Valorization of Agri-Food Waste to Promote Sustainable Strategies in Agriculture and Improve Crop Quality with Emphasis on Legume Crop Residues
Abstract
1. Introduction
2. Methodology
3. General Sustainable Strategies for Agricultural Practices
3.1. Species Diversification and Crop Rotation
3.2. Agroforestry Systems
3.3. Tillage Conservation
3.4. Disease, Pest and Weed Management
3.5. Natural Products: Organic Fertilizers and Biostimulants
3.6. Cover Crops
3.7. Renewable Energy
4. Potential Contribution of Agri-Food Waste for Sustainable Agriculture
4.1. Agri-Food Waste as an Alternative Source of Biofertilizers
4.2. Agri-Food Waste as Soil Amendment
5. The Importance of Using Leguminous Crop Waste for Crops
5.1. Source of Nutrients in Crop Rotations
5.2. The Improvement of Soil Moisture
5.3. Potential of Legume Crop Waste for Improving Crop Performance: Cases Studies
6. Risks, Mitigation Strategies and Future Directions
- Certain legume species release allelopathic or phytotoxic compounds during decomposition, which can negatively affect seed germination or early crop development [96,97]. To mitigate this, it is advisable to select species with low allelopathic potential and/or allow sufficient time between residue incorporation in soil and planting to permit initial decomposition and detoxification;
- Legume residues may also serve as hosts for pests or pathogens [98], especially in monoculture systems or short crop rotations. Preventive measures can include rotating with non-host crops and using healthy and disease-free legume material;
- Legumes cultivated in soils contaminated with heavy metals may accumulate these elements in their tissues, and when residues are incorporated into the soil, they can contribute to the long-term accumulation of metals in the soil. Monitoring and testing the metal content of legume biomass before soil incorporation, especially in regions near mining sites, industrial zones, or areas irrigated with wastewater, is advised;
- In conventional farming systems, legumes are often treated with pesticides. Residual agrochemicals can persist in plant tissues and be introduced into the soil when residues are incorporated. To mitigate this, preference should be given to organic or low-input legume production systems to obtain residues destined for soil incorporation and/or to allow a waiting period after pesticide application before harvesting residues could reduce the toxicity of the residue. Also, promote composting or pre-treatment of legume biomass to enhance pesticide degradation before field application.
- Incorporation of legume residues in soil can, in some cases, increase GHG emissions, particularly N2O and CO2 [79,99,100]. Avoid incorporating residues into poorly drained or flooded soils, and implement proper drainage management and soil aeration strategies. Also, monitor the full GHG profile in integrated systems.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
EU | European Union |
LED | Light Emitting Diode |
pH | Potential of Hydrogen |
C/N | Carbon to Nitrogen ratio |
References
- Northcott, T.; Lawrence, M.; Parker, C.; Baker, P. Ecological Regulation for Healthy and Sustainable Food Systems: Responding to the Global Rise of Ultra-Processed Foods. Agric. Human Values 2023, 40, 1333–1358. [Google Scholar] [CrossRef]
- Grigorieva, E.; Livenets, A.; Stelmakh, E. Adaptation of Agriculture to Climate Change: A Scoping Review. Climate 2023, 11, 202. [Google Scholar] [CrossRef]
