Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review
Abstract
1. Introduction
- To investigate the data collection methods and system configurations used for acquiring NIRS and HSI data in non-destructive mango quality assessment.
- To review and compare preprocessing and dimensionality reduction techniques applied to NIRS and HSI datasets for enhancing model accuracy and efficiency in mango grading.
- To identify and evaluate the effectiveness of attention-augmented deep learning and transformer-based models for non-destructive mango quality assessment, in comparison with traditional statistical and machine learning methods.
- To assess the internal and external mango quality traits that can be accurately measured using NIRS and HSI technologies.
- To analyse the current challenges, limitations, and future opportunities in applying intelligent data-driven models for real-time large-scale mango grading, with a focus on improving postharvest management and supply chain sustainability.
2. The Approach of the Survey
2.1. Eligibility Criteria
2.2. Search Strategy and Information Sources
2.3. Selection Process
- RQ1: How are NIRS and HSI data collected for mango quality assessment?
- RQ2: What preprocessing and dimensionality reduction techniques are used for NIRS and HSI data analysis?
- RQ3: How effective are attention-augmented deep learning and transformer-based models for non-destructive mango classification and grading compared to traditional statistical and machine learning methods?
- RQ4: What quality traits are assessed in mangoes using NIRS and HSI data?
- RQ5: What are the key challenges and future opportunities in applying advanced machine learning and deep learning techniques for mango grading using NIRS and HSI data?
3. Background
3.1. Optical Geometry
3.2. Spectroscopy
3.3. Near-Infrared Spectroscopy (NIRS)
3.4. Hyperspectral Imaging (HSI)
3.5. Machine Learning (ML)
3.6. Deep Learning (DL)
3.7. Transformers
3.8. Evaluation Metrics
4. Mango Quality Assessment Using NIRS and HSI
4.1. Data Collection
4.2. Data Preprocessing and Dimensionality Reduction Techniques
4.2.1. Data Preprocessing Techniques
4.2.2. Dimensionality Reduction Techniques
4.3. Algorithms Used for Data Analysis
4.3.1. Statistical Analysis Methods
4.3.2. Conventional Machine Learning Approaches
4.3.3. Deep Learning Approaches
4.3.4. Transformer-Inspired Approaches
4.4. Quality Traits Used for Mango Quality Assessment
5. Results and Discussion
5.1. Distribution Based on the Year of Publication
5.2. Distribution of NIRS and HIS
5.3. Distribution of Mango Quality Traits Assessed
5.4. Distribution Based on Analysis Method
5.5. Summary of Survey
- RQ1: How are NIRS and HSI Data Collected for Mango Quality Assessment?
- RQ2: What preprocessing and dimensionality reduction techniques are used for NIRS and HSI data analysis?
- RQ3: How effective are attention-augmented deep learning and transformer-based models for non-destructive mango classification and grading compared to traditional statistical and machine learning methods?
- RQ4: What quality traits are assessed in mangoes using NIRS and HSI data?
- RQ5: What are the key challenges and future opportunities in applying advanced machine learning and deep learning techniques for mango grading using NIRS and HSI data?
- Limited dataset sizes and lack of public databases, which constrain the training of robust deep learning models.
- High dimensionality of hyperspectral data, which requires extensive preprocessing and advanced modelling to prevent overfitting.
- Environmental variability, lighting, temperature, and seasonal differences that can affect spectral measurements and reduce model transferability.
- Lack of standardisation in spectral acquisition, preprocessing, and validation methods across studies.
- Adoption of transformer-based models for spectral feature extraction and sequence learning.
- Development of lightweight real-time AI models integrated with edge devices for orchard or supply-chain deployment.
- Use of multi-modal sensor fusion, combining NIRS, HSI, RGB, and thermal data, for comprehensive fruit quality profiling.
- Implementation of transfer learning and domain adaptation to improve model robustness across varying field conditions.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gómez-Ollé, A.; Bullones, A.; Hormaza, J.I.; Mueller, L.A.; Fernandez-Pozo, N. MangoBase: A Genomics Portal and Gene Expression Atlas for Mangifera indica. Plants 2023, 12, 1273. [Google Scholar] [CrossRef] [PubMed]
- Calatrava-Requena, J. Mango: Economics and International Trade. In Mango International Enciclopedia; Sultanate Of Oman Royal Court Affairs: Muscat, Oman, 2014; Chapter 2. [Google Scholar]
- Labaky, P.; Grosmaire, L.; Ricci, J.; Wisniewski, C.; Louka, N.; Dahdouh, L. Innovative non-destructive sorting technique for juicy stone fruits: Textural properties of fresh mangos and purees. Food Bioprod. Process. 2020, 123, 188–198. [Google Scholar] [CrossRef]
- Huang, W.; Wang, Y.; Wang, Y.; Zhang, X. Non-destructive grading technique for mangoes using a flexible impedance sensing system and YOLOv5s_CBAM. J. Food Process Eng. 2024, 47, e14631. [Google Scholar] [CrossRef]
- Phey Zhen, O.; Hashim, N.; Maringgal, B. Quality evaluation of mango using non-destructive approaches: A review. J. Agric. Food Eng. 2020, 1, 1–8. [Google Scholar] [CrossRef]
- Mishra, P.; Passos, D. Deep chemometrics: Validation and transfer of a global deep near-infrared fruit model to use it on a new portable instrument. J. Chemom. 2021, 35, e3367. [Google Scholar] [CrossRef]
- Walsh, J.; Neupane, A.; Li, M. Evaluation of 1D convolutional neural network in estimation of mango dry matter content. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 311, 124003. [Google Scholar] [CrossRef]
- Reich, G. Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 2005, 57, 1109–1143. [Google Scholar] [CrossRef] [PubMed]
- Gowen, A.A.; O’Donnell, C.P.; Cullen, P.J.; Downey, G.; Frias, J.M. Hyperspectral imaging—An emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 2007, 18, 590–598. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Cen, H.; He, Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 2007, 18, 72–83. [Google Scholar] [CrossRef]
- Lu, R.; Peng, Y. Hyperspectral Scattering for assessing Peach Fruit Firmness. Biosyst. Eng. 2006, 93, 161–171. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, W.; Li, J.; Zhao, C.; Fan, S.; Wu, J.; Liu, C. Principles, developments and applications of computer vision for external quality inspection of fruits and vegetables: A review. Food Res. Int. 2014, 62, 326–343. [Google Scholar] [CrossRef]
