Zhang, Z.; Hou, X. Research progress on plant responses to stress combinations in the context of climate change. Plants 2024, 13, 469. [Google Scholar] [CrossRef]
- Anzuay, M.S.; Prenollio, A.; Ludueña, L.M.; Morla, F.D.; Cerliani, C.; Lucero, C.; Angelini, J.G.; Taurian, T. Enterobacter sp. J49: A native plant growth-promoting bacteria as alternative to the application of chemical fertilizers on peanut and maize crops. Curr. Microbiol. 2023, 80, 85. [Google Scholar] [CrossRef]
- Mendes, G.D.O.; Dyer, T.; Csetenyi, L.; Gadd, G.M. Rock phosphate solubilization by abiotic and fungal-produced oxalic acid: Reaction parameters and bioleaching potential. Microbial Biotech. 2022, 15, 1189–1202. [Google Scholar] [CrossRef]
- Chan, C.; Liao, Y.Y.; Chiou, T.J. The impact of phosphorus on plant immunity. Plant Cell Physiol. 2021, 62, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Tsuchida, N.; Saijo, Y. Modulation of plant immunity and biotic interactions under phosphate deficiency. J. Plant Res. 2024, 137, 343–357. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gentile, A.L.; Figueredo, M.S.; Anzuay, M.S.; Tonelli, M.L.; Fabra, A.; Taurian, T.; Ludueña, L. Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment. Agronomy 2025, 15, 2278. https://doi.org/10.3390/agronomy15102278
Gentile AL, Figueredo MS, Anzuay MS, Tonelli ML, Fabra A, Taurian T, Ludueña L. Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment. Agronomy. 2025; 15(10):2278. https://doi.org/10.3390/agronomy15102278
Chicago/Turabian StyleGentile, Ana Laura, Maria Soledad Figueredo, Maria Soledad Anzuay, Maria Laura Tonelli, Adriana Fabra, Tania Taurian, and Liliana Ludueña. 2025. "Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment" Agronomy 15, no. 10: 2278. https://doi.org/10.3390/agronomy15102278
APA StyleGentile, A. L., Figueredo, M. S., Anzuay, M. S., Tonelli, M. L., Fabra, A., Taurian, T., & Ludueña, L. (2025). Native Phosphate Solubilizing Bacteria Mitigate the Effect of the Phytopathogen Sclerotium rolfsii on Peanut (Arachis hypogaea L.) Plants in a P-Deficient Environment. Agronomy, 15(10), 2278. https://doi.org/10.3390/agronomy15102278