Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate and Microbial Community in Corn and Soybean
Abstract
1. Introduction
2. Materials and Methods
2.1. Rhizosphere Soil Sample Collection
2.2. Soil Respiration and Enzyme Activity Measurement
2.3. DNA Extraction and High-Throughput Sequencing
2.4. Data Analysis
3. Results and Analysis
3.1. Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate
3.2. Effects of Phosphorus Input on Rhizosphere Soil Enzyme Activity
3.3. Effects of Phosphorus Input on Rhizosphere Soil Microbial Community
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, X.; Wang, S.; Zhuang, Q.; Jin, X.; Bian, Z.; Zhou, M.; Meng, Z.; Han, C.; Guo, X.; Jin, W.; et al. A Review on Carbon Source and Sink in Arable Land Ecosystems. Land 2022, 11, 580. [Google Scholar] [CrossRef]
- Omonode, R.A.; Vyn, T.J.; Smith, D.R.; Hegymegi, P.; Gál, A. Soil Carbon Dioxide and Methane Fluxes from Long-Term Tillage Systems in Continuous Corn and Corn–Soybean Rotations. Soil Tillage Res. 2007, 95, 182–195. [Google Scholar] [CrossRef]
- Agomoh, I.V.; Drury, C.F.; Yang, X.; Phillips, L.A.; Reynolds, W.D. Crop Rotation Enhances Soybean Yields and Soil Health Indicators. Soil Sci. Soc. Am. J. 2021, 85, 1185–1195. [Google Scholar] [CrossRef]
- Norberg, L.; Berglund, Ö.; Berglund, K. Seasonal CO2 Emission under Different Cropping Systems on Histosols in Southern Sweden. Geoderma Reg. 2016, 7, 338–345. [Google Scholar] [CrossRef]
- Sainju, U.M.; Jabro, J.D.; Stevens, W.B. Soil Carbon Dioxide Emission and Carbon Content as Affected by Irrigation, Tillage, Cropping System, and Nitrogen Fertilization. J. Environ. Qual. 2008, 37, 98–106. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, L.; Sun, N.; Ding, X.; Li, J.; Wang, B.; Li, D. Soil CO2 and N2O Emissions in Maize Growing Season under Different Fertilizer Regimes in an Upland Red Soil Region of South China. J. Integr. Agric. 2014, 13, 604–614. [Google Scholar] [CrossRef]
- Zhai, L.; Liu, H.; Zhang, J.; Huang, J.; Wang, B. Long-Term Application of Organic Manure and Mineral Fertilizer on N2O and CO2 Emissions in a Red Soil from Cultivated Maize-Wheat Rotation in China. Agric. Sci. China 2011, 10, 1748–1757. [Google Scholar] [CrossRef]
- Song, C.; Zhang, J. Effects of Soil Moisture, Temperature, and Nitrogen Fertilization on Soil Respiration and Nitrous Oxide Emission during Maize Growth Period in Northeast China. Acta Agric. Scand. B Plant Soil Sci. 2009, 59, 97–106. [Google Scholar] [CrossRef]
- Pareja-Sánchez, E.; Cantero-Martínez, C.; Álvaro-Fuentes, J.; Plaza-Bonilla, D. Tillage and Nitrogen Fertilization in Irrigated Maize: Key Practices to Reduce Soil CO2 and CH4 Emissions. Soil Tillage Res. 2019, 191, 29–36. [Google Scholar] [CrossRef]
- Sosulski, T.; Szymańska, M.; Szara, E.; Sulewski, P. Soil Respiration under 90 Year-Old Rye Monoculture and Crop Rotation in the Climate Conditions of Central Poland. Agronomy 2020, 11, 21. [Google Scholar] [CrossRef]