- Saranwong, S.; Sornsrivichai, J.; Kawano, S. Prediction of ripe-stage eating quality of mango fruit from its harvest quality measured nondestructively by near infrared spectroscopy. Postharvest Biol. Technol. 2004, 31, 137–145. [Google Scholar] [CrossRef]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Velásquez, C.; Aleixos, N.; Gomez-Sanchis, J.; Cubero, S.; Prieto, F.; Blasco, J. Enhancing anthracnose detection in mango at early stages using hyperspectral imaging and machine learning. Postharvest Biol. Technol. 2024, 209, 112732. [Google Scholar] [CrossRef]
- Jha, S.N.; Narsaiah, K.; Sharma, A.D.; Singh, M.; Bansal, S.; Kumar, R. Quality parameters of mango and potential of non-destructive techniques for their measurement—A review. J. Food Sci. Technol. 2010, 47, 1–14. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ferentinos, K.P. Deep learning models for plant disease detection and diagnosis. Comput. Electron. Agric. 2018, 145, 311–318. [Google Scholar] [CrossRef]
- Brahimi, M.; Boukhalfa, K.; Moussaoui, A. Deep Learning for Tomato Diseases: Classification and Symptoms Visualization. Appl. Artif. Intell. 2017, 31, 299–315. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929v2. [Google Scholar]
- Kumar, T.; R, S. Vision Transformer based System for Fruit Quality Evaluation. preprint 2022. [Google Scholar]
- Rungpichayapichet, P.; Chaiyarattanachote, N.; Khuwijitjaru, P.; Nakagawa, K.; Nagle, M.; Müller, J.; Mahayothee, B. Comparison of near-infrared spectroscopy and hyperspectral imaging for internal quality determination of ‘Nam Dok Mai’ mango during ripening. J. Food Meas. Charact. 2023, 17, 1501–1514. [Google Scholar] [CrossRef]
- Praiphui, A.; Kielar, F. Comparing the performance of miniaturized near-infrared spectrometers in the evaluation of mango quality. J. Food Meas. Charact. 2023, 17, 5886–5902. [Google Scholar] [CrossRef]
- Praiphui, A.; Lopin, K.V.; Kielar, F. Construction and evaluation of a low cost NIR-spectrometer for the determination of mango quality parameters. J. Food Meas. Charact. 2023, 17, 4125–4139. [Google Scholar] [CrossRef]
- Mishra, P.; Rutledge, D.N.; Roger, J.-M.; Wali, K.; Khan, H.A. Chemometric pre-processing can negatively affect the performance of near-infrared spectroscopy models for fruit quality prediction. Talanta 2021, 229, 122303. [Google Scholar] [CrossRef]
- Munawar, A.A.; Hizir; Erika, C.; Pawelzik, E. Fast and simultaneous prediction of inner quality parameters on intact mangos by near infrared spectroscopy: Impact of spectra pre-processing on prediction accuracy. Future Foods 2024, 10, 100463. [Google Scholar] [CrossRef]
- Raghavendra, A.; Guru, D.S.; Rao, M.K. Mango internal defect detection based on optimal wavelength selection method using NIR spectroscopy. Artif. Intell. Agric. 2021, 5, 43–51. [Google Scholar] [CrossRef]
- Mishra, P.; Passos, D. A synergistic use of chemometrics and deep learning improved the predictive performance of near-infrared spectroscopy models for dry matter prediction in mango fruit. Chemom. Intell. Lab. Syst. 2021, 212, 104287. [Google Scholar] [CrossRef]
- Hayati, R.; Munawar, A.A.; Fachruddin, F. Enhanced near infrared spectral data to improve prediction accuracy in determining quality parameters of intact mango. Data Brief 2020, 30, 105571. [Google Scholar] [CrossRef]
- Elsayed, S.; Gala, H.; Abd El-baki, M.S.; Maher, M.; Elbeltagi, A.; Salem, A.; Elwakeel, A.E.; Elsherbiny, O.; Abd El-Fattah, N.G. Hyperspectral technology and machine learning models to estimate the fruit quality parameters of mango and strawberry crops. PLoS ONE 2025, 20, e0313397. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Sørensen, K.M.; Mongi, R.J.; Ndabikunze, B.K.; Chove, B.E.; Sun, D.-W.; Engelsen, S.B. A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA). LWT 2019, 112, 108214. [Google Scholar] [CrossRef]
- Sun, X.; Subedi, P.; Walsh, K.B. Achieving robustness to temperature change of a NIRS-PLSR model for intact mango fruit dry matter content. Postharvest Biol. Technol. 2020, 162, 111117. [Google Scholar] [CrossRef]
- Sharma, S.; Sirisomboon, P.; Pornchaloempong, P. Application of a Vis-NIR Spectroscopic Technique to Measure the Total Soluble Solids Content of Intact Mangoes in Motion on a Belt Conveyor. Hortic. J. 2020, 89, 545–552. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Sun, D.-W. Combined hot-air and microwave-vacuum drying for improving drying uniformity of mango slices based on hyperspectral imaging visualisation of moisture content distribution. Biosyst. Eng. 2017, 156, 108–119. [Google Scholar] [CrossRef]
- Kiran, P.R.; Jadhav, P.; Avinash, G.; Aradwad, P.; Tv, A.; Bhardwaj, R.; Parray, R.A. Detection and classification of spongy tissue disorder in mango fruit during ripening by using visible-near infrared spectroscopy and multivariate analysis. J. Near Infrared Spectrosc. 2024, 32, 140–151. [Google Scholar] [CrossRef]
- Tian, P.; Meng, Q.; Wu, Z.; Lin, J.; Huang, X.; Zhu, H.; Zhou, X.; Qiu, Z.; Huang, Y.; Li, Y. Detection of mango soluble solid content using hyperspectral imaging technology. Infrared Phys. Technol. 2023, 129, 104576. [Google Scholar] [CrossRef]
- Li, B.; Yao, C.; Su, C.-t.; Zou, J.-p.; Wu, J.; Chen, N.; Liu, Y.-d. Detection of skin defects on mangoes based on hyperspectral imaging combined with band ratio and improved Otsu method. Microchem. J. 2024, 197, 109718. [Google Scholar] [CrossRef]
- Eizo, T.; Syuya, N.; Rie, H.; Hiroyuki, H.; Masami, U. Development of a nondestructive measurement system for mango fruit using near infrared spectroscopy. Eng. Appl. Sci. Res. 2017, 44, 189–192. (In English) [Google Scholar] [CrossRef]
- Funsueb, S.; Thanavanich, C.; Theanjumpol, P.; Kittiwachana, S. Development of new fruit quality indices through aggregation of fruit quality parameters and their predictions using near-infrared spectroscopy. Postharvest Biol. Technol. 2023, 204, 112438. [Google Scholar] [CrossRef]
- Phuangsombut, K.; Phuangsombut, A.; Terdwongworakul, A. Empirical approach to improve the prediction of soluble solids content in mango using near-infrared spectroscopy. Int. Food Res. J. 2020, 27, 217–223. (In English) [Google Scholar]
- Kusumiyati; Munawar, A.A.; Suhandy, D. Fast, simultaneous and contactless assessment of intact mango fruit by means of near infrared spectroscopy. AIMS Agric. Food 2021, 6, 172–184. [Google Scholar] [CrossRef]
- Xu, D.; Wang, H.; Ji, H.; Zhang, X.; Wang, Y.; Zhang, Z.; Zheng, H. Hyperspectral Imaging for Evaluating Impact Damage to Mango According to Changes in Quality Attributes. Sensors 2018, 18, 3920. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E.; El Harchioui, N. Improved prediction of ‘Kent’ mango firmness during ripening by near-infrared spectroscopy supported by interval partial least square regression. Infrared Phys. Technol. 2020, 110, 103459. [Google Scholar] [CrossRef]