- Hari, V.; Rakovec, O.; Markonis, Y.; Hanel, M.; Kumar, R. Increased Future Occurrences of the Exceptional 2018–2019 Central European Drought under Global Warming. Sci. Rep. 2020, 10, 12207. [Google Scholar] [CrossRef] [PubMed]
- Bevacqua, E.; Rakovec, O.; Schumacher, D.L.; Kumar, R.; Thober, S.; Samaniego, L.; Seneviratne, S.I.; Zscheischler, J. Direct and Lagged Climate Change Effects Intensified the 2022 European Drought. Nat. Geosci. 2024, 17, 1100–1107. [Google Scholar] [CrossRef]
- Ofori-Kyereh, B.E.; Morton, J.F.; Chancellor, T.C.B. Constraints on Farmers’ Adaptive Capacity to Climate Variability and Change. Clim. Dev. 2023, 15, 312–324. [Google Scholar] [CrossRef]
- Bedolla-Rivera, H.I.; de la Luz Xochilt Negrete-Rodríguez, M.; Gámez-Vázquez, F.P.; Álvarez-Bernal, D.; Conde-Barajas, E. Analyzing the Impact of Intensive Agriculture on Soil Quality: A Systematic Review and Global Meta-Analysis of Quality Indexes. Agronomy 2023, 13, 2166. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, F.; Wang, J.; Yan, W.; Li, Y.; Wang, D. Modelling Stream Nutrient Source and Yield by Coupling Hydrological Processes and Nutrient Budgets from an Experimental Headwater Catchment with Orchard Expansion in the Changjiang River Delta Area. Hydrol. Process 2022, 36, e14660. [Google Scholar] [CrossRef]
- Boix-Fayos, C.; de Vente, J. Challenges and Potential Pathways towards Sustainable Agriculture within the European Green Deal. Agric. Syst. 2023, 207, 103634. [Google Scholar] [CrossRef]
- Guyomard, H.; Soler, L.-G.; Détang-Dessendre, C.; Réquillart, V. The European Green Deal Improves the Sustainability of Food Systems but Has Uneven Economic Impacts on Consumers and Farmers. Commun. Earth Environ. 2023, 4, 358. [Google Scholar] [CrossRef]
- Anderson, R.; Bayer, P.E.; Edwards, D. Climate Change and the Need for Agricultural Adaptation. Curr. Opin. Plant Biol. 2020, 56, 197–202. [Google Scholar] [CrossRef]
- Zulfiqar, F.; Moosa, A.; Ali, H.M.; Bermejo, N.F.; Munné-Bosch, S. Biostimulants: A Sufficiently Effective Tool for Sustainable Agriculture in the Era of Climate Change? Plant Physiol. Biochem. 2024, 211, 108699. [Google Scholar] [CrossRef] [PubMed]
- Rose, T.J.; Kearney, L.J.; Erler, D.V.; van Zwieten, L. Integration and Potential Nitrogen Contributions of Green Manure Inter-Row Legumes in Coppiced Tree Cropping Systems. Eur. J. Agron. 2019, 103, 47–53. [Google Scholar] [CrossRef]
- Abera, G.; Wolde-meskel, E.; Bakken, L.R. Carbon and Nitrogen Mineralization Dynamics in Different Soils of the Tropics Amended with Legume Residues and Contrasting Soil Moisture Contents. Biol. Fertil. Soils 2012, 48, 51–66. [Google Scholar] [CrossRef]
- Datta, S.; Hamim, I.; Jaiswal, D.K.; Sungthong, R. Sustainable Agriculture. BMC Plant Biol. 2023, 23, 588. [Google Scholar] [CrossRef]
- Mihrete, T.B.; Mihretu, F.B. Crop Diversification for Ensuring Sustainable Agriculture, Risk Management and Food Security. Glob. Chall. 2025, 9, 2400267. [Google Scholar] [CrossRef]
- Altieri, M.A.; Farrell, J.G.; Hecht, S.B.; Liebman, M.; Magdoff, F.; Murphy, B.; Norgaard, R.B.; Sikor, T.O. Agroecology; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9780429495465. [Google Scholar]
- Fernanda Schneider, C.; Giane Schulz, D.; Ricardo Lima, P.; Celso Gonçalves Júnior, A. A review of the forms of waste management and application of cane sugar in order to reduce environmental impacts. Rev. Verde Agroecol. Desenvolv. Sustent. 2012, 7, 2. [Google Scholar]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-Based Fertilizers: A Practical Approach towards Circular Economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef]
