Growth, Yield, and Water Productivity of Potato Genotypes Under Supplemental and Non-Supplemental Irrigation in Semi-Arid Areas of Northern Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Treatments and Experimental Design
2.3. Crop Water Requirement and Irrigation Application
2.4. Data Collection
2.4.1. Climatic Data
2.4.2. Soil Data Sampling and Analysis
2.4.3. Plant Data
2.4.4. Growth, Yield and Yield Component Data Collection
2.4.5. Determination of Potato Tuber Quality
2.4.6. Determination of Water Use Efficiency (WUE) and Water Productivity
2.5. Data Analysis
3. Results
3.1. Climate and Potato Water Requirement During the Growing Period
3.2. Growth Parameters and Yield Component of Potato Genotypes,
3.2.1. Days to Flowering and Maturity
3.2.2. Plant Height (cm)
3.2.3. Yeild Component
3.3. Effect of Supplement Irrigation on Yield of Potato Genotypes
3.3.1. Tuber Yield
3.3.2. Tuber Yield Increase
3.3.3. Harvest Index
3.4. Effect of Supplement Irrigation on Yield Quality of Potato Genotypes
3.5. Effect of Supplement Irrigation on Water Productivity and Irrigation Water Productivity of Potato Genotypes
4. Discussion
4.1. Climate and Potato Water Requirement
4.2. Potato Growth Parameters
4.3. Tuber Yield Component and Yield
4.4. Quality of Potato
4.5. Water Productivity and Irrigation Water Productivity of Potato Genotypes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Górska-Warsewicz, H.; Rejman, K.; Kaczorowska, J.; Laskowski, W. Vegetables, potatoes and their products as sources of energy and nutrients to the average diet in Poland. Int. J. Environ. Res. Public Health 2021, 18, 3217. [Google Scholar] [CrossRef] [PubMed]
- Beals, K.A. Potatoes, nutrition and health. Am. J. Potato Res. 2019, 96, 102–110. [Google Scholar] [CrossRef]
- Devaux, A.; Goffart, J.P.; Kromann, P.; Andrade-Piedra, J.; Polar, V.; Hareau, G. The Potato of the Future: Opportunities and Challenges in Sustainable Agri-food Systems. Potato Res. 2021, 64, 681–720. [Google Scholar] [CrossRef] [PubMed]
- Devaux, A.; Goffart, J.P.; Petsakos, A.; Kromann, P.; Gatto, M.; Okello, J.; Suarez, V. Global Food Security, Contributions from Sustainable Potato Agri-Food Systems. In The Potato Crop; Campos, H., Ortiz, O., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar]
- Jennings, S.A.; Koehler, A.K.; Nicklin, K.J.; Deva, C.; Sait, S.M.; Challinor, A.J. Global Potato Yields Increase under Climate Change with Adaptation and CO2 Fertilisation. Front. Sustain. Food Syst. 2020, 4, 519324. [Google Scholar] [CrossRef]
- Quiroz, R.; Ramírez, D.A.; Kroschel, J.; Andrade-Piedra, J.; Barreda, C.; Condori, B.; Mares, V.; Monneveux, P.; Perez, W. Impact of Climate Change on the Potato Crop and Biodiversity in Its Center of Origin. Open Agric. 2018, 3, 273–283. [Google Scholar] [CrossRef]
- Maqsood, J.; Farooque, A.A.; Wang, X.; Abbas, F.; Acharya, B.; Afzaal, H. Contribution of Climate Extremes to Variation in Potato Tuber Yield in Prince Edward Island. Sustainability 2020, 12, 4937. [Google Scholar] [CrossRef]
- Handayani, T.; Gilani, S.A.; Watanabe, K.N. Climatic Changes and Potatoes: How Can We Cope with the Abiotic Stresses? Breed Sci. 2019, 69, 545. [Google Scholar] [CrossRef]
- Daccache, A.; Weatherhead, E.K.; Stalham, M.A.; Knox, J.W. Impacts of Climate Change on Irrigated Potato Production in a Humid Climate. Agric. For. Meteorol. 2011, 151, 1641–1653. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Talla, A.; Swain, D.K.; Panda, R.K. Quantitative Approaches in Adaptation Strategies to Cope with Increased Temperatures Following Climate Change in Potato Crop. Potato Res. 2019, 62, 175–191. [Google Scholar] [CrossRef]