- Cortés, V.; Blanes, C.; Blasco, J.; Ortíz, C.; Aleixos, N.; Mellado, M.; Cubero, S.; Talens, P. Integration of simultaneous tactile sensing and visible and near-infrared reflectance spectroscopy in a robot gripper for mango quality assessment. Biosyst. Eng. 2017, 162, 112–123. [Google Scholar] [CrossRef]
- Anderson, N.T.; Subedi, P.P.; Walsh, K.B. Manipulation of mango fruit dry matter content to improve eating quality. Sci. Hortic. 2017, 226, 316–321. [Google Scholar] [CrossRef]
- Munawar, A.A.; Kusumiyati; Wahyuni, D. Near infrared spectroscopic data for rapid and simultaneous prediction of quality attributes in intact mango fruits. Data Brief 2019, 27, 104789. [Google Scholar] [CrossRef]
- Aozora, W.D.; Tantinantrakun, A.; Thompson, A.K.; Teerachaichayut, S. Near-infrared hyperspectral imaging for predicting the quality of SO2 pre-treated and dehydrated mango. J. Food Sci. Technol. 2025, 62, 1580–1589. [Google Scholar] [CrossRef] [PubMed]
- Polinar, Y.Q.; Yaptenco, K.F.; Peralta, E.K.; Agravante, J.U. Near-infrared spectroscopy for non-destructive prediction of maturity and eating quality of ‘Carabao’ mango (Mangifera indica L.) fruit. Agric. Eng. Int. CIGR J. 2019, 21, 209–219. (In English) [Google Scholar]
- Lakade, A.J.; Venkataraman, V.; Ramasamy, R.; Shetty, P.H. NIR spectroscopic method for the detection of calcium carbide in artificial ripening of mangoes (Magnifera indica). Food Addit. Contam. Part A 2019, 36, 989–995. (In English) [Google Scholar] [CrossRef] [PubMed]
- Rungpichayapichet, P.; Mahayothee, B.; Khuwijitjaru, P.; Nagle, M.; Müller, J. Non-destructive determination of β-carotene content in mango by near-infrared spectroscopy compared with colorimetric measurements. J. Food Compos. Anal. 2015, 38, 32–41. [Google Scholar] [CrossRef]
- Makino, Y.; Isami, A.; Suhara, T.; Goto, K.; Oshita, S.; Kawagoe, Y.; Kuroki, S.; Purwanto, Y.A.; Ahmad, U.; Sutrisno. Nondestructive Evaluation of Anthocyanin Concentration and Soluble Solid Content at the Vine and Blossom Ends of Green Mature Mangoes during Storage by Hyperspectral Spectroscopy. Food Sci. Technol. Res. 2015, 21, 59–65. [Google Scholar] [CrossRef]
- O’Brien, C.; Falagán, N.; Kourmpetli, S.; Landahl, S.; Terry, L.A.; Alamar, M.C. Non-destructive methods for mango ripening prediction: Visible and near-infrared spectroscopy (visNIRS) and laser Doppler vibrometry (LDV). Postharvest Biol. Technol. 2024, 212, 112878. [Google Scholar] [CrossRef]
- Pornchaloempong, P.; Sharma, S.; Phanomsophon, T.; Srisawat, K.; Inta, W.; Sirisomboon, P.; Prinyawiwatkul, W.; Nakawajana, N.; Lapcharoensuk, R.; Teerachaichayut, S. Non-Destructive Quality Evaluation of Tropical Fruit (Mango and Mangosteen) Purée Using Near-Infrared Spectroscopy Combined with Partial Least Squares Regression. Agriculture 2022, 12, 2060. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Nagle, M.; Yuwanbun, P.; Khuwijitjaru, P.; Mahayothee, B.; Müller, J. Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosyst. Eng. 2017, 159, 109–120. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Sun, D.-W. Prediction of moisture content uniformity of microwave-vacuum dried mangoes as affected by different shapes using NIR hyperspectral imaging. Innov. Food Sci. Emerg. Technol. 2016, 33, 348–356. [Google Scholar] [CrossRef]
- Ulya, M.; Chamidah, N.; Saifudin, T. Prediction of pH and Total Soluble Solids Content of Mango Using Biresponse Multipredictor Local Polynomial Nonparametric Regression. Commun. Math. Biol. Neurosci. 2023, 2023, 49. [Google Scholar] [CrossRef]
- Nordey, T.; Davrieux, F.; Léchaudel, M. Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol. Technol. 2019, 153, 52–60. [Google Scholar] [CrossRef]
- Castro, W.; Mejía, J.; De-la-Torre, M.; Acevedo-Juárez, B.; Tech, A.R.B.; Avila-George, H. Radial grid reflectance correction for hyperspectral images of fruits with rounded surfaces. Comput. Electron. Agric. 2023, 213, 108179. [Google Scholar] [CrossRef]
- Marques, E.J.N.; de Freitas, S.T.; Pimentel, M.F.; Pasquini, C. Rapid and non-destructive determination of quality parameters in the ‘Tommy Atkins’ mango using a novel handheld near infrared spectrometer. Food Chem. 2016, 197, 1207–1214. [Google Scholar] [CrossRef]
- Wokadala, O.C.; Human, C.; Willemse, S.; Emmambux, N.M. Rapid non-destructive moisture content monitoring using a handheld portable Vis–NIR spectrophotometer during solar drying of mangoes (Mangifera indica L.). J. Food Meas. Charact. 2020, 14, 790–798. [Google Scholar] [CrossRef]
- Nordey, T.; Joas, J.; Davrieux, F.; Chillet, M.; Léchaudel, M. Robust NIRS models for non-destructive prediction of mango internal quality. Sci. Hortic. 2017, 216, 51–57. [Google Scholar] [CrossRef]
- Rungpichayapichet, P.; Mahayothee, B.; Nagle, M.; Khuwijitjaru, P.; Müller, J. Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol. Technol. 2016, 111, 31–40. [Google Scholar] [CrossRef]
- Mishra, P.; Woltering, E. Semi-supervised robust models for predicting dry matter in mango fruit with near-infrared spectroscopy. Postharvest Biol. Technol. 2023, 200, 112335. [Google Scholar] [CrossRef]
- Khatun, M.S.; Masum, A.A.; Islam, M.H.; Ashik-E-Rabbani, M.; Rahman, A. Short wave-near infrared spectroscopy for predicting soluble solid content in intact mango with variable selection algorithms and chemometric model. J. Food Compos. Anal. 2024, 136, 106745. [Google Scholar] [CrossRef]
- Munawar, A.A.; Kusumiyati; Hafidh; Hayati, R.; Wahyuni, D. The Application of Near Infrared Technology as a Rapid and Non-Destructive Method to Determine Vitamin C Content of Intact Mango Fruit. INMATEH—Agric. Eng. 2019, 58, 285–292. (In English) [Google Scholar] [CrossRef]
- Sun, Y.; Liang, D.; Zhou, D.; Wang, N.; Cui, J.; Jiang, J.; Zhang, X.; Hu, Y. Using VIS-NIR spectroscopy and multi-omics analysis to compare mango anthracnose under natural and inoculated conditions. Food Res. Int. 2025, 211, 116492. [Google Scholar] [CrossRef]
- Pu, Y.-Y.; Sun, D.-W. Vis–NIR hyperspectral imaging in visualizing moisture distribution of mango slices during microwave-vacuum drying. Food Chem. 2015, 188, 271–278. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jang, X.; Li, B.; Liu, Y. Wavelength selection method for near-infrared spectroscopy based on standard-sample calibration transfer of mango and apple. Comput. Electron. Agric. 2021, 190, 106448. [Google Scholar] [CrossRef]
- Chen, X.; Xue, J.; Chen, X.; Zhao, X.; Ali, S.; Huang, G. Gaussian process regression for prediction and confidence analysis of fruit traits by near-infrared spectroscopy. Food Qual. Saf. 2023, 7, fyac068. [Google Scholar] [CrossRef]
