Free- and Bound-Form Terpenes in Sweet Potato Peel and Their Antifungal Activity Against Aspergillus flavus-Induced Tomato Spoilage
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Raw Materials
2.2. Preparations of Free and Bound Terpenes from Sweet Potato Peel
2.3. Identification of Terpenes Using Solid-Phase Microextraction (SPME) and Gas Chromatography–Mass Spectrometry (GC-MS) Analysis
2.4. Determination of Minimal Inhibitory Concentration (MIC)
2.5. Observation of Mycelial Growth
2.6. Determination of Terpene Release During Proliferation of Aspergillus Flavus
2.7. Study of Antifungal Activity Using Tomato as an In Vivo Model
2.8. Statistical Analysis
3. Results and Discussion
3.1. Volatile Compositions in Distillates from Sweet Potato Peel (SPP) Using Essential Oil Hydrodistillation and Vacuum Distillation
3.2. MIC of Antifungal Activity and Inhibition of Mycelial Growth
3.3. Inhibition of Fungal Spoilage in Tomato In Vivo Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Opara, I.K.; Fawole, O.A.; Kelly, C.; Opara, U.L. Quantification of on-farm pomegranate fruit postharvest losses and waste, and implications on sustainability indicators: South African case study. Sustainability 2021, 13, 5168. [Google Scholar] [CrossRef]
- Ueda, J.M.; Pedrosa, M.C.; Heleno, S.A.; Carocho, M.; Ferreira, I.C.; Barros, L. Food additives from fruit and vegetable by-products and bio-residues: A comprehensive review focused on sustainability. Sustainability 2022, 14, 5212. [Google Scholar] [CrossRef]
- Zhao, P.; Ndayambaje, J.P.; Liu, X.; Xia, X. Microbial spoilage of fruits: A review on causes and prevention methods. Food Rev. Int. 2022, 38, 225–246. [Google Scholar] [CrossRef]
- Diao, W.-R.; Hu, Q.-P.; Zhang, H.; Xu, J.-G. Chemical composition, antibacterial activity and mechanism of action of essential oil from seeds of fennel (Foeniculum vulgare Mill.). Food Control 2014, 35, 109–116. [Google Scholar] [CrossRef]
- Hoeberichts, F.A.; Van Der Plas, L.H.; Woltering, E.J. Ethylene perception is required for the expression of tomato ripening-related genes and associated physiological changes even at advanced stages of ripening. Postharvest Biol. Technol. 2002, 26, 125–133. [Google Scholar] [CrossRef]
- Sanzani, S.M.; Djenane, F.; Incerti, O.; Admane, N.; Mincuzzi, A.; Ippolito, A. Mycotoxigenic fungi contaminating greenhouse-grown tomato fruit and their alternative control. Eur. J. Plant Pathol. 2021, 160, 287–300. [Google Scholar] [CrossRef]
- Ostry, V.; Malir, F.; Toman, J.; Grosse, Y. Mycotoxins as human carcinogens—The IARC Monographs classification. Mycotoxin Res. 2017, 33, 65–73. [Google Scholar] [CrossRef]
- Baptista, F.; Bailey, B.; Meneses, J. Effect of nocturnal ventilation on the occurrence of Botrytis cinerea in Mediterranean unheated tomato greenhouses. Crop Prot. 2012, 32, 144–149. [Google Scholar] [CrossRef]
- Mariutti, L.R.B.; Soares, L.M.V. Survey of aflatoxins in tomato products. Food Sci. Technol. 2009, 29, 431–434. [Google Scholar] [CrossRef]
- Goldman, G.H.; Osmani, S.A. The Aspergilli: Genomics, Medical Aspects, Biotechnology, and Research Methods; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Segura-Palacios, M.A.; Correa-Pacheco, Z.N.; Corona-Rangel, M.L.; Martinez-Ramirez, O.C.; Salazar-Piña, D.A.; de Lorena Ramos-García, M.; Bautista-Baños, S. Use of natural products on the control of Aspergillus flavus and production of aflatoxins in vitro and on tomato fruit. Plants 2021, 10, 2553. [Google Scholar] [CrossRef]