- Iwama, K.; Yamaguchi, J. Abiotic stresses. In Handbook of Potato Production, Improvement, and Postharvest Management; CRC Press: Boca Raton, FL, USA, 2006; pp. 231–278. [Google Scholar]
- Ahmadi, S.H.; Andersen, M.N.; Plauborg, F.; Poulsen, R.T.; Jensen, C.R.; Sepaskhah, A.R.; Hansen, S. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agric. Water Manag. 2010, 97, 1923–1930. [Google Scholar] [CrossRef]
- Shayannejad, M.; Moharreri, A. Effect of every-other furrow irrigation on water use efficiency, starch and protein contents of potato. J. Agric. Sci. 2009, 1, 107–112. [Google Scholar] [CrossRef]
- Monneveux, P.; Ramírez, D.A.; Pino, M.T. Drought tolerance in potato (S. tuberosum L.): Can we learn from drought tolerance research in cereals? Plant Sci. 2013, 205–206, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Johan, R.; Lousise, K.; Suhas, P.W.; Jennie, B.; Nuhu, H.; Theib, O.; Adriana, B.; Jalali, F.; Zhu, Q. Managing water in rain fed agriculture-the need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar]
- Oweis, T.; Hachum, A. Water harvesting and supplemental irrigation for improved water productivity of dry farming systems in West Asia and North Africa. Agric. Water Manag. 2006, 80, 57–73. [Google Scholar] [CrossRef]
- Gebrehiwot, T.; Van der Veen, A.; Maathuis, B. Spatial and temporal assessment of drought in the Northern highlands of Ethiopia. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 309–321. [Google Scholar] [CrossRef]
- Araya, A.; Stroosnijder, L. Assessing drought risk and irrigation need in northern Ethiopia. Agr. Forest Meteorol. 2011, 151, 425–436. [Google Scholar] [CrossRef]
- Waglay, A.; Karboune, S.; Alli, I. Potato protein isolates: Recovery and characterization of their properties. Food Chem. 2014, 142, 373–382. [Google Scholar] [CrossRef]
- Central Statistical Agency of Ethiopia (CSA). Agricultural Sample Survey 2016/2017: Report on Area and Production of Major Crops; CSA: Addis Ababa, Ethiopia, 2017; Volume I, pp. 12–18.
- Grewal, J.S.; Sharma, R.C.; Saini, S.S. Agritechniques for Intensive Potato Cultivation in India; Publications and Information Division, Indian Council of Agricultural Research, Krishi Anusandhan Bhauan: New Delhi, India, 1992; 126p. [Google Scholar]
- Oweis, T.; Hachum, A. Supplemental irrigation for improved rainfed agriculture in WANA region. In Rainfed Agriculture: Unlocking the Potential; CABI: Wallingford, UK, 2009; pp. 182–196. [Google Scholar]
- Nangia, V.; Oweis, T.; Francis, H.K.; Schnetzer, J. Supplemental irrigation: A promising climate-smart practice for dryland agriculture. In Climate-Smart Agriculture Practice Brief; CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS): Wageningen, The Netherlands, 2018. [Google Scholar]
- Hagos, B.G. Impact of agricultural technology adoption of smallholder farmers on wheat yield: Empirical evidence from Southern Tigray State of Ethiopia. J. Agric. Ext. Rural Dev. 2016, 8, 211–223. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. In FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- NRCS; United States Department of Agriculture. Natural Resources Conservation Service. Plants Database. 1999. Available online: http://plants.usda.gov (accessed on 23 September 2024).
- Assefa, S.; Biazin, B.; Muluneh, A.; Yimer, F.; Haileslassie, A. Rainwater harvesting for supplement irrigation of onions in the southern dry lands of Ethiopia. Agric.Water Manag. 2016, 178, 325–334. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; US Department of Agriculture: Washington, DC, USA, 1954.
- Mylavarapu, R.; Sikora, F.J.; Moore, K.P. Walkley-Black Method. Soil Test Methods; from the Southeastern United States. 2014; p. 158. Available online: https://aesl.ces.uga.edu/Sera6/PUB/Methodsmanualfinalsera6.Pdf (accessed on 23 September 2024).