- Divjot, K.; Rana, K.L.; Tanvir, K.; Yadav, N.; Yadav, A.N.; Kumar, M.; Kumar, V.; Dhaliwal, H.S.; Saxena, A.K. Biodiversity, Current Developments and Potential Biotechnological Applications of Phosphorus-Solubilizing and-Mobilizing Microbes: A Review. Pedosphere 2021, 31, 43–75. [Google Scholar]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Bucher, M. Functional Biology of Plant Phosphate Uptake at Root and Mycorrhiza Interfaces. New Phytol. 2007, 173, 11–26. [Google Scholar] [CrossRef] [PubMed]
- Igual, J.M.; Valverde Portal, Á.; Cervantes, E.; Velázquez Pérez, E. Phosphate-Solubilizing Bacteria as Inoculants for Agriculture: Use of Updated Molecular Techniques in Their Study. Agronomie 2001, 21, 561–568. [Google Scholar] [CrossRef]
- Djuuna, I.A.F.; Prabawardani, S.; Massora, M. Population Distribution of Phosphate-Solubilizing Microorganisms in Agricultural Soil. Microbes Environ. 2022, 37, ME21041. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S.C. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. J. Soil Sci. Plant Nutr. 2021, 21, 49–68. [Google Scholar] [CrossRef]
- Tian, J.; Lu, X.; Chen, Q.; Kuang, X.; Liang, C.; Deng, L.; Lin, D.; Cai, K.; Tian, J. Phosphorus Fertilization Affects Soybean Rhizosphere Phosphorus Dynamics and the Bacterial Community in Karst Soils. Plant Soil 2022, 475, 137–152. [Google Scholar] [CrossRef]
- Dai, Z.; Liu, G.; Chen, H.; Chen, C.; Wang, J.; Ai, S.; Wei, D.; Li, D.; Ma, B.; Tang, C. Long-Term Nutrient Inputs Shift Soil Microbial Functional Profiles of Phosphorus Cycling in Diverse Agroecosystems. ISME J. 2020, 14, 757–770. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, Y.; Mou, Z.; Kuang, L.; Wu, W.; Zhang, J.; Wang, F.; Hui, D.; Peñuelas, J.; Sardans, J.; et al. Phosphorus Addition Decreases Microbial Residual Contribution to Soil Organic Carbon Pool in a Tropical Coastal Forest. Global Change Biol. 2021, 27, 454–466. [Google Scholar] [CrossRef]
- Bond-Lamberty, B.; Thomson, A. Temperature-Associated Increases in the Global Soil Respiration Record. Nature 2010, 464, 579–582. [Google Scholar] [CrossRef]
- Wang, Q.; Yu, Y.; He, T.; Wang, Y. Aboveground and Belowground Litter Have Equal Contributions to Soil CO2 Emission: An Evidence from a 4-Year Measurement in a Subtropical Forest. Plant Soil 2017, 421, 7–17. [Google Scholar] [CrossRef]
- Feng, J.; Zhu, B. A Global Meta-Analysis of Soil Respiration and Its Components in Response to Phosphorus Addition. Soil Biol. Biochem. 2019, 135, 38–47. [Google Scholar] [CrossRef]
- Johnston, E.R.; Kim, M.; Hatt, J.K.; Phillips, J.R.; Yao, Q.; Song, Y.; Hazen, T.C.; Mayes, M.A.; Konstantinidis, K.T. Phosphate Addition Increases Tropical Forest Soil Respiration Primarily by Deconstraining Microbial Population Growth. Soil Biol. Biochem. 2019, 130, 43–54. [Google Scholar] [CrossRef]
- Khan, A.; Yang, X.; Sun, B.; Zhang, S.; He, B. Responses of Crop and Soil Phosphorus Fractions to Long-Term Fertilization Regimes in a Loess Soil in Northwest China. Agronomy 2023, 13, 3072. [Google Scholar] [CrossRef]
- Jemo, M.; Abaidoo, R.C.; Nolte, C.; Tchienkoua, M.; Sanginga, N.; Horst, W.J. Phosphorus Benefits from Grain-Legume Crops to Subsequent Maize Grown on Acid Soils of Southern Cameroon. Plant Soil 2006, 284, 385–397. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions, and Emerging Trends in Microbial Application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef]