- Stracquadanio, C.; Luz, C.; La Spada, F.; Meca, G.; Cacciola, S.O. Inhibition of mycotoxigenic fungi in different vegetable matrices by extracts of Trichoderma species. J. Fungi 2021, 7, 445. [Google Scholar] [CrossRef] [PubMed]
- Jankowska, M.; Kaczynski, P.; Hrynko, I.; Lozowicka, B. Dissipation of six fungicides in greenhouse-grown tomatoes with processing and health risk. Environ. Sci. Pollut. Res. 2016, 23, 11885–11900. [Google Scholar] [CrossRef]
- Oliver, R.P.; Hewitt, H.G. Fungicides in Crop Protection; Cabi: Oxfordshire, UK, 2014. [Google Scholar]
- Corkley, I.; Fraaije, B.; Hawkins, N. Fungicide resistance management: Maximizing the effective life of plant protection products. Plant Pathol. 2022, 71, 150–169. [Google Scholar] [CrossRef]
- Kanwal, Q.; Hussain, I.; Siddiqui, H.L.; Javaid, A. Antifungal activity of flavonoids isolated from mango (Mangifera indica L.) leaves. Nat. Prod. Res. 2010, 24, 1907–1914. [Google Scholar] [CrossRef] [PubMed]
- Korukluoglu, M.; Sahan, Y.; Yigit, A. Antifungal properties of olive leaf extracts and their phenolic compounds. J. Food Saf. 2008, 28, 76–87. [Google Scholar] [CrossRef]
- Zabka, M.; Pavela, R.; Slezakova, L. Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxinogenic fungi. Ind. Crops Prod. 2009, 30, 250–253. [Google Scholar] [CrossRef]
- Meyer-Warnod, B. Natural essential oils. Extraction processes and application to some major oils. Perfum. Flavorist 1984, 9, 93–104. [Google Scholar]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Leong, S.Y.; Khelfa, A.; Greiner, R.; Chemat, F. Extraction methods of essential oils from herbs and spices. In Essential Oils in Food Processing: Chemistry, Safety and Applications; Wiley: Hoboken, NJ, USA, 2017; pp. 21–55. [Google Scholar]
- Perini, J.; Silvestre, W.; Agostini, F.; Toss, D.; Pauletti, G. Fractioning of orange (Citrus sinensis L.) essential oil using vacuum fractional distillation. Sep. Sci. Technol. 2017, 52, 1397–1403. [Google Scholar] [CrossRef]
- Rivas, F.; Parra, A.; Martinez, A.; Garcia-Granados, A. Enzymatic glycosylation of terpenoids. Phytochem. Rev. 2013, 12, 327–339. [Google Scholar] [CrossRef]
- Rodriguez, G.; Prinyawiwatkul, W.; Aryana, K.J.; King, J.M.; Xu, Z. Bound form terpenes in sweet potatoes and their distribution in flesh and peel of different cultivars. Int. J. Food Sci. Technol. 2023, 58, 5773–5780. [Google Scholar] [CrossRef]
- Sandhu, H.K.; Sinha, P.; Emanuel, N.; Kumar, N.; Sami, R.; Khojah, E.; Al-Mushhin, A.A. Effect of ultrasound-assisted pretreatment on extraction efficiency of essential oil and bioactive compounds from citrus waste by-products. Separations 2021, 8, 244. [Google Scholar] [CrossRef]
- Beneti, S.C.; Rosset, E.; Corazza, M.L.; Frizzo, C.D.; Di Luccio, M.; Oliveira, J.V. Fractionation of citronella (Cymbopogon winterianus) essential oil and concentrated orange oil phase by batch vacuum distillation. J. Food Eng. 2011, 102, 348–354. [Google Scholar] [CrossRef]
- Dikbas, N.; Kotan, R.; Dadasoglu, F.; Sahin, F. Control of Aspergillus flavus with essential oil and methanol extract of Satureja hortensis. Int. J. Food Microbiol. 2008, 124, 179–182. [Google Scholar] [CrossRef] [PubMed]