- Karam, F.; Rouphael, Y.; Ladoud, R.; Baried, J.; Colla, G. Influence of Genotypes and Potassium application rates on the yield and potassium use efficiency of potato. J. Agron. 2009, 8, 27–32. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice-Hall of India Pvt. Ltd.: New Delhi, India, 1967; p. 498. [Google Scholar]
- Chapagain, T.R.; Tiwari, D.N.; Adhikaari, R.C.; Khatri, B.B.; Luitel, B. Performance of Potato Clones in Mid Hill of Western Nepal. In Proceedings of the National Potato Research Workshop, Lalitpur, Nepal, 31 March–2 April 2014; pp. 11–16. [Google Scholar]
- Ranganna, S. Manual of Analysis of Fruit and Vegetable products Central Food; Technological Research Institute Mysore: Columbus, OH, USA, 1977. [Google Scholar]
- Hassel, R.L.; Kelly, D.M.; Wittmeyer, E.C.; Wallace, C.; Grassbaugh, E.M.; Elliott, J.Y.; Wenneker, G.L. Ohio Potato Cultivar Trials; Ohio State University Horticulture Series; Ohio State University: Columbus, OH, USA, 1997. [Google Scholar]
- Raes, D.; Geerts, S.; Vandersypen, K. More Food, Less Water. In Lectures for the 21st Century; Raymaekers, B., Ed.; Leuven University Press: Leuven, Belgium, 2007. [Google Scholar]
- Ati, A.S.; Iyada, A.D.; Najim, S.M. Water use efficiency of potato (Solanum tuberosum L.) under different irrigation methods and potassium fertilizer rates. Ann. Agric. Sci. 2012, 57, 99–103. [Google Scholar] [CrossRef]
- Fernández, E. Editorial note on terms for crop evapotranspiration, water use efficiency and water productivity. Agric. Water Manag. 2023, 289, 108548. [Google Scholar] [CrossRef]
- Erdem, T.; Erdem, Y.; Orta, H.; Okursoy, H. Water-yield relationships of potato under different irrigation methods and regimens. Sci. Agric. 2006, 63, 226–231. [Google Scholar] [CrossRef]
- Gebremedhin, T.; Haile, G.G.; Gebremicael, T.G.; Libsekal, H.; Reda, K.W. Balancing crop water requirements through supplemental irrigation under rainfed agriculture in a semi-arid environment. Heliyon 2023, 9, e18727. [Google Scholar] [CrossRef] [PubMed]
- Fantaw, S.; Ayalew, A.; Tadesse, D.; Agegnehu, E. Evaluation of potato (Solanum tuberosum L.) varieties for yield and yield components. J. Hortic. For. 2019, 11, 48–53. [Google Scholar]
- Girma, T. Effect of Variety and Earthing up Frequency on Growth, Yield and Quality of Potato (Solanum tuberosum L.) at Bure, Northwestern Ethiopia. Master’s Thesis, Jimma University, Jimma, Ethiopia, 2012. [Google Scholar]
- Asmita, O.; Rajkumari, A.D. Varietal evaluation of different potato (Solanum tuberosum L.) varieties. Pharma Innov. J. 2022, 11, 909–918. [Google Scholar]
- Shrestha, S.; Manandhar, H.K.; Shrestha, S.M.; Karkee, A. Response of local potato cultivars to late blight disease (Phytophthora infestans) under field and laboratory conditions at Pakhribas, Dhankuta, Nepal. Adv. Cytol. Pathol. 2019, 4, 10–13. [Google Scholar] [CrossRef]
- Bhuvaneswari, S.; Sharma, S.K.; Punitha, P.; Shashidhar, K.S.; Naveenkumar, K.L.; Prakash, N. Evaluation of morphological diversity of field pea [Pisum sativum subsp. arvense (L.)] germplasm under sub-tropical climate of Manipur. Legume Res. 2017, 40, 215–223. [Google Scholar]
- Kumar, A.; Bernier, J.; Verulkar, S.; Lafitte, H.R.; Atlin, G.N. Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res. 2008, 107, 221–231. [Google Scholar] [CrossRef]
- Bilate, B.; Mulualem, T. Performance evaluation of released and farmers’ potato (Solanum tuberosum L.) varieties in eastern Ethiopia. Sky J. Agric. Res. 2016, 5, 034–041. [Google Scholar]
- Lahlou, O.; Ouattar, S.; Ledent, J.F. The effect of drought and cultivar on growth parameters, yield and yield components of potato. Agronomie 2003, 23, 257–268. [Google Scholar] [CrossRef]
- Luitel, B.P.; Khatri, B.B.; Choudhary, D.; Paudel, B.P.; Jung-Sook, S.; Hur, O.S.; Baek, H.J.; Cheol, K.H.; Yul, R.K. Growth and Yield characters of potato genotypes grown in drought and irrigated conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 2015, 3, 513–519. [Google Scholar] [CrossRef]