- Lamptey, F.P.; Teye, E.; Abano, E.E.; Amuah, C.L.Y. Application of handheld NIR spectrometer for simultaneous identification and quantification of quality parameters in intact mango fruits. Smart Agric. Technol. 2023, 6, 100357. [Google Scholar] [CrossRef]
- Kang, Z.; Geng, J.; Fan, R.; Hu, Y.; Sun, J.; Wu, Y.; Xu, L.; Liu, C. Nondestructive Testing Model of Mango Dry Matter Based on Fluorescence Hyperspectral Imaging Technology. Agriculture 2022, 12, 1337. [Google Scholar] [CrossRef]
- Parrenin, L.; Danjou, C.; Agard, B.; Marchesini, G.; Barbosa, F. A decision support tool to analyze the properties of wheat, cocoa beans and mangoes from their NIR spectra. J. Food Sci. 2024, 89, 5674–5688. [Google Scholar] [CrossRef]
- Seehanam, P.; Sonthiya, K.; Maniwara, P.; Theanjumpol, P.; Ruangwong, O.; Nakano, K.; Ohashi, S.; Kramchote, S.; Suwor, P. Ability of near infrared spectroscopy to detect anthracnose disease early in mango after harvest. Hortic. Environ. Biotechnol. 2024, 65, 581–591. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B.; Subedi, P.P.; Hayes, C.H. Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. Postharvest Biol. Technol. 2020, 168, 111202. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B.; Flynn, J.R.; Walsh, J.P. Achieving robustness across season, location and cultivar for a NIRS model for intact mango fruit dry matter content. II. Local PLS and nonlinear models. Postharvest Biol. Technol. 2021, 171, 111358. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Makino, Y. Hyperspectral imaging coupled with machine learning for classification of anthracnose infection on mango fruit. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 309, 123825. [Google Scholar] [CrossRef]
- Panchbhai, K.G.; Lanjewar, M.G. Identification of mango varieties with vitamin C and titratable acidity using stacking generalization from NIR spectra. J. Food Meas. Charact. 2025, 19, 4257–4277. [Google Scholar] [CrossRef]
- Wang, A.; Lu, R.; Xie, L. Improved algorithm for estimating the optical properties of food products using spatially-resolved diffuse reflectance. J. Food Eng. 2017, 212, 1–11. [Google Scholar] [CrossRef]
- Seehanam, P.; Chaiya, P.; Theanjumpol, P.; Tiyayon, C.; Ruangwong, O.; Pankasemsuk, T.; Nakano, K.; Ohashi, S.; Maniwara, P. Internal disorder evaluation of ‘Namdokmai Sithong’ mango by near infrared spectroscopy. Hortic. Environ. Biotechnol. 2022, 63, 665–675. [Google Scholar] [CrossRef]
- Sohaib Ali Shah, S.; Zeb, A.; Qureshi, W.S.; Malik, A.U.; Tiwana, M.; Walsh, K.; Amin, M.; Alasmary, W.; Alanazi, E. Mango maturity classification instead of maturity index estimation: A new approach towards handheld NIR spectroscopy. Infrared Phys. Technol. 2021, 115, 103639. [Google Scholar] [CrossRef]
- Castro, W.; Tene, B.; Castro, J.; Guivin, A.; Ruesta, N.; Avila-George, H. Mango varietal discrimination using hyperspectral imaging and machine learning. Neural Comput. Appl. 2024, 36, 18693–18703. [Google Scholar] [CrossRef]
- Munawar, A.A.; Zulfahrizal; Meilina, H.; Pawelzik, E. Near infrared spectroscopy as a fast and non-destructive technique for total acidity prediction of intact mango: Comparison among regression approaches. Comput. Electron. Agric. 2022, 193, 106657. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Fan, H. Neural Network-Based Analysis and Its Application to Spectroscopy for Mango. Appl. Sci. 2024, 14, 2402. [Google Scholar] [CrossRef]
- Velásquez, C.; Prieto, F.; Palou, L.; Cubero, S.; Blasco, J.; Aleixos, N. New model for the automatic detection of anthracnose in mango fruits based on Vis/NIR hyperspectral imaging and discriminant analysis. J. Food Meas. Charact. 2024, 18, 560–570. [Google Scholar] [CrossRef]
- Gabriëls, S.H.E.J.; Mishra, P.; Mensink, M.G.J.; Spoelstra, P.; Woltering, E.J. Non-destructive measurement of internal browning in mangoes using visible and near-infrared spectroscopy supported by artificial neural network analysis. Postharvest Biol. Technol. 2020, 166, 111206. [Google Scholar] [CrossRef]
- Mogollón, R.; Contreras, C.; da Silva Neta, M.L.; Marques, E.J.N.; Zoffoli, J.P.; de Freitas, S.T. Non-destructive prediction and detection of internal physiological disorders in ‘Keitt’ mango using a hand-held Vis-NIR spectrometer. Postharvest Biol. Technol. 2020, 167, 111251. [Google Scholar] [CrossRef]
- Ding, F.; Zuo, C.; García-Martín, J.F.; Ge, Y.; Tu, K.; Peng, J.; Xiao, H.; Lan, W.; Pan, L. Non-invasive prediction of mango quality using near-infrared spectroscopy: Assessment on spectral interferences of different packaging materials. J. Food Eng. 2023, 357, 111653. [Google Scholar] [CrossRef]
- Nguyen, C.N.; Phan, Q.T.; Tran, N.T.; Fukuzawa, M.; Nguyen, P.L.; Nguyen, C.N. Precise Sweetness Grading of Mangoes (Mangifera indica L.) Based on Random Forest Technique With Low-Cost Multispectral Sensors. IEEE Access 2020, 8, 212371–212382. [Google Scholar] [CrossRef]
- Kanwal, N.; Kämper, W.; Farrar, M.B.; Tootoonchy, M.; Lynch, C.; Nichols, J.; Wallace, H.M.; Trueman, S.J.; Bai, S.H. Rapid assessment of lychee and mango fruit quality using hyperspectral imaging. LWT 2025, 224, 117833. [Google Scholar] [CrossRef]
- Jimena, G.M.; De Ketelaere, B.; Saeys, W. Shared subspace learning via partial Tucker decomposition for hyperspectral image classification. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2025, 343, 126584. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qin, Y.; Tian, R.; Bai, X.; Liu, J. Similarity measure method of near-infrared spectrum combined with multi-attribute information. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2024, 322, 124783. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Spectral filter design based on in-field hyperspectral imaging and machine learning for mango ripeness estimation. Comput. Electron. Agric. 2019, 164, 104890. [Google Scholar] [CrossRef]
- Sohaib Ali Shah, S.; Zeb, A.; Qureshi, W.S.; Arslan, M.; Ullah Malik, A.; Alasmary, W.; Alanazi, E. Towards fruit maturity estimation using NIR spectroscopy. Infrared Phys. Technol. 2020, 111, 103479. [Google Scholar] [CrossRef]
- Khumaidi, A.; Purwanto, Y.A.; Sukoco, H.; Wijaya, S.H. Using Fuzzy Logic to Increase Accuracy in Mango Maturity Index Classification: Approach for Developing a Portable Near-Infrared Spectroscopy Device. Sensors 2022, 22, 9704. [Google Scholar] [CrossRef]
- Maraphum, K.; Ounkaew, A.; Kasemsiri, P.; Hiziroglu, S.; Posom, J. Wavelengths selection based on genetic algorithm (GA) and successive projections algorithms (SPA) combine with PLS regression for determination the soluble solids content in Nam-DokMai mangoes based on near infrared spectroscopy. Eng. Appl. Sci. Res. 2022, 49, 119–126. [Google Scholar] [CrossRef]