- Bustamante, J.; van Stempvoort, S.; García-Gallarreta, M.; Houghton, J.A.; Briers, H.K.; Budarin, V.L.; Matharu, A.S.; Clark, J.H. Microwave assisted hydro-distillation of essential oils from wet citrus peel waste. J. Clean. Prod. 2016, 137, 598–605. [Google Scholar] [CrossRef]
- Arranz, E.; Jaime, L.; de las Hazas, M.L.; Reglero, G.; Santoyo, S. Supercritical fluid extraction as an alternative process to obtain essential oils with anti-inflammatory properties from marjoram and sweet basil. Ind. Crops Prod. 2015, 67, 121–129. [Google Scholar] [CrossRef]
- Ranjbar, N.; Eikani, M.H.; Javanmard, M.; Golmohammad, F. Impact of instant controlled pressure drop on phenolic compounds extraction from pomegranate peel. Innov. Food Sci. Emerg. Technol. 2016, 37, 177–183. [Google Scholar] [CrossRef]
- Nguyen, T.-D.; Riordan-Short, S.; Dang, T.-T.T.; O’Brien, R.; Noestheden, M. Quantitation of select terpenes/terpenoids and nicotine using gas chromatography-mass spectrometry with high-temperature headspace sampling. ACS Omega 2020, 5, 5565–5573. [Google Scholar] [CrossRef]
- Mahanta, B.P.; Bora, P.K.; Kemprai, P.; Borah, G.; Lal, M.; Haldar, S. Thermolabile essential oils, aromas and flavours: Degradation pathways, effect of thermal processing and alteration of sensory quality. Food Res. Int. 2021, 145, 110404. [Google Scholar] [CrossRef]
- Lucchesi, M.E.; Chemat, F.; Smadja, J. Solvent-free microwave extraction of essential oil from aromatic herbs: Comparison with conventional hydro-distillation. J. Chromatogr. A 2004, 1043, 323–327. [Google Scholar] [CrossRef]
- Wedler, H.B.; Newman, T.; Tantillo, D.J. Decarboxylation facilitated by carbocation formation and rearrangement during steam distillation of vetiver oil. J. Nat. Prod. 2016, 79, 2744–2748. [Google Scholar] [CrossRef]
- Boutekedjiret, C.; Bentahar, F.; Belabbes, R.; Bessiere, J. Extraction of rosemary essential oil by steam distillation and hydrodistillation. Flavour Fragr. J. 2003, 18, 481–484. [Google Scholar] [CrossRef]
- Chang, H.-T.; Lin, C.-Y.; Hsu, L.-S.; Chang, S.-T. Thermal degradation of linalool-chemotype Cinnamomum osmophloeum leaf essential oil and its stabilization by microencapsulation with β-cyclodextrin. Molecules 2021, 26, 409. [Google Scholar] [CrossRef]
- Eyal, A.M.; Berneman Zeitouni, D.; Tal, D.; Schlesinger, D.; Davidson, E.M.; Raz, N. Vapor pressure, vaping, and corrections to misconceptions related to medical Cannabis’ active pharmaceutical ingredients’ physical properties and compositions. Cannabis Cannabinoid Res. 2023, 8, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Nikkhah, M.; Hashemi, M.; Najafi, M.B.H.; Farhoosh, R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int. J. Food Microbiol. 2017, 257, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control 2019, 8, 118. [Google Scholar] [CrossRef] [PubMed]
- Abbaszadeh, S.; Sharifzadeh, A.; Shokri, H.; Khosravi, A.; Abbaszadeh, A. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi. J. Mycol. Medicale 2014, 24, e51–e56. [Google Scholar] [CrossRef]
- Soliman, K.M.; Badeaa, R. Effect of oil extracted from some medicinal plants on different mycotoxigenic fungi. Food Chem. Toxicol. 2002, 40, 1669–1675. [Google Scholar] [CrossRef]
- Tian, F.; Woo, S.Y.; Lee, S.Y.; Park, S.B.; Zheng, Y.; Chun, H.S. Antifungal Activity of Essential Oil and Plant-Derived Natural Compounds against Aspergillus flavus. Antibiotics 2022, 11, 1727. [Google Scholar] [CrossRef]