- Bishaw, B.; Soolanayakanahally, R.; Karki, U.; Hagan, E. Agroforestry for Sustainable Production and Resilient Landscapes. Agrofor. Syst. 2022, 96, 447–451. [Google Scholar] [CrossRef]
- Kletty, F.; Rozan, A.; Habold, C. Biodiversity in Temperate Silvoarable Systems: A Systematic Review. Agric. Ecosyst. Environ. 2023, 351, 108480. [Google Scholar] [CrossRef]
- Ramil Brick, E.S.; Holland, J.; Anagnostou, D.E.; Brown, K.; Desmulliez, M.P.Y. A Review of Agroforestry, Precision Agriculture, and Precision Livestock Farming—The Case for a Data-Driven Agroforestry Strategy. Front. Sens. 2022, 3, 998928. [Google Scholar] [CrossRef]
- Chojnacka, K.; Moustakas, K.; Mikulewicz, M. Valorisation of Agri-Food Waste to Fertilisers Is a Challenge in Implementing the Circular Economy Concept in Practice. Environ. Pollut. 2022, 312, 119906. [Google Scholar] [CrossRef]
- Sadiq, M.; Li, G.; Rahim, N.; Tahir, M.M. Sustainable Conservation Tillage Technique for Improving Soil Health by Enhancing Soil Physicochemical Quality Indicators under Wheat Mono-Cropping System Conditions. Sustainability 2021, 13, 8177. [Google Scholar] [CrossRef]
- McDonald, M.D.; Lewis, K.L.; Ritchie, G.L. Short Term Cotton Lint Yield Improvement with Cover Crop and No-Tillage Implementation. Agronomy 2020, 10, 994. [Google Scholar] [CrossRef]
- Engell, I.; Linsler, D.; Sandor, M.; Joergensen, R.G.; Meinen, C.; Potthoff, M. The Effects of Conservation Tillage on Chemical and Microbial Soil Parameters at Four Sites across Europe. Plants 2022, 11, 1747. [Google Scholar] [CrossRef] [PubMed]
- Haddaway, N.R.; Hedlund, K.; Jackson, L.E.; Kätterer, T.; Lugato, E.; Thomsen, I.K.; Jørgensen, H.B.; Isberg, P.-E. How Does Tillage Intensity Affect Soil Organic Carbon? A Systematic Review. Environ. Evid. 2017, 6, 30. [Google Scholar] [CrossRef]
- He, D.-C.; He, M.-H.; Amalin, D.M.; Liu, W.; Alvindia, D.G.; Zhan, J. Biological Control of Plant Diseases: An Evolutionary and Eco-Economic Consideration. Pathogens 2021, 10, 1311. [Google Scholar] [CrossRef]
- Fenibo, E.O.; Ijoma, G.N.; Matambo, T. Biopesticides in Sustainable Agriculture: A Critical Sustainable Development Driver Governed by Green Chemistry Principles. Front. Sustain. Food Syst. 2021, 5, 619058. [Google Scholar] [CrossRef]
- Tooker, J.F.; Frank, S.D. Genotypically Diverse Cultivar Mixtures for Insect Pest Management and Increased Crop Yields. J. Appl. Ecol. 2012, 49, 974–985. [Google Scholar] [CrossRef]
- Hussain, M.I.; Abideen, Z.; Danish, S.; Asghar, M.A.; Iqbal, K. Integrated Weed Management for Sustainable Agriculture; Lichtfouse, E., Ed.; Sustainable Agriculture Reviews; Springer: Cham, Switzerland, 2021; Volume 52, pp. 367–393. [Google Scholar] [CrossRef]
- Monteiro, A.; Santos, S. Sustainable Approach to Weed Management: The Role of Precision Weed Management. Agronomy 2022, 12, 118. [Google Scholar] [CrossRef]
- Lehnhoff, E.A.; Rew, L.J.; Mangold, J.M.; Seipel, T.; Ragen, D. Integrated Management of Cheatgrass (Bromus Tectorum) with Sheep Grazing and Herbicide. Agronomy 2019, 9, 315. [Google Scholar] [CrossRef]
- Farooq, M.; Jabran, K.; Cheema, Z.A.; Wahid, A.; Siddique, K.H. The Role of Allelopathy in Agricultural Pest Management. Pest. Manag. Sci. 2011, 67, 493–506. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Vaish, B.; Monika; Singh, U.K.; Singh, P.; Singh, R.P. Recycling of Organic Wastes in Agriculture: An Environmental Perspective. Int. J. Environ. Res. 2019, 13, 409–429. [Google Scholar] [CrossRef]