- Yang, J.; Luo, X.; Zhang, X.; Passos, D.; Xie, L.; Rao, X.; Xu, H.; Ting, K.C.; Lin, T.; Ying, Y. A deep learning approach to improving spectral analysis of fruit quality under interseason variation. Food Control 2022, 140, 109108. [Google Scholar] [CrossRef]
- Wohlers, M.; McGlone, A.; Frank, E.; Holmes, G. Augmenting NIR Spectra in deep regression to improve calibration. Chemom. Intell. Lab. Syst. 2023, 240, 104924. [Google Scholar] [CrossRef]
- Yao, C.; Su, C.-t.; Zou, J.-p.; Ou-yang, S.-t.; Wu, J.; Chen, N.; de Liu, Y.; Li, B. Detection storage time of mangoes after mild bruise based on hyperspectral imaging combined with deep learning. J. Chemom. 2024, 38, e3559. [Google Scholar] [CrossRef]
- Gutiérrez, S.; Wendel, A.; Underwood, J. Ground based hyperspectral imaging for extensive mango yield estimation. Comput. Electron. Agric. 2019, 157, 126–135. [Google Scholar] [CrossRef]
- Wendel, A.; Underwood, J.; Walsh, K. Maturity estimation of mangoes using hyperspectral imaging from a ground based mobile platform. Comput. Electron. Agric. 2018, 155, 298–313. [Google Scholar] [CrossRef]
- Ding, F.; García-Martín, J.F.; Zhang, L.; Xu, Z.; Lv, D.; Chen, X.; Tu, K.; Lan, W.; Pan, L. Prediction of quality traits in packaged mango by NIR spectroscopy. Food Res. Int. 2025, 205, 115963. [Google Scholar] [CrossRef]
- Wang, X.; Chen, X.; Gong, R.; Wang, T.; Huang, Y. Improving fruit variety classification using near-infrared spectroscopy and deep learning techniques. J. Food Compos. Anal. 2025, 140, 107243. [Google Scholar] [CrossRef]
- Dong, Z.; Wang, J.; Sun, P.; Ran, W.; Li, Y. Mango variety classification based on convolutional neural network with attention mechanism and near-infrared spectroscopy. J. Food Meas. Charact. 2024, 18, 2237–2247. [Google Scholar] [CrossRef]
- Li, Z.; Wang, D.; Zhu, T.; Tao, Y.; Ni, C. Review of deep learning-based methods for non-destructive evaluation of agricultural products. Biosyst. Eng. 2024, 245, 56–83. [Google Scholar] [CrossRef]
Mango cv | Sample Info | NIRS/ HSI | Spectral Range (nm) | Algorithm Used | Quality Trait | Accuracy Achieved | Ref. |
---|---|---|---|---|---|---|---|
Bolibo | Five batches (each split into three subsamples of 500 g) | VIS-NIR | 400–2500 | PCA, ASCA | Drying effect on chlorophyll, carotenoids, water, and sugar | VIS-NIR: batch effect 47.5%, dryer effect 23.6%; NIR: dryer effect 38.3%, batch 29.4% (based on ASCA significance) | [31] |
Calypso, Honey Gold, Keitt | 828 samples (2206 spectra from 15 populations at various temperatures) | NIRS | 729–975 | PLSR + EPO, GLSW, bias correction, global modelling, repeatability file | Dry matter content (DMC) | Best: RMSEP = 1.05% (EPO), R2 = 0.82; Original model: RMSEP = 1.43%, R2 = 0.68 | [32] |
Nam Dok Mai Sithong | 182 | VIS-NIR | 600–1000 | PLSR (with MAS + baseline offset) | Total soluble solids (TSS) | R = 0.80 (calibration), r = 0.74 (prediction), RMSEC = 0.690%, RMSEP = 0.765% | [33] |
Tommy Atkins | Not specified | HSI | 880–1720 | PLSR (with SNV + mean centring) | Moisture content (MC) and drying uniformity | R2 = 0.995; RMSEC = 1.881%; RMSEP = 1.408% | [34] |
Nam Dok Mai | 207 (for DM); up to 223 for firmness | NIRS | 740–2500 | PLSR | DM, TSS, titratable acidity (TA), pH, firmness | Best results: SCiO: R2cv = 0.92 (DM), 0.84 (TSS), 0.74 (pH) Linksquare: R2c = 0.91 (TSS, TA), 0.93 (pH), 0.81 (DM) | [23] |
Nam Dok Mai (Si Thong) | 188 | NIRS + HSI | NIRS: 800–2500 HSI: 450–998 | PLSR, MLR | FI, TSS, TA, pH, β-carotene, RPI | NIRS-PLSR: FI: R2V = 0.84, RPD = 2.57 TSS: R2V = 0.85, RPD = 2.64 TA: R2V = 0.89, RPD = 3.07 pH: R2V = 0.88, RPD = 2.99 β-carotene: R2V = 0.86, RPD = 2.65 RPI: R2V = 0.90, RPD = 3.16 | [22] |
Nam Dok Mai | 600 total (two periods) | NIRS | 640–1050 | PLSR (with SNV, SG deriv.) | TSS, TA, pH, DM, firmness | TSS: R2c = 0.84, R2cv = 0.76, R2p = 0.81, RMSEP = 1.07° Brix TA: R2c = 0.92, R2cv = 0.90, R2p = 0.84, RMSEP = 0.36% pH: R2p = 0.80, RMSEP = 0.45 DM: R2p = 0.66 Firmness: R2p = 0.09 | [24] |
Alphonso | 708 for training/validation + 90 test | VIS-NIRS | 350–2500; best: 670–970 | PCA + SIMCA | Spongy tissue (detection/classification) | SIMCA binary classification (healthy vs. spongy): 900–970 nm: 96.7% overall (100% healthy, 93.3% affected) 670–750 nm: 94.4% overall (97.8% healthy, 91.1% affected) | [35] |
Guifeimang | 134 | HSI (VIS-NIR) | 400–1000 | SNV + CARS + PLSR | Soluble solid content (SSC) | Prediction: R2p = 0.90, RMSEP = 0.616, using 11.3% of bands (37 wavelengths); Calibration: R2c = 0.902, RMSEC = 0.486 | [36] |
Not specified (from Hainan, China) | 270 (four defect types) | HSI | 450–1000 | PCA + band ratio (Q744/942) + I-Otsu + linear stretch | Skin defect detection (black spot, scab, bruised) | Overall accuracy: 96.67% (No false positives; nine false negatives) | [37] |
Irwin (Japan) | 122 fruits/576 spectra | NIRS | 570–1030 (used: 600–1000) | PLSR (second derivative + CV) | Soluble solid content (SSC), skin colour | SSC: R2cv = 0.76, SECV = 0.70, RPD = 2.1 Skin Colour: R2cv = 0.78, SECV = 2.97, RPD = 2.1 | [38] |
Nam Dok Mai Si Thong | 294 (99 + 98 + 97 @ DAFS) | NIRS | 700–1100 | PLSR + SNV/derivatives + PCA + FQI modelling | Fruit quality Indices (FQI1, FQI2) combining TSS, TA, DM, pH, firmness | FQI1: Q2 = 0.84, RMSEP = 9.39 FQI2: Q2 = 0.85, RMSEP = 8.38 | [39] |
Nam Dokmai | 100 (200 spectra) | NIRS | 600–1100 | PLSR + SNV + empirical correction (ΔA method) | Soluble solids content (SSC) | Flesh model: r = 0.88, RMSEP = 1.27° Brix Unpeeled model: r = 0.84, RMSEP = 1.50° Brix Empirical-corrected model: r = 0.87, RMSEP = 1.36° Brix | [40] |
Kent | 58 | NIRS | 1000–2500 | PLSR + MSC + BLC (enhanced spectra) | Total acidity (TA), vitamin C | TA: R2 = 0.976, RMSE = 19.35, RPD = 6.77 Vit C: R2 = 0.958, RMSE = 0.417, RPD = 3.14 (MSC + BLC enhanced) | [29] |
Cengkir, Kweni, Kent, Palmer | 186 | NIRS | 1000–2500 | PLSR + EMSC (best), SNV, MAS | TSS (Brix), vitamin C (mg/100 g FM) | TSS: r = 0.86, RMSEP = 1.58, RPD = 2.25, RER = 9.72 Vit C: r = 0.86, RMSEP = 6.79, RPD = 2.19, RER = 8.87 (prediction dataset, EMSC model) | [41] |
Not specified (from Tianjin, China) | 240 (60 mangoes × three heights + control) | HSI | 900–1700 | PLSR + SNV + CARS | Firmness, TSS, TA, chroma (∆b*) and damage degree | Firmness: R2 = 0.84, RMSEP = 31.6 g TSS: R2 = 0.9, RMSEP = 0.49° Brix TA: R2 = 0.65, RMSEP = 0.1% Chroma: R2 = 0.94, RMSEP = 0.96 | [42] |
Kent | 50 (× five days = 250 total) | VIS-NIRS | 700–1130 | iPLSR, PLSR + MSC + SG | Firmness during ripening | iPLSR: R2p = 0.75, RMSEP = 5.92 Hz2g2/3 PLSR: R2p = 0.67, RMSEP = 6.88 Hz2g2/3 | [43] |