- Nazzaro, F.; Fratianni, F.; Coppola, R.; De Feo, V. Essential oils and antifungal activity. Pharmaceuticals 2017, 10, 86. [Google Scholar] [CrossRef]
- Carson, C.; Riley, T. Antimicrobial activity of the major components of the essential oil of Melaleuca alternifolia. J. Appl. Microbiol. 1995, 78, 264–269. [Google Scholar] [CrossRef]
- Lucini, E.; Zunino, M.; López, M.; Zygadlo, J. Effect of monoterpenes on lipid composition and sclerotial development of Sclerotium cepivorum Berk. J. Phytopathol. 2006, 154, 441–446. [Google Scholar] [CrossRef]
- Ebrahimi, L.; Jalali, H.; Etebarian, H.R.; Sahebani, N. Evaluation of antifungal activity of some plant essential oils against tomato grey mould disease. J. Plant Pathol. 2022, 104, 641–650. [Google Scholar] [CrossRef]
- Aguilar-González, A.E.; Palou, E.; López-Malo, A. Antifungal activity of essential oils of clove (Syzygium aromaticum) and/or mustard (Brassica nigra) in vapor phase against gray mold (Botrytis cinerea) in strawberries. Innov. Food Sci. Emerg. Technol. 2015, 32, 181–185. [Google Scholar] [CrossRef]
- Pouris, J.; Kolyva, F.; Bratakou, S.; Vogiatzi, C.A.; Chaniotis, D.; Beloukas, A. The role of fungi in food production and processing. Appl. Sci. 2024, 14, 5046. [Google Scholar] [CrossRef]
- Liaud, N.; Giniés, C.; Navarro, D.; Fabre, N.; Crapart, S.; Gimbert, I.H.; Levasseur, A.; Raouche, S.; Sigoillot, J.-C. Exploring fungal biodiversity: Organic acid production by 66 strains of filamentous fungi. Fungal Biol. Biotechnol. 2014, 1, 1. [Google Scholar] [CrossRef]
- Rafiei, V.; Vélëz, H.; Tzelepis, G. The role of glycoside hydrolases in phytopathogenic fungi and oomycetes virulence. Int. J. Mol. Sci. 2021, 22, 9359. [Google Scholar] [CrossRef]
- Pogorzelski, E.; Wilkowska, A. Flavour enhancement through the enzymatic hydrolysis of glycosidic aroma precursors in juices and wine beverages: A review. Flavour Fragr. J. 2007, 22, 251–254. [Google Scholar] [CrossRef]
- Yang, Y.; Frank, S.; Wei, X.; Wang, X.; Li, Y.; Steinhaus, M.; Tao, Y. Molecular rearrangement of four typical grape free terpenes in the wine environment. J. Agric. Food Chem. 2023, 71, 721–728. [Google Scholar] [CrossRef]
- Ibrahim, F.; Al-Ebady, N. Evaluation of antifungal activity of some plant extracts and their applicability in extending the shelf life of stored tomato fruits. J. Food Process. Technol. 2014, 5, 340. [Google Scholar] [CrossRef]
- Rongai, D.; Pulcini, P.; Pesce, B.; Milano, F. Antifungal activity of pomegranate peel extract against fusarium wilt of tomato. Eur. J. Plant Pathol. 2017, 147, 229–238. [Google Scholar] [CrossRef]
- Temitope, F.P.; Oluchi, U.E. Studies on the antifungal activity of Lactobacillus plantarum and Lactobacillus fermentum on spoilage fungi of tomato fruit. J. Microbiol. Res. 2015, 5, 95–100. [Google Scholar]
- Podgórska-Kryszczuk, I. Biological control of Aspergillus flavus by the yeast Aureobasidium pullulans in vitro and on tomato fruit. Plants 2023, 12, 236. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Mancini, E.; Camele, I.; De Martino, L.; De Feo, V. In vivo antifungal activity of two essential oils from Mediterranean plants against postharvest brown rot disease of peach fruit. Ind. Crops Prod. 2015, 66, 11–15. [Google Scholar] [CrossRef]