- Hafez, M.; Popov, A.I.; Rashad, M. Integrated Use of Bio-Organic Fertilizers for Enhancing Soil Fertility–Plant Nutrition, Germination Status and Initial Growth of Corn (Zea mays L.). Environ. Technol. Innov. 2021, 21, 101329. [Google Scholar] [CrossRef]
- Dias, M.C.; Figueiras, R.; Sousa, M.; Araújo, M.; de Oliveira, J.M.P.F.; Pinto, D.C.G.A.; Silva, A.M.S.; Santos, C. Ascophyllum Nodosum Extract Improves Olive Performance Under Water Deficit Through the Modulation of Molecular and Physiological Processes. Plants 2024, 13, 2908. [Google Scholar] [CrossRef]
- Dias, M.C.; Araújo, M.; Silva, S.; Santos, C. Sustainable Olive Culture under Climate Change: The Potential of Biostimulants. Horticulturae 2022, 8, 1048. [Google Scholar] [CrossRef]
- Qiu, T.; Shi, Y.; Peñuelas, J.; Liu, J.; Cui, Q.; Sardans, J.; Zhou, F.; Xia, L.; Yan, W.; Zhao, S.; et al. Optimizing Cover Crop Practices as a Sustainable Solution for Global Agroecosystem Services. Nat. Commun. 2024, 15, 10617. [Google Scholar] [CrossRef]
- Garcia, L.; Celette, F.; Gary, C.; Ripoche, A.; Valdés-Gómez, H.; Metay, A. Management of Service Crops for the Provision of Ecosystem Services in Vineyards: A Review. Agric. Ecosyst. Environ. 2018, 251, 158–170. [Google Scholar] [CrossRef]
- Bathaei, A.; Štreimikienė, D. Renewable Energy and Sustainable Agriculture: Review of Indicators. Sustainability 2023, 15, 14307. [Google Scholar] [CrossRef]
- Babu, S.; Mohapatra, K.P.; Das, A.; Yadav, G.S.; Tahasildar, M.; Singh, R.; Panwar, A.S.; Yadav, V.; Chandra, P. Designing Energy-Efficient, Economically Sustainable and Environmentally Safe Cropping System for the Rainfed Maize–Fallow Land of the Eastern Himalayas. Sci. Total Environ. 2020, 722, 137874. [Google Scholar] [CrossRef]
- Obi, F.; Ugwuishiwu, B.; Nwakaire, J. Agricultural waste concept, generation, utilization and management. Niger. J. Technol. 2016, 35, 957. [Google Scholar] [CrossRef]
- Capanoglu, E.; Nemli, E.; Tomas-Barberan, F. Novel Approaches in the Valorization of Agricultural Wastes and Their Applications. J. Agric. Food Chem. 2022, 70, 6787–6804. [Google Scholar] [CrossRef]
- Sherwood, J. The Significance of Biomass in a Circular Economy. Bioresour. Technol. 2020, 300, 122755. [Google Scholar] [CrossRef]
- Pandey, A.K.; Thakur, S.; Mehra, R.; Kaler, R.S.S.; Paul, M.; Kumar, K. Transforming Agri-food waste: Innovative pathways toward a zero-waste circular economy. Food Chem. 2025, 28, 102604. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a Farm to Fork Strategy for a Fair, Healthy and Environmentally-Friendly Food System; European Union, Ed.; European Commission: Brussels, Belgium, 2020; p. 381. [Google Scholar]
- Calabró, G.; Vieri, S. Food Waste and the EU Target: Effects on the Agrifood Systems’ Sustainability. J. Foodserv. Bus. Res. 2024, 28, 793–810. [Google Scholar] [CrossRef]
- European Commission. Directive of the European Parliament and of the Council Amending Directive 2008/98/EC on Waste, Staff Working Document Impact Assessment–SWD; European Commission: Brussels, Belgium, 2023; p. 421. [Google Scholar]
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Ensuring Resilient and Sustainable Use of EU’s Natural Resources; European Commission: Brussels, Belgium, 2023; p. 410. [Google Scholar]
- European Commission. The European Green Deal (COM/2019/640). 2019. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52019DC0640 (accessed on 16 December 2024).