Tommy Atkins | 275 | VIS-NIRS | 600–1750 | PLSR with sensor fusion | Ripening index (RPI) (based on TSS, TA, Fmax) | R2p = 0.832, RMSEP = 0.520 (using full sensor fusion: two probes + two accelerometers) | [44] |
Alphonso | 76 (43 defective, 33 healthy) | NIRS | 673–1900 (analysed: 673–1100) | FLD + Fisher’s ratio + Euclidean distance (feature selection) | Internal defect detection (spongy tissue) | 84.5% (at 723.35 nm using Fisher’s criterion); 83.71% (at 722.88–723.82 nm fusion) | [27] |
Calypso™ | >1000 samples across treatments/seasons | NIRS | 729–975 (used for PLSR) | PLSR (Savitzky–Golay + MSC) | Dry matter content (DM), Brix | DM: R2p = 0.82, RMSEP = 0.52% DM-Brix correlation: R2 = 0.72–0.90 across years | [45] |
Kweni, Cengkir, Palmer, Kent | 186 | FT-NIRS | 1000–2500 | PLSR + MSC, DT | Vitamin C, SSC, total acidity (TA) | Vitamin C: r = 0.86, RPD = 2.00 (with MSC) Raw data: r = 0.82, RPD = 1.75 | [46] |
Kaew Kamin (Thailand) | 105 | NIR-HSI | 935–1720 | PLSR + SG smoothing/original spectrum | TSS and SO2 in dehydrated mango | TSS: R2p = 0.82, RMSEP = 2.42% SO2: R2p = 0.83, RMSEP = 56.40 mg/kg | [47] |
Carabao | 1200 (green and ripe) | NIRS | 700–990 | PLSR, PCA-LDA + MSC/SNV | Maturity (DAFI), dry matter (DM), TSS, eating quality (OA) | DM: R2 = 0.774, RMSECV = 1.091% TSS (ripe): R2 = 0.839, RMSECV = 1.282%, RPD = 2.53 DAFI: R2 = 0.946, RMSECV = 2.229 days OA classification: 72–70% accuracy (cal/val) | [48] |
Banganpalli | Not explicitly stated (multiple sets A-E) | NIRS | 600–1100 | PCA, PLS, SPA (with ICP-MS validation) | Detection of artificial ripening via CaC2 (arsenic marker) | PLS: R2 = 0.96 (0–20 ng/g As), 0.90 (51–280 ng/g); RMSE = 0.89–41.65 ng/g | [49] |
Nam Dokmai (Si Thong) | 120 | NIRS | 700–2500 | PLSR, MLR + SNV, MSC, SG, SG00 | β-carotene content in edible part | Long-wave PLSR: R2 = 0.879, SEP = 11.6 RE/100 g EP Short-wave MLR: R2 = 0.812, SECV = 17.63 RE | [50] |
Irwin (Green Mature) | 23 (14-day storage; sampled at 2-day intervals) | HSI | 380–1000 | PLSR + second derivative (Savitzky–Golay) | Anthocyanin in skin, SSC in flesh | Anthocyanin: R = 0.88, RMSECV = 2.96 mg/100 g f.w. SSC: R = 0.73, RMSECV = 0.98% | [51] |
Kent, Keitt | 450+ (Kent and Keitt) | VIS-NIRS | 350–2500 | PLSR (MSC + SG + derivative), IQI modelling | Internal quality index (IQI), TSS, SIS, firmness, sugar profiles | IQISIS: R2p = 0.729, RMSEP = 0.532, RPD = 1.937 TSS: R2p = 0.639 Firmness: R2p < 0.5 Skin Glucose: R2p = 0.810 | [52] |
Mahachanok | 96 mango purée samples | FT-NIRS | 800–2500 | PLSR + preprocessing (Min–Max, MSC) | TSS and TA in mango purée | TSS: r2 = 0.955, RMSECV = 0.5, RPD = 4.7 TA: r2 = 0.817, RMSECV = 0.048, RPD = 2.2 | [53] |
Nam Dokmai (Si Thong) | 160 fruits × three sections = 4800 spectra | HSI | 450–998 | PLSR, MLR, MSC, SNV, SG, SG00 | Firmness, TSS, TA | Firmness: R2 = 0.81, RMSE = 2.83 N TA: R2 = 0.81, RMSE = 0.24% TSS: R2 = 0.50, RMSE = 2.0% | [54] |
Tommy Atkins | 224 samples (four shapes × seven times × eight replicates) | NIR-HSI | 951–1630 | PLSR, MLR + SNV + second der + mean–centre + RCV | Moisture content (MC) | PLSR (2nd Der + MC): Rp2 = 0.995, RMSEP = 1.121% RCV-MLR (7 wavelengths): Rp2 = 0.993, RMSEP = 1.282% | [55] |
Gadung Klonal 21 | 186 (165 after outlier removal) | NIRS | 900–1650 | Biresponse local polynomial nonparametric regression (SG + PCA) | pH and TSS | Overall: MAPE = 4.476% Training: MAPE = 3.729% Testing: MAPE = 7.466% | [56] |
Cogshall | 92 | NIRS | 600–2300 | PLSR + IPLS (backward/stepwise) + SG derivatives | Shelf life, TSS, TA, dry matter, pulp colour after ripening | TSS: RMSEP = 1.1% DM: RMSEP = 1.26% Shelf life: RMSEP = 1.78 days TA: RMSEP = 0.52% PC: RMSEP = 1.86° | [57] |
Kent | 192 | HSI | 398–1004 | Radial grid correction vs. Lambertian method | Reflectance correction uniformity | Radial grid reduced pixel variation significantly vs. Lambertian (p < 10−126); execution time ~5.53 s (vs. 5.92 s) | [58] |
Tommy Atkins | 250 (calibration), 22 (monitoring) | NIRS | 950–1650 | PLSR + SNV/Jack-Knife/PCA/SG derivatives | SS, DM, TA, PF; ripening monitoring | SS: R2p = 0.92, RMSEP = 0.55° Brix DM: R2p = 0.67, RMSEP = 0.51% TA: R2p = 0.50, RMSEP = 0.17% citric acid PF: R2p = 0.72, RMSEP = 12.2 N | [59] |
Tommy Atkins, Irwin, Chené, Haden, Joa | 240 (168 train, 72 test) | VIS-NIRS | 474–1047 | PLSR + SG Derivative + interval/wavelength optimisation | Moisture content (MC) | R2p = 0.916–0.987 RMSEP = 3.97–6.61% RPD = 3.48–5.37 depending on treatment | [60] |
Cogshall | 250 (from three seasons) | NIRS | 800–2300 | PLSR + Savitzky–Golay + interval PLS (backward/stepwise) | TSS, DM, ATT, flesh colour (hue angle) | TSS: RMSEP = 0.89° Brix DM: RMSEP = 1.23% Colour: RMSEP = 3.16° TA: RMSEP = 5.90 meq/100 g FM | [61] |
Nam Dokmai Si Thong | 592 (three seasons: 2009, 2012, 2013) | NIRS | 700–1100 | PLSR + SG, SG00, SNV, MSC + DA (ripeness classification) | TSS, TA, firmness, RPI, ripeness class | TSS: R2 = 0.90, SEP = 1.2% Firmness: R2 = 0.82, SEP = 4.22 N TA: R2 = 0.74, SEP = 0.38% RPI: R2 = 0.80, SEP = 0.80 | [62] |
Keitt, Kent | 529 (final used); 540 initially | VIS-NIRS | 684–990 | irPLS, irCovSel, PLS (SG derivative) | Dry matter content (DM%) | RMSEP (irCovSel) = 0.89% (on unseen cultivars + new instrument) RMSEP (PLS) = 2.06% (same test set); Bias reduction: 3.40 → 0.05% | [63] |
Harivanga (Bangladesh) | 120 | SW-NIRS | 900–1650 | PLSR + SG second derivative + SPA/RC | Soluble solid content (SSC, %Brix) | SPA-PLS: rp = 0.78, SEP = 0.67%, RPD = 2.12, RER = 8.93 Full model: rp = 0.74, SEP = 0.78%, RPD = 1.78 | [64] |
Kent and Palmer | 62 (various ripenesses) | FT-NIRS | 1000–2500 | PLSR + EMSC, PCR | Vitamin C (mg/100 g FM) | PLSR + EMSC: r = 0.99, RMSE = 1.33, RPD = 5.40 PCR + EMSC: r = 0.92, RMSE = 5.26, RPD = 1.36 | [65] |
Tainung No.1 | 150 (90 Na-I, 60 In-I) | VIS-NIRS | 400–1000 | PLS-DA, PCA + multi-omics correlation | Anthracnose disease (early detection) | In-I (early): 100.00% accuracy Na-I (early): 89.92% accuracy | [66] |
Tommy Atkins | 162 (two batches × 81) | HSI | 400–1000 and 880–1720 | PLSR + RC/SW/CARS for wavelength selection | Moisture content (MC) | Best model (RC-PLS-2): R2p = 0.972, RMSEP = 4.611% | [67] |
Golek (China) | 232 spectra (116 mangoes × 2) | NIRS | 317–1115 nm (common: 350–1115) | PLSR + REA + calibration transfer (SST, SBC, PDS) | Soluble solids content (SSC) | Best Model (SST + REA): RMSEP = 1.243%, R2 = 0.894, 48.91% RMSEP reduction over unoptimised transfer | [68] |
Mango cv | Sample Info | NIRS/ HSI | Spectral Range (nm) | Algorithm Used | Quality Trait | Accuracy Achieved | Ref. |
---|---|---|---|---|---|---|---|