- Lemanceau, P.; Blouin, M.; Muller, D.; Moënne-Loccoz, Y. Let the Core Microbiota Be Functional. Trends Plant Sci. 2017, 22, 583–595. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere Size and Shape: Temporal Dynamics and Spatial Stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Zhang, B.; Hong, J.; Zhang, Q.; Jin, D.; Gao, C. Contrast in Soil Microbial Metabolic Functional Diversity to Fertilization and Crop Rotation under Rhizosphere and Non-Rhizosphere in the Coal Gangue Landfill Reclamation Area of Loess Hills. PLoS ONE 2020, 15, e0229341. [Google Scholar] [CrossRef]
- Donn, S.; Kirkegaard, J.A.; Perera, G.; Richardson, A.E.; Watt, M. Evolution of Bacterial Communities in the Wheat Crop Rhizosphere. Environ. Microbiol. 2015, 17, 610–621. [Google Scholar] [CrossRef]
- Brzostek, E.R.; Greco, A.; Drake, J.E.; Finzi, A.C. Root Carbon Inputs to the Rhizosphere Stimulate Extracellular Enzyme Activity and Increase Nitrogen Availability in Temperate Forest Soils. Biogeochemistry 2013, 115, 65–76. [Google Scholar] [CrossRef]
- Zhao, F.; Wang, J.; Zhang, L.; Ren, C.; Han, X.; Yang, G.; Doughty, R.; Deng, J. Understory Plants Regulate Soil Respiration through Changes in Soil Enzyme Activity and Microbial C, N, and P Stoichiometry Following Afforestation. Forests 2018, 9, 436. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 Efflux from Soil and Review of Partitioning Methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Frankenberger, W.T.; Dick, W.A. Relationships between Enzyme Activities and Microbial Growth and Activity Indices in Soil. Soil Sci. Soc. Am. J. 1983, 47, 945–951. [Google Scholar] [CrossRef]
- Tomar, U.; Baishya, R. Seasonality and Moisture Regime Control Soil Respiration, Enzyme Activities, and Soil Microbial Biomass Carbon in a Semi-Arid Forest of Delhi, India. Ecol. Processes 2020, 9, 50. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, J.; Li, L.; Wang, X.; Li, X.; Qu, J. Effect of Soybean and Maize Rotation on Soil Microbial Community Structure. Agronomy 2019, 9, 42. [Google Scholar] [CrossRef]
- Liu, M.; Gan, B.; Li, Q.; Xiao, W.; Song, X. Effects of Nitrogen and Phosphorus Addition on Soil Extracellular Enzyme Activity and Stoichiometry in Chinese Fir (Cunninghamia lanceolata) Forests. Front. Plant Sci. 2022, 13, 834184. [Google Scholar] [CrossRef]
- Mehnaz, K.R.; Corneo, P.E.; Keitel, C.; Dijkstra, F.A. Carbon and Phosphorus Addition Effects on Microbial Carbon Use Efficiency, Soil Organic Matter Priming, Gross Nitrogen Mineralization and Nitrous Oxide Emission from Soil. Soil Biol. Biochem. 2019, 134, 175–186. [Google Scholar] [CrossRef]
- McFarlane, K.J.; Cusack, D.F.; Dietterich, L.H.; Hedgpeth, A.L.; Finstad, K.M.; Nottingham, A.T. Experimental Warming and Drying Increase Older Carbon Contributions to Soil Respiration in Lowland Tropical Forests. Nat. Commun. 2024, 15, 7084. [Google Scholar] [CrossRef]
- Zhang, K.; Wei, H.; Wang, Y.; Xu, Y.; Wang, Y.; Guo, S.; Sun, J. Integrated Soil Improvement and Economic Benefits Evaluation of Vegetable—Rice Production Systems for Paddy Fields in Subtropical China. Plant Soil 2025, 507, 159–179. [Google Scholar] [CrossRef]