- Ben-Othman, S.; Jõudu, I.; Bhat, R. Bioactives from Agri-Food Wastes: Present Insights and Future Challenges. Molecules 2020, 25, 510. [Google Scholar] [CrossRef] [PubMed]
- Mengqi, Z.; Shi, A.; Ajmal, M.; Ye, L.; Awais, M. Comprehensive Review on Agricultural Waste Utilization and High-Temperature Fermentation and Composting. Biomass Convers. Biorefin 2023, 13, 5445–5468. [Google Scholar] [CrossRef]
- de Nijs, E.A.; Bol, R.; Zuurbier, R.; Tietema, A. From Waste to Fertilizer: The Impact of Rose-Waste Compost on Cut Rose Cultivation in Kenya. Clean. Waste Syst. 2025, 10, 100208. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, B.; Wang, J.; Zhang, G.; Yue, Z.; Hu, L.; Yu, J.; Liu, Z. Effects of Different Agricultural Waste Composts on Cabbage Yield and Rhizosphere Environment. Agronomy 2024, 14, 413. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef]
- Sayara, T.; Basheer-Salimia, R.; Hawamde, F.; Sánchez, A. Recycling of Organic Wastes through Composting: Process Performance and Compost Application in Agriculture. Agronomy 2020, 10, 1838. [Google Scholar] [CrossRef]
- Carrizo, M.E.; Alesso, C.A.; Cosentino, D.; Imhoff, S. Aggregation Agents and Structural Stability in Soils with Different Texture and Organic Carbon Contents. Sci. Agric. 2015, 72, 75–82. [Google Scholar] [CrossRef]
- Duan, C.; Li, J.; Zhang, B.; Wu, S.; Fan, J.; Feng, H.; He, J.; Siddique, K.H.M. Effect of Bio-Organic Fertilizer Derived from Agricultural Waste Resources on Soil Properties and Winter Wheat (Triticum aestivum L.) Yield in Semi-Humid Drought-Prone Regions. Agric. Water Manag. 2023, 289, 108539. [Google Scholar] [CrossRef]
- Yu, Q.; Gao, B.; Zhang, X. Agricultural Wastes Improve Soil Quality and Enhance the Phytoremediation Efficiency of Economic Crops for Heavy Metal-Contaminated Soils in Mining Areas. Environ. Geochem. Health 2025, 47, 65. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Si, L.; Zhang, X.; Cao, K.; Wang, J. Various Green Manure-Fertilizer Combinations Affect the Soil Microbial Community and Function in Immature Red Soil. Front. Microbiol. 2023, 14, 1255056. [Google Scholar] [CrossRef]
- Dutta, A.; Trivedi, A.; Nath, C.P.; Gupta, D.S.; Hazra, K.K. A Comprehensive Review on Grain Legumes as Climate-smart Crops: Challenges and Prospects. Environ. Chall. 2022, 7, 100479. [Google Scholar] [CrossRef]
- van Loon, M.P.; Alimagham, S.; Pronk, A.; Fodor, N.; Ion, V.; Kryvoshein, O.; Kryvobok, O.; Marrou, H.; Mihail, R.; Mínguez, M.I.; et al. Grain Legume Production in Europe for Food, Feed and Meat-Substitution. Glob. Food Secur. 2023, 39, 100723. [Google Scholar] [CrossRef]
- Yu, J.; Wu, Y.; Shin, W. From Waste to Value: Integrating Legume Byproducts into Sustainable Industrialization. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70174. [Google Scholar] [CrossRef]
- Śmiglak-Krajewska, M.; Wojciechowska-Solis, J.; Viti, D. Consumers’ Purchasing Intentions on the Legume Market as Evidence of Sustainable Behaviour. Agriculture 2020, 10, 424. [Google Scholar] [CrossRef]
- Kakkar, S.; Dharavat, N.; Sudabattula, S.K. Transforming Food Waste into Energy: A Comprehensive Review. Results Eng. 2024, 24, 103376. [Google Scholar] [CrossRef]
- Sifola, M.I.; Carrino, L.; Cozzolino, E.; Palladino, M.; Sicignano, M.; Todisco, D.; del Piano, L. The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation. Sustainability 2025, 17, 769. [Google Scholar] [CrossRef]
- Jensen, E.S.; Carlsson, G.; Hauggaard-Nielsen, H. Intercropping of Grain Legumes and Cereals Improves the Use of Soil N Resources and Reduces the Requirement for Synthetic Fertilizer N: A Global-Scale Analysis. Agron. Sustain. Dev. 2020, 40, 5. [Google Scholar] [CrossRef]
- FAO. 2023. Available online: https://www.fao.org/newsroom/detail/world-pulses-day-2023-highlights-how-pulses-are-at-the-core-of-sustainability/en (accessed on 24 September 2024).