Mango (imported from Brazil and Spain, scanned in Germany) | 58 | NIRS | 1000–2500 | BPSO + PLSR/SVR (with preprocessing and feature selection) | Total acidity (mg/100 g), vitamin C (mg/100 g) | Acidity: R2cv = 0.93, R2test = 0.97, RMSEP = 17.40% Vitamin C: R2cv = 0.66, R2test = 0.46, RMSEP = 0.848% | [72] |
Namdokmai Sithong (Thailand) | 104 | NIRS | 800–2500 | PLS-DA, ANN (with SNV, MSC, derivative) | Early detection of anthracnose | ANN: 98.1% at 24 h. PLS-DA: 95.2% at 24 h. ANN reached 100% by 96 h. PLS-DA: R2test = 0.676 (SNV), RMSE test = 0.280 | [73] |
Multiple cultivars (Calypso™, KP, HG, R2E2, etc.) across four seasons | 4675 | NIRS | 684–990 (optimised) | PLSR (global and cultivar-specific), ANN | Dry matter content (DMC) | ANN: RMSEP = 0.89% (global) PLSR: RMSEP = 0.86% (specific), 1.01% (global) | [74] |
Multiple cultivars (Calypso™, KP, HG, R2E2, etc.) across four seasons | 4675 | NIRS | 684–990 | ANN, GPR, LPLS, LPLS-S, LOVR, MBL, Cubist, SVR, LOCAL, DataRobot, Hone Create | Dry matter content (DMC) | Best Individual: LOVR (RMSEP = 0.881%), Best Ensemble: ANN + GPR + LPLS-S (RMSEP = 0.839%), Global PLSR = 1.014% | [75] |
Keitt, Haden, Local (Ghana) | 198 | NIRS | 740–1070 | SVM, LDA, RF, NN, LDA-SVM for classification; IPLS, Bi-PLS, Si-PLS for regression | TSS (° Brix), pH, variety identification | LDA-SVM: 100% (train), 97.44% (test) classification accuracy; Si-PLS (TSS: R2 = 0.63, RMSEP = 1.83) Si-PLS (pH: R2 = 0.81, RMSEP = 0.49) | [70] |
‘Keitt’, ‘Osteen’ | 200 (100 each) | HSI | 450–980 | MLP, SLP, QDA, RF, XGB; feature selectors: SLP4FS, SLDA, SQDA, PCA4FS, etc. | Early anthracnose detection | MLP (Keitt): Accuracy = 96.1%, Recall = 96.1%, MCC = 0.953 MLP (Osteen): Accuracy = 97.5%, Recall = 97.6%, MCC = 0.971 (within 48 h) | [16] |
Kent | 91 (56 calibration, 35 prediction) | NIRS | 1000–2500 | PLSR + spectra preprocessing (MSC, SNV, OSC, etc.) | TA, SSC | TA: R2pred = 0.72, RMSEP = 52 mg/100 g FM, RPD = 1.9 SSC: R2pred = 0.76, RMSEP = 0.6 Brix, RPD = 1.8 | [26] |
Hard green and ripe mangoes | 11,691 samples (9711 hard green + 1980 ripe) | NIRS | 462–1032 | Gaussian process regression (GPR), PLSR | Dry matter content (DMC) | GPR (ID set): R2 = 0.91, RMSE = 0.69 PLSR (ID set): R2 = 0.88, RMSE = 0.80 GPR + confidence (OOD RMSE reduced by ~62%) | [69] |
Nam Dok Mai Si Thong (Thailand) | 600 spectra (30 fruits × five time points × two sides × two trials) | HSI | 400–1000 | PCA + SVM (Gaussian kernel) | Anthracnose infection severity | SVM accuracy = 99.6%; d0, d2, d6, d8 TPR = 100%, d4 TPR = 98% | [76] |
Succarri | 75 | HSI | 302–1148 | ANN, RF, DT with new and published SRIs | SPAD, TSS, firmness | SPAD: R2 = 0.98–0.99 (test); TSS: R2 = 0.88–0.93; Firmness: R2 = 0.98–0.99; best results by RF and DT, with MSE as low as 0.03 | [30] |
Cengkir, Kweni, Kent, Palmer | 244 (186 + 58 samples) | NIRS | 999.9–2500.2 | DT, LR, SVC, RF, ETC, stacking (RF meta) + PCA + SMOTE + SG, MSC, SNV preprocessing | Vit-C, titratable acidity (TA), mango varieties | Vit-C: 95.0%, TA: 83.0%, Mango Varieties: 100.0%, 5-fold average: 98.0% accuracy using stacking classifier | [77] |
Mango (flesh only, peeled, flat cut) | Five real mangoes (for validation) + 40 simulated samples | HSI | 400–1000 | Step-by-step inverse algorithm + Monte Carlo modelling + M − 1-step baseline method | Optical properties: absorption (ma), reduced scattering (m′s) | Step-by-step: ma = 9.2%, m′s = 5.7% MAPE (real mangoes); M − 1-step: ma = 3.8%, m′s = 3.7% (simulation, 0.1 mm spatial resolution) | [78] |
Namdokmai Sithong | 64 mangoes, 1112 grid areas (792 intact, 230 IBD, 90 BSV) | NIRS | 800–2500 | LDA (SLDA), ANN (non-linear classifier) | Internal breakdown (IBD) and black-streaked vascular tissue (BSV) | LDA: 86.25% (SNV preprocessed) ANN: 91.37% (MSC preprocessed) | [79] |
Samar Bahisht Chaunsa and Sufaid Chaunsa | 240 (120 per cultivar, two seasons) | NIRS | 729–975 nm (selected) | PLSR, MLR, ANN, SVM (for regression); KNN, SVM, LDA, ANN, tree, ensemble (for classification) | Dry matter (DM)/maturity (binary) | Direct Classification: 88.2% (KNN/SVM/Ensemble) Indirect Estimation: 55.9% (MLR) | [80] |
11 mango varieties (e.g., Aeromanis, Jaffro, Irwin, Kent, etc.) | 220 fruits (20 per variety × four slices) | HSI | 400–1700 (Vis-NIR + NIR) | ANN, KNN, LDA + covering array feature selection (CAFS) | Varietal identification | NNFC (ANN): Accuracy = 98.2% (full Vis-NIR), 97.2% (optimised); KNN: up to 91.7%; LDA: 83.1% (NIR), 87.4% (Vis-NIR) | [81] |
Kent | 90 (from Spain, Brazil, Peru) | NIRS | 1000–2500 | PLSR, SVMR, ANN + SNV preprocessing | Total acidity (TA) | ANN: R2cal = 0.985, R2pred = 0.943, RMSEC = 25.29, RMSEP = 28.42 mg/100 g, RPD = 4.02 | [82] |
Tainong and Jin Huang Awn | 95 | NIRS | 1300–2300 | BP-PLS and SA-BP-PLS (Simulated Annealing optimised NN) | Brix (sugar) | SA-BP-PLS: R2 = 0.9854, RMSE = 0.0431 BP-PLS: R2 = 0.906, RMSE = 0.219 | [83] |
Kent | 60 mangoes, 2880 ROIs (252,801 spectra) | HSI | 450–980 | QDA, LDA, PLSDA + dimensionality reduction (Pearson, PCA, Tukey) | Anthracnose disease stage | QDA (full spectrum): 90.9% accuracy, R2 = 0.985, RMSE = 0.043; with only 27 bands: 87.6%; with 20 bands: 79.8% | [84] |
Keitt | 576 mangoes (946 spectra) | VIS-NIRS | 400–1000 | ANN, PLS (regression + classification) | Internal browning | ANN classification: 83.1% (test), 87.1% (calibration), 82.3% (extra test); ANN regression: R2 = 0.57 (vs. PLSR R2 = 0.53) | [85] |
Keitt | 141 mangoes (two harvests, 282 readings) | VIS-NIR | 550–650 (selected range) | Logistic regression, LDA, SVM, functional data model, random forest | Internal physiological disorders (jelly seed and black flesh) | LDA (after storage): Accuracy = 76%, Sensitivity = 78%, Specificity = 73% Logistic (at harvest): Accuracy = 65%, Sensitivity = 78%, Specificity = 49% | [86] |
Keitt | 120 (90 calibration, 30 prediction) | HSI | 475–1100 | SVR, ELM, BPNN + feature reduction (UVE, SPA, RF, CARS, (CARS + RF)-SPA, etc.) | Dry matter (DM) | BPNN with (CARS + RF)-SPA: R2C = 0.971, R2p = 0.966, RMSEC = 0.142, RMSEP = 0.153 | [71] |
Keitt | 120 (T1, T2, T3 stages) | NIR | 900–2500 | LS-SVM + filters (FIR, ME, GS) + variable selection (SPA, CARS) | FI, DMC, SSC, TA | Best RPDs: FI = 3.05 (PE-GS), DMC = 2.31 (EPE-GS), SSC = 2.61 (PVC-FIR), TA = 2.94 (PVC-ME) | [87] |
Cat Hoa Loc (Vietnam) | 106 total (67 training, 39 testing) | Vis-NIRS | 410–940 | RPR (RF → PLS → RF), compared with SVM and multinomial logistic regression | Sweetness (Brix-based grading: I (>24° Brix), II (20–24), III (<20)) | RF classifier: Training acc. = 100%, Testing acc. = 82.1%, DI = 0.287 SVM: 66.7%, MLR: 61.5% | [88] |