- Criquet, S.; Braud, A. Effects of Organic and Mineral Amendments on Available P and Phosphatase Activities in a Degraded Mediterranean Soil under Short-Term Incubation Experiment. Soil Tillage Res. 2008, 98, 164–174. [Google Scholar] [CrossRef]
- Lu, X.; Wen, L.; Sun, H.; Fei, T.; Liu, H.; Ha, S.; Tang, S.; Wang, L. Responses of Soil Respiration to Phosphorus Addition in Global Grasslands: A Meta-Analysis. J. Clean. Prod. 2022, 349, 131413. [Google Scholar] [CrossRef]
- Shi, J.; Gong, J.; Baoyin, T.; Luo, Q.; Zhai, Z.; Zhu, C.; Yang, B.; Wang, B.; Zhang, Z.; Li, X. Short-Term Phosphorus Addition Increases Soil Respiration by Promoting Gross Ecosystem Production and Litter Decomposition in a Typical Temperate Grassland in Northern China. Catena 2021, 197, 104952. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Z.; Yang, Q.; Jian, C.; Lai, S.; Chen, Y.; Xu, B. N and P Addition Increase Soil Respiration but Decrease Contribution of Heterotrophic Respiration in Semiarid Grassland. Agric. Ecosyst. Environ. 2021, 318, 107493. [Google Scholar] [CrossRef]
- Zheng, M.M.; Wang, C.; Li, W.X.; Guo, L.; Cai, Z.J.; Wang, B.R.; Chen, J.; Shen, R.F. Changes of Acid and Alkaline Phosphatase Activities in Long-Term Chemical Fertilization Are Driven by the Similar Soil Properties and Associated Microbial Community Composition in Acidic Soil. Eur. J. Soil Biol. 2021, 104, 103312. [Google Scholar] [CrossRef]
- Margalef, O.; Sardans, J.; Maspons, J.; Molowny-Horas, R.; Fernández-Martínez, M.; Janssens, I.A.; Richter, A.; Ciais, P.; Obersteiner, M.; Peñuelas, J. The Effect of Global Change on Soil Phosphatase Activity. Global Change Biol. 2021, 27, 5989–6003. [Google Scholar] [CrossRef]
- Neumann, G.; Kandeler, E. Rhizosphere Management for More Productive and More Resilient Soil Systems. In Biological Approaches to Regenerative Soil Systems; CRC Press: Boca Raton, FL, USA, 2023; pp. 333–344. [Google Scholar]
- Kumar, V.; Srivastava, A.K.; Suprasanna, P. Plant Nutrition and Food Security in the Era of Climate Change; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar]
- Janes-Bassett, V.; Blackwell, M.S.; Blair, G.; Davies, J.; Haygarth, P.M.; Mezeli, M.M.; Stewart, G. A Meta-Analysis of Phosphatase Activity in Agricultural Settings in Response to Phosphorus Deficiency. Soil Biol. Biochem. 2022, 165, 108537. [Google Scholar] [CrossRef]
- Charoenphun, N.; Lekjing, S.; Venkatachalam, K. Effect of Exogenous Melatonin Application on Maintaining Physicochemical Properties, Phytochemicals, and Enzymatic Activities of Mango Fruits during Cold Storage. Horticulturae 2025, 11, 222. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, J.; Li, T.; Shao, P.; Ma, J.; Dong, K. Effects of Nitrogen and Phosphorus Imbalance Input on Rhizosphere and Bulk Soil Bacterial Community of Suaeda Salsa in the Yellow River Delta. Front. Mar. Sci. 2023, 10, 1131713. [Google Scholar] [CrossRef]
- Lv, H.; Ji, C.; Ding, J.; Yu, L.; Cai, H. High Levels of Zinc Affect Nitrogen and Phosphorus Transformation in Rice Rhizosphere Soil by Modifying Microbial Communities. Plants 2022, 11, 2271. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, H.; Chen, M.; Wang, D.; Cao, X.; Chu, B.; Xu, X. Response of Soil Bacterial Communities to Nitrogen and Phosphorus Additions in an Age-Sequence of Subtropical Forests. iForest Biogeosc. For. 2021, 14, 71. [Google Scholar] [CrossRef]