- INE Estatísticas Agrícolas. 2020. Available online: https://www.ine.pt/xportal/xmain?xpid=INE&xpgid=ine_indicadores&userLoadSave=Load&userTableOrder=173&tipoSeleccao=1&contexto=pq&selTab=tab1&submitLoad=true&xlang=pt (accessed on 23 October 2024).
- Pereira, G.; Meneses, M.; Barcelos, C. Características das Leguminosas-Grão; INIAV: Oeiras, Portugal, 2023. [Google Scholar]
- Lorenzo, P.; Guilherme, R.; Barbosa, S.; Ferreira, A.J.D.; Galhano, C. Agri-Food Waste as a Method for Weed Control and Soil Amendment in Crops. Agronomy 2022, 12, 1184. [Google Scholar] [CrossRef]
- Murungu, F.S.; Chiduza, C.; Muchaonyerwa, P.; Mnkeni, P.N.S. Decomposition, Nitrogen and Phosphorus Mineralization from Winter-Grown Cover Crop Residues and Suitability for a Smallholder Farming System in South Africa. Nutr. Cycl. Agroecosystems 2011, 89, 115–123. [Google Scholar] [CrossRef]
- Lynch, M.J.; Mulvaney, M.J.; Hodges, S.C.; Thompson, T.L.; Thomason, W.E. Decomposition, Nitrogen and Carbon Mineralization from Food and Cover Crop Residues in the Central Plateau of Haiti. Springerplus 2016, 5, 973. [Google Scholar] [CrossRef]
- Shah, Z.; Shah, S.H.; Peoples, M.B.; Schwenke, G.D.; Herridge, D.F. Crop Residue and Fertiliser N Effects on Nitrogen Fixation and Yields of Legume–Cereal Rotations and Soil Organic Fertility. Field Crops Res. 2003, 83, 1–11. [Google Scholar] [CrossRef]
- Abera, G.; Wolde-Meskel, E.; Bakken, L.R. Unexpected High Decomposition of Legume Residues in Dry Season Soils from Tropical Coffee Plantations and Crop Lands. Agron. Sustain. Dev. 2014, 34, 667–676. [Google Scholar] [CrossRef]
- Canellas, L.P.; Espíndola, J.A.A.; Guerra, J.G.M.; Teixeira, M.G.; Velloso, A.C.X.; Rumjanek, V.M. Phosphorus Analysis in Soil under Herbaceous Perennial Leguminous Cover by Nuclear Magnetic Spectroscopy. Pesqui. Agropecu. Bras. 2004, 39, 589–596. [Google Scholar] [CrossRef]
- Siczek, A.; Frąc, M.; Gryta, A. Forecrop Effects on Abundance and Diversity of Soil Microorganisms during the Growth of the Subsequent Crop. Agronomy 2020, 10, 1971. [Google Scholar] [CrossRef]
- Palm, C.A.; Gachengo, C.N.; Delve, R.J.; Cadisch, G.; Giller, K.E. Organic Inputs for Soil Fertility Management in Tropical Agroecosystems: Application of an Organic Resource Database. Agric. Ecosyst. Environ. 2001, 83, 27–42. [Google Scholar] [CrossRef]
- Jensen, E.S.; Peoples, M.B.; Boddey, R.M.; Gresshoff, P.M.; Hauggaard-Nielsen, H.; Alves, B.J.R.; Morrison, M.J. Legumes for Mitigation of Climate Change and the Provision of Feedstock for Biofuels and Biorefineries. A Review. Agron. Sustain. Dev. 2012, 32, 329–364. [Google Scholar] [CrossRef]
- Hemwong, S.; Toomsan, B.; Cadisch, G.; Limpinuntana, V.; Vityakon, P.; Patanothai, A. Sugarcane Residue Management and Grain Legume Crop Effects on N Dynamics, N Losses and Growth of Sugarcane. Nutr. Cycl. Agroecosystems 2009, 83, 135–151. [Google Scholar] [CrossRef]
- Kebede, E. Contribution, Utilization, and Improvement of Legumes-Driven Biological Nitrogen Fixation in Agricultural Systems. Front. Sustain. Food Syst. 2021, 5, 767998. [Google Scholar] [CrossRef]