Calypso and Kensington Pride | 240 fruits (120 per cultivar) | HSI | 400–1000 | PLSR, ANN, SVMR (with OSC, SG1, SNV, PCA preprocessing) | Brix, acidity, Brix/acid ratio, 13 nutrients | PLSR (Brix): R2 = 0.89 (skin), 0.74 (flesh); SVMR (Brix): R2 = 0.77 (skin), 0.73 (flesh), RPD > 2.4; ANN (Brix): R2 = 0.78–0.90; acidity and Brix/acid also well predicted | [89] |
Mango (three ripeness classes: unripe, ripe, overripe) | 80 mangoes (70% train, 15% val, 15% test) | HSI | 400–1000 | Shared subspace tensor classification (SSTC) via partial Tucker decomposition + RF, XGBoost, SVM, logistic regression | Ripeness classification | SSTC + RF: 92% accuracy SSTC + XGBoost: 84% SSTC + Logistic/SVM: 75% HSCNN: 75% Flattened + RF: 58% | [90] |
Mango mesocarp | 11,690 samples | NIRS | 309–1149 | St-SNE with multi-attribute info (region, maturity type, cultivar); compared with PCA, LPP, t-SNE, UMAP, Fisher t-SNE | Sample similarity (clustering) | St-SNE: Highest classification accuracy (e.g., up to 89.47% on cultivar), best trustworthiness and neighbourhood preservation | [91] |
Keitt | 78 mangoes, 156 samples (two sides each) | HSI | 400–890 | Support vector regression (ε-SVM), genetic algorithm (GA), brute force (BF), RGB-SVM, linear regression | Dry matter (ripeness proxy) | Full HSI: R2 = 0.74 Best 4-filter multispectral GA: R2 = 0.69 Best RGB + filter: R2 = 0.63 (real), 0.61 (simulated) Best COTS 4-filter GA: R2 = 0.66 | [92] |
Multiple cultivars (Tommy Atkins, Palmer, Keitt, Kensington Pride, etc.) | 30–1200 per study (varies) | VIS-NIRS/FT-NIRS | 306–2500 | PLS, MLR, PCR, ANN, SVM (with preprocessing: SG, SNV, MSC, EMSC, 1st/2nd derivative, PCA, etc.) | SSC, dry matter, firmness, TA, pH | R2 up to 0.98 (Harumanis SSC), 0.95 (Tommy Atkins Acidity), 0.93 (Sunshine pH), 0.92 (Tommy Atkins SSC), 0.53–0.57 for internal browning (ANN > PLS) | [93] |
Arumanis | 175 mangoes (696 spectra across five maturity classes) | NIRS | 1350–2500 | LDA, SVM, MLP, DT, KNN; indirect: PLS + fuzzy logic with TA, SSC, starch, firmness | Maturity classification across five levels (80–100%) | Direct (LDA + SAVGOL): 91.43% Indirect (PLS + Fuzzy Logic): 95.7% accuracy using TA, SSC, firmness, starch as inputs | [94] |
Nam Dokmai | 173 (129 calibration, 44 validation) | NIRS | 860–1760 | GA-PLS, SPA-PLS, full-spectrum PLS; preprocessing: SNV, first/second derivative (D1, D2) | Soluble solids content (SSC) | Best model (GA-PLS + D2): R2 = 0.72, RMSEP = 0.74° Brix, RPD = 2.0 Full PLS + D2: R2 = 0.74, RMSEP = 0.72° Brix, RPD = 2.0 | [95] |
Mango cv | Sample Info | NIRS/ HSI | Spectral Range (nm) | Algorithm Used | Quality Trait | Accuracy Achieved | Ref. |
---|---|---|---|---|---|---|---|
Multiple cultivars (four seasons) | 4676 samples | NIRS | 684–990 | CNN (Fine-tuning), Global Model (CNN/PLS), Recalibration (PLS), S/B Correction | Dry Matter Content (DMC) | CNN Fine-tuning: RMSE = 0.642, R2 = 0.907 | [96] |
Multiple cultivars (four seasons) | 11,691 spectra (4675 fruits) | NIRS | 684–990 | 1D-CNN + Chemometrics (Outlier Removal + SNV + Derivatives), PLS | Dry Matter Content (DMC) | RMSEP: 0.75% (1D-CNN with outlier removal and augmented data), 0.79% (1D-CNN without outlier removal) | [28] |
Multiple cultivars (four seasons) | 11,691 spectra (4675 fruits) | NIRS | 684–990 | Shallow CNN, Deep CNN, PLSR with MVN and Bjerrum-style Augmentation | Dry Matter Content (DMC) | Best DMC RMSE: 1.16% (PLSR MVN augmented); 1.20% (Shallow CNN MVN augmented) | [97] |
Multiple cultivars (four seasons) | 11,691 spectra (4675 fruits) | NIRS | 742–990 | PLSR vs. 1D-CNN (Raw and Preprocessed Spectra) | Dry Matter Content (DMC) | DL (raw absorbance): RMSEP = 0.76%, PLSR (raw absorbance): RMSEP = 0.87% | [25] |
Old (2015–2018) + New (2020 Brazil) | 11,691 spectra from four seasons (2015–2018) for training; 510 samples (2020) for test | NIRS | 684–990 | Deep Learning (1D-CNN), Transfer Learning (TL), PLS | Dry Matter Content (DMC) | DL (after TL): RMSEP = 0.518% PLS (best): RMSEP = 0.598% | [6] |
Hainan mangoes (bruise detection) | 92 samples × four storage timepoints | HSI | 398.9–1015.6 | CNN + Feature Fusion (Spectral + Texture GLCM), CARS/UVE Selection vs. RF, PLS-DA, XGBoost | Storage Time Post Mild Bruise | CNN + CARS + Feature Fusion 2: 93.48% accuracy | [98] |
Multiple cultivars (four seasons) | 11,834 spectra (4685 fruits) | NIRS | 684–990 (from 350–1100) | CNN, ANN, PLS (144 Experiments) | Dry Matter Content (DMC) | Best CNN RMSEP: 0.77% FW (season four test); RMSEP: 1.18% on unseen season five | [7] |
Bundaberg (Calypso, cultivar B74) | 494 trees, multiple blocks (ground-based) | HSI | 390–890 | CNN (Per-pixel Spectral Classifier); CHC Optimiser for Fruit Segmentation + Yield Estimation | Fruit Count (Yield Estimation) | R2 = 0.79 vs. manual count (18-tree test), R2 = 0.83 vs. RGB count (216-tree test) | [99] |
Bundaberg (Calypso, cultivar B74) | 494 trees (Block A); +121 (Block B); +266 (Block C); fruit-on-tree (n = 662) and fruit-in-tray (n = 468) | HSI | 411.3–867.0 | CNN-COMB, CNN-PLS, PLS Baseline | Maturity (Orchard-Scale DMC Mapping) | Fruit-on-tree (CNN): R2 = 0.64, RMSE = 1.08% w/w Repeatability RMSE: ≤0.29% w/w | [100] |
Keitt mangoes (three ripening stages) | 230 packaged mangoes, 2760 spectra | NIRS | 900–2500 | PLSR, PCR + FNN Correction + GS Filtering | FI, DMC, SSC, TA (Packaged Mango) | Best PMs-FNN-GS: FI: R2 = 0.847, RMSEP = 10.705 N DMC: R2 = 0.932, RMSEP = 0.320% SSC: R2 = 0.821, RMSEP = 1.211% TA: R2 = 0.907, RMSEP = 0.032% | [101] |
Mango cv | Sample Info | NIRS/ HSI | Spectral Range (nm) | Algorithm Used | Quality Trait | Accuracy Achieved | Ref. |
---|---|---|---|---|---|---|---|
Calypso™, KP, Honey Gold, Keitt, R2E2, Lady Grace, Lady Jane, 1201, 1243, 4069 | >10,000 | NIRS | 300–1100 | Two-stream DL (1D-CNN + BiGRU + XGBoost) | Variety classification | 95% | [102] |
Kweni, Cengkir, Palmer, Kent | 186 (original) + 2000 (augmented) | NIRS | 1000–2500 | MCNN (CNN + Channel Attention) | Variety classification | 98.67% | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, R.K.; Neupane, A.; Wang, Z.; Walsh, K. Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review. Agronomy 2025, 15, 2271. https://doi.org/10.3390/agronomy15102271
Chaudhary RK, Neupane A, Wang Z, Walsh K. Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review. Agronomy. 2025; 15(10):2271. https://doi.org/10.3390/agronomy15102271
Chicago/Turabian StyleChaudhary, Ramesh Kumar, Arjun Neupane, Zhenglin Wang, and Kerry Walsh. 2025. "Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review" Agronomy 15, no. 10: 2271. https://doi.org/10.3390/agronomy15102271
APA StyleChaudhary, R. K., Neupane, A., Wang, Z., & Walsh, K. (2025). Mango Quality Assessment Using Near-Infrared Spectroscopy and Hyperspectral Imaging: A Systematic Review. Agronomy, 15(10), 2271. https://doi.org/10.3390/agronomy15102271