- Lopez-Reyes, J.G.; Spadaro, D.; Gullino, M.L.; Garibaldi, A. Efficacy of plant essential oils on postharvest control of rot caused by fungi on four cultivars of apples in vivo. Flavour Fragr. J. 2010, 25, 171–177. [Google Scholar] [CrossRef]
No. | Compound | RI a | % rel b HD | % rel b VD | Identification Methods c |
---|---|---|---|---|---|
1 | β-Myrcene | 995 | - | 6.99 | MS, RI |
2 | p-Cymene | 1087 | 1.96 | - | MS, RI |
3 | Sylvestrene | 1028 | - | 2.99 | MS, RI |
4 | β-Trans-ocimene | 1041 | - | 2.18 | MS, RI |
5 | Chrysanthenol | 1069 | 1.53 | - | MS, RI |
6 | Linalool | 1099 | 8.04 | 51.56 | MS, RI |
7 | Myrcenol | 1120 | 1.27 | - | MS, RI |
8 | β-Terpineol | 1142 | 1.22 | - | MS, RI |
9 | α-Ocimene | 1051 | - | 2.86 | MS, RI |
10 | (Z)-Ocimenol | 1153 | 5.06 | - | MS, RI |
11 | Є-Ocimenol | 1164 | 8.99 | - | MS, RI |
12 | Piperitone | 1172 | 0.94 | - | MS, RI |
13 | Terpinen-4-ol | 1175 | 1.72 | 2.36 | MS, RI |
14 | α-Terpineol | 1189 | 44.18 | 22.45 | MS, RI |
15 | γ-Terpineol | 1195 | 3.19 | - | MS, RI |
16 | p-Menth-2-en-7-ol, cis | 1205 | 3.42 | - | MS, RI |
18 | p-Menth-1-en-9-al | 1216 | 8.49 | - | MS, RI |
19 | (R)-Lavandulyl acetate | 1230 | - | 1.53 | MS, RI |
20 | p-Mentha-1(7),8(10)-dien-9-ol | 1248 | 1.6 | - | MS, RI |
21 | Myrtanol | 1256 | 1.71 | - | MS, RI |
22 | Guaiol | 1257 | - | 5.22 | MS, RI |
23 | Phellandral | 1273 | 0.7 | - | MS, RI |
24 | Menthofuran | 1297 | 1.08 | - | MS, RI |
25 | p-Mentha-1, 4-dien-7-ol | 1329 | 1.13 | - | MS, RI |
26 | β-Damascenone | 1385 | 3.78 | 1.85 | MS, RI |
Concentration (µL/mL) | Zone of Inhibition (mm) | |
---|---|---|
HD distillate | 100 | ND |
50 | ND | |
25 | ND | |
12.5 | ND | |
6.25 | ND | |
VD distillate | 100 | ND |
50 | ND | |
25 | ND | |
12.5 | ND | |
6.25 | ND | |
BT concentrate | 100 | 26.0 ± 1.0 a |
50 | 21.0 ± 1.0 b | |
25 | 18.0 ± 2.0 c | |
12.5 | 15 ± 1.0 d | |
6.25 | ND |
Extraction Method | Concentration (µL/mL) | Mycelial Growth Inhibition (%) |
---|---|---|
HD distillate | 100 | −14.80 ± 9.44 a |
VD distillate | 100 | 0.00 ± 0.00 b |
100 | 55.56 ± 4.53 d | |
BT concentrate | 50 | 42.59 ± 10.48 c |
25 | 42.59 ± 6.92 c | |
12.5 | 39.63 ± 3.66 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez, G.; Thapaliya, M.; Bui, D.; Malekian, F.; Adhikari, A.; Xu, Z. Free- and Bound-Form Terpenes in Sweet Potato Peel and Their Antifungal Activity Against Aspergillus flavus-Induced Tomato Spoilage. Agronomy 2025, 15, 2270. https://doi.org/10.3390/agronomy15102270
Rodriguez G, Thapaliya M, Bui D, Malekian F, Adhikari A, Xu Z. Free- and Bound-Form Terpenes in Sweet Potato Peel and Their Antifungal Activity Against Aspergillus flavus-Induced Tomato Spoilage. Agronomy. 2025; 15(10):2270. https://doi.org/10.3390/agronomy15102270
Chicago/Turabian StyleRodriguez, Gabriela, Manish Thapaliya, Duyen Bui, Fatemeh Malekian, Achyut Adhikari, and Zhimin Xu. 2025. "Free- and Bound-Form Terpenes in Sweet Potato Peel and Their Antifungal Activity Against Aspergillus flavus-Induced Tomato Spoilage" Agronomy 15, no. 10: 2270. https://doi.org/10.3390/agronomy15102270
APA StyleRodriguez, G., Thapaliya, M., Bui, D., Malekian, F., Adhikari, A., & Xu, Z. (2025). Free- and Bound-Form Terpenes in Sweet Potato Peel and Their Antifungal Activity Against Aspergillus flavus-Induced Tomato Spoilage. Agronomy, 15(10), 2270. https://doi.org/10.3390/agronomy15102270