- da Silva, J.P.; da Silva Teixeira, R.; da Silva, I.R.; Soares, E.M.B.; Lima, A.M.N. Decomposition and Nutrient Release from Legume and Non-legume Residues in a Tropical Soil. Eur. J. Soil. Sci. 2022, 73, e13151. [Google Scholar] [CrossRef]
- Tirado-Corbalá, R.; López-Ramos, L.Y.; Valencia-Chin, E.; Román-Paoli, E. Yield, Decomposition, Mineralization and Nitrification of Annual Legumes in an Oxisol. Agronomy 2018, 8, 244. [Google Scholar] [CrossRef]
- Álvarez-Iglesias, L.; Puig, C.G.; Revilla, P.; Reigosa, M.J.; Pedrol, N. Faba Bean as Green Manure for Field Weed Control in Maize. Weed Res. 2018, 58, 437–449. [Google Scholar] [CrossRef]
- Garba, I.I.; Bell, L.W.; Williams, A. Cover Crop Legacy Impacts on Soil Water and Nitrogen Dynamics, and on Subsequent Crop Yields in Drylands: A Meta-Analysis. Agron. Sustain. Dev. 2022, 42, 34. [Google Scholar] [CrossRef]
- Krenz, L.M.M.; Grebenteuch, S.; Zocher, K.; Rohn, S.; Pleissner, D. Valorization of Faba Bean (Vicia faba) by-Products. Biomass Convers. Biorefin 2024, 14, 26663–26680. [Google Scholar] [CrossRef]
- Iqbal, A.; Amanullah; Song, M.; Shah, Z.; Alamzeb, M.; Iqbal, M. Integrated Use of Plant Residues, Phosphorus and Beneficial Microbes Improve Hybrid Maize Productivity in Semiarid Climates. Acta Ecol. Sin. 2019, 39, 348–355. [Google Scholar] [CrossRef]
- Gebru, H.; Belete, T.; Faye, G. Growth and Yield Performance of Pleurotus ostreatus Cultivated on Agricultural Residues. Mycobiology 2024, 52, 388–397. [Google Scholar] [CrossRef]
- Al-Chammaa, M.; Al-Ain, F.; Kurdali, F. Growth, Nitrogen and Phosphorus Uptake of Sorghum Plants as Affected by Green Manuring with Pea or Faba Bean Shell Pod Wastes Using 15N. Open Agric. J. 2019, 13, 133–145. [Google Scholar] [CrossRef]
- Lee, H.N. Valorization of Agri-Food Wastes to Improve Olive Tree Physiological Performance Under Water Deficit Conditions. Master’s Thesis, Faculty of Sciences and Technology of the University of Coimbra, Coimbra, Portugal, 2024. [Google Scholar]
- Ghassan, J.Z.; Zakaria, W.; Shaari, A.R. Application of Mungbean Residue as Green Manure. II. Effects on Growth and Yield of Sweet Potato. J. Tikrit Univ. For Agri. Sci. 2018, 18, 39–57. [Google Scholar]
- Assefa, T.; Assibi Mahama, A.; Brown, A.V.; Cannon, E.K.S.; Rubyogo, J.C.; Rao, I.M.; Blair, M.W.; Cannon, S.B. A Review of Breeding Objectives, Genomic Resources, and Marker-Assisted Methods in Common Bean (Phaseolus vulgaris L.). Mol. Breed. 2019, 39, 20. [Google Scholar] [CrossRef]
- Araújo, A.P.; Teixeira, M.G. Nitrogen and Phosphorus Harvest Indices of Common Bean Cultivars: Implications for Yield Quantity and Quality. Plant Soil. 2003, 257, 425–433. [Google Scholar] [CrossRef]
- Chagas, E.; Araújo, A.P.; Teixeira, M.G.; Guerra, J.G.M. Decomposição e Liberação de Nitrogênio, Fósforo e Potássio de Resíduos Da Cultura Do Feijoeiro. Rev. Bras. Cienc. Solo 2007, 31, 723–729. [Google Scholar] [CrossRef]
- Chatterjee, A.; Acharya, U. Controls of Carbon and Nitrogen Releases during Crops’ Residue Decomposition in the Red River Valley, USA. Arch. Agron. Soil Sci. 2020, 66, 614–624. [Google Scholar] [CrossRef]
- Caamal-Maldonado, J.A.; Jiménez-Osornio, J.J.; Torres-Barragán, A.; Anaya, A.L. The Use of Allelopathic Legume Cover and Mulch Species for Weed Control in Cropping Systems. Agron. J. 2001, 93, 27–36. [Google Scholar] [CrossRef]