- Huo, D.; Malacrinò, A.; Lindsey, L.E.; Benitez, M.-S. Subtle Responses of Soil Bacterial Communities to Corn-Soybean-Wheat Rotation. Phytobiomes J. 2023, 7, 392–400. [Google Scholar] [CrossRef]
- Kodadinne Narayana, N.; Kingery, W.L.; Shankle, M.W.; Ganapathi Shanmugam, S. Differential Response of Soil Microbial Diversity and Community Composition Influenced by Cover Crops and Fertilizer Treatments in a Dryland Soybean Production System. Agronomy 2022, 12, 618. [Google Scholar] [CrossRef]
- Rao, D.; Meng, F.; Yan, X.; Zhang, M.; Yao, X.; Kim, K.S.; Zhao, J.; Qiu, Q.; Xie, F.; Zhang, W. Changes in Soil Microbial Activity, Bacterial Community Composition and Function in a Long-Term Continuous Soybean Cropping System after Corn Insertion and Fertilization. Front. Microbiol. 2021, 12, 638326. [Google Scholar] [CrossRef] [PubMed]
- Leake, J.; Johnson, D.; Donnelly, D.; Muckle, G.; Boddy, L.; Read, D. Networks of Power and Influence: The Role of Mycorrhizal Mycelium in Controlling Plant Communities and Agroecosystem Functioning. Can. J. Bot. 2004, 82, 1016–1045. [Google Scholar] [CrossRef]
- Perez-Lamarque, B.; Petrolli, R.; Strullu-Derrien, C.; Strasberg, D.; Morlon, H.; Selosse, M.; Martos, F. Fungal Sharing, Specialization, and Structural Distinctiveness in the Plant Root Microbiomes of Distantly Related Plant Lineages. Caractérisation Modélisation L’évolution Interact. Hôtes-Microbiotes 2021, 209, 209. [Google Scholar]
- Zhang, R.; Mu, Y.; Li, X.; Li, S.; Sang, P.; Wang, X.; Wu, H.; Xu, N. Response of the Arbuscular Mycorrhizal Fungi Diversity and Community in Maize and Soybean Rhizosphere Soil and Roots to Intercropping Systems with Different Nitrogen Application Rates. Sci. Total Environ. 2020, 740, 139810. [Google Scholar] [CrossRef]
- Abbasi, S. Plant–Microbe Interactions Ameliorate Phosphate-Mediated Responses in the Rhizosphere: A Review. Front. Plant Sci. 2023, 14, 1074279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, D.; Wang, Y.; Meng, F.; Cheng, T.; Yu, D.; Zhao, J.; Qiu, Q.; Yan, X.; Zhang, W.; Zhao, H. Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate and Microbial Community in Corn and Soybean. Agronomy 2025, 15, 2277. https://doi.org/10.3390/agronomy15102277
Rao D, Wang Y, Meng F, Cheng T, Yu D, Zhao J, Qiu Q, Yan X, Zhang W, Zhao H. Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate and Microbial Community in Corn and Soybean. Agronomy. 2025; 15(10):2277. https://doi.org/10.3390/agronomy15102277
Chicago/Turabian StyleRao, Demin, Yunlong Wang, Fangang Meng, Tong Cheng, Debin Yu, Jing Zhao, Qiang Qiu, Xiaoyan Yan, Wei Zhang, and Hongyan Zhao. 2025. "Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate and Microbial Community in Corn and Soybean" Agronomy 15, no. 10: 2277. https://doi.org/10.3390/agronomy15102277
APA StyleRao, D., Wang, Y., Meng, F., Cheng, T., Yu, D., Zhao, J., Qiu, Q., Yan, X., Zhang, W., & Zhao, H. (2025). Effects of Phosphorus Input on Rhizosphere Soil Respiration Rate and Microbial Community in Corn and Soybean. Agronomy, 15(10), 2277. https://doi.org/10.3390/agronomy15102277