- Ohno, T.; Doolan, K.L. Effects of Red Clover Decomposition on Phytotoxicity to Wild Mustard Seedling Growth. Appl. Soil Ecol. 2001, 16, 187–192. [Google Scholar] [CrossRef]
- Noble, R.; Elphinstone, J.G.; Sansford, C.E.; Budge, G.E.; Henry, C.M. Management of Plant Health Risks Associated with Processing of Plant-Based Wastes: A Review. Bioresour. Technol. 2009, 100, 3431–3446. [Google Scholar] [CrossRef]
- Raseduzzaman, M.; Gaudel, G.; Ali, M.R.; Timilsina, A.; Bizimana, F.; Aluoch, S.O.; Li, X.; Zhang, Y.; Hu, C. Cereal-Legume Mixed Residue Addition Increases Yield and Reduces Soil Greenhouse Gas Emissions from Fertilized Winter Wheat in the North China Plain. Agronomy 2024, 14, 1167. [Google Scholar] [CrossRef]
- Salehin, S.M.U.; Rajan, N.; Mowrer, J.; Casey, K.D.; Somenahally, A.C.; Bagavathiannan, M. Greenhouse Gas Emissions during Decomposition of Cover Crops and Poultry Litter with Simulated Tillage in 90-day Soil Incubations. Soil Sci. Soc. Am. J. 2024, 88, 1870–1890. [Google Scholar] [CrossRef]
Waste | Culture | Effects | Reference |
---|---|---|---|
Vicia faba | Maize | Growth stimulation | Álvarez-Iglesias et al. [84] |
Vicia faba | Sorghum | Enhance biomass production | Al-Chammaa et al. [89] |
Vicia faba | Maize | Increase yield | Iqbal et al. [87] |
Vicia faba Pisum sativum | Mushrooms | Increase yield | Gebru et al. [88] |
Vicia faba | Olive tree | Improve water content, fresh biomass and plant height | Lee [90] |
Vigna radiata | Sweet potato | Enhance plant length, stem diameter, number of branches and leaves, and leaf area. Increase the number, length, and diameter of tubers as well as dry weight | Ghassan et al. [91] |
Residue Type | Carbon (kg kg−1) | Nitrogen (g kg−1) | Phosphorus (g kg−1) | Potassium (g kg−1) | C/N | Half-Life (Days) |
---|---|---|---|---|---|---|
Stems | 0.54 | 6.8 | 0.49 | 15.3 | 79 | 133–179 |
Pod straw | 0.53 | 8.0 | 0.50 | 33.1 | 66 | 64 |
Senescent leaves | 0.48 | 20.4 | 1.54 | 9.3 | 24 | 70–80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zambela, A.; Dias, M.C.; Guilherme, R.; Lorenzo, P. Valorization of Agri-Food Waste to Promote Sustainable Strategies in Agriculture and Improve Crop Quality with Emphasis on Legume Crop Residues. Agronomy 2025, 15, 2254. https://doi.org/10.3390/agronomy15102254
Zambela A, Dias MC, Guilherme R, Lorenzo P. Valorization of Agri-Food Waste to Promote Sustainable Strategies in Agriculture and Improve Crop Quality with Emphasis on Legume Crop Residues. Agronomy. 2025; 15(10):2254. https://doi.org/10.3390/agronomy15102254
Chicago/Turabian StyleZambela, Afonso, Maria Celeste Dias, Rosa Guilherme, and Paula Lorenzo. 2025. "Valorization of Agri-Food Waste to Promote Sustainable Strategies in Agriculture and Improve Crop Quality with Emphasis on Legume Crop Residues" Agronomy 15, no. 10: 2254. https://doi.org/10.3390/agronomy15102254
APA StyleZambela, A., Dias, M. C., Guilherme, R., & Lorenzo, P. (2025). Valorization of Agri-Food Waste to Promote Sustainable Strategies in Agriculture and Improve Crop Quality with Emphasis on Legume Crop Residues. Agronomy, 15(10), 2254. https://doi.org/10.3390/agronomy15102254