- Djaman, K.; Irmak, S.; Koudahe, K.; Allen, S. Irrigation management in potato (Solanum tuberosum L.) production: A review. Sustainability 2021, 13, 1504. [Google Scholar] [CrossRef]
- Luitel, B.P.; Bhandari, B.B.; Thapa, B. Evaluation of Potato Variety for Plant and Yield Characters in Field at Dailekh. Nepal J. Sci. Technol. 2020, 19, 16–24. [Google Scholar] [CrossRef]
- Tessema, G.; Mohammed, W.; Abebe, T. Evaluation of Potato (Solanum tuberosum L.) Varieties for Yield and Some Agronomic Traits. Open Agric. 2019, 5, 63–74. [Google Scholar] [CrossRef]
- Eaton, E.T.; Azad, A.K.; Kabir, H.; Siddiq, A.B. Evolution of Six modern varieties of potatoes for yield, Pant Growth Parameters and Resistance to Insects and Diseases. Agric. Sci. 2017, 8, 1315–1326. [Google Scholar]
- Banjade, S.; Shrestha, S.M.; Pokhrel, N.; Pandey, D.; Rana, M. Evaluation of Growth and Yield Attributes of Commonly Grown Potato (Solanum tuberosum) Varieties at Kavre, Nepal. Int. J. Sci. Res. Publ. 2019, 9, 134–142. [Google Scholar] [CrossRef]
- Oweis, T.; Hachum, A. Improving water productivity in the dry areas of west Asia and North Africa. In Water Productivity in Agriculture: Limits and Opportunities for Improvement; Kijne, W.J., Barker, R., Molden, D., Eds.; CABI: Wallingford, UK, 2003; pp. 179–197. [Google Scholar]
- Raja, R.; Ravisankarmdin, N.N.; Ghoshal, C.S.; Ambast, S.K.; Subhash, C.; Babulal, M.M.; Subramani, T.T.; Ahmed, Z. Effect of supplemental irrigation on yield and water productivity of dry season crops in Andaman and Nicobar Islands. Indian J. Agric. Sci. 2011, 82, 122–165. [Google Scholar] [CrossRef]
- Fox, P.; Rockstrom, J. Supplemental irrigation for dry-spell mitigation of rainfed agriculture in the Sahel. Agric. Water Manag. 2003, 61, 29–50. [Google Scholar] [CrossRef]
- Khanna-Chopra, R.; Singh, S. Approaches to increase water use efficiency in horticultural and grain crops—An overview. Plant Stress 2011, 5, 52–63. [Google Scholar]
- Mazurczyk, W.; Wierbicka, A.; Trawczynski, C. Harvest index of potato crop grown under different nitrogen and water supply. Acta Sci. Pol. Agric. 2009, 8, 15–21. [Google Scholar]
- Kaur, S.; Aggarwal, P. Evaluation of antioxidant phytochemicals in different genotypes of potato. Int. J. Eng. Res. Appl. 2014, 4, 167–172. [Google Scholar]
- Abbas, H.; Ranjan, R.S. Effect of soil moisture deficit on marketable yield and quality of potatoes. Can. Biosyst. Eng. J. 2015, 57, 25–37. [Google Scholar] [CrossRef]
- Ojala, J.C.; Starck, J.C.; Kleinofkopf, G.E. Infulence of irrigation and nitrogen management on yield and quality of Potato. Am. Potato J. 1999, 67, 29–43. [Google Scholar] [CrossRef]
- Eldredge, E.P.; Holumes, Z.A.; Mosley, A.R.; Shock, C.C.; Steiber, T.D. Effect of transitory water stress on potato tuber stem-end reducing sugar and fry color. Am. Potato J. 1996, 73, 517–530. [Google Scholar] [CrossRef]
- Dean, B.B. Managing the Potato Production System; The Haworth Press: New York, NY, USA, 1994. [Google Scholar]
- Silveira, A.C.; Orena, S.; Medel-Maraboli, M.; Escalona, V.H. Determination of some functional and sensory attributes and suitability of colored- and non-colored-flesh potatoes for different cooking methods. Food Sci. Technol. 2020, 40, 395–404. [Google Scholar] [CrossRef]
- Iwona, M.; Krystyna Agnieszka, G.; Marek, G.; Anna, S. Total and Protein Nitrogen Content in Potato Tubers under the Influence of Various Care and Nutrition Methods with the Use of Biostimulants. J. Ecol. Eng. 2023, 24, 247–255. [Google Scholar]
- Zarzecka, K.; Gąsiorowska, B. The effect of varied care on the consumption value of edible potato. Zesz. Nauk. AP w Siedlcach Rol. 2002, 61, 53–64. [Google Scholar]
- Marwaha, R.S.; Pandey, S.K.; Kumar, D.; Singh, S.V.; Kumer, P. Potato processing scenario in India: Industrial constraints, future projections, challenges ahead and remedies: A review. J. Food Sci. Technol. 2010, 47, 137–156. [Google Scholar] [CrossRef]
- Badr, M.A.; El-Tohamy, W.A.; Zaghloul, A.M. Yield and water use efficiency of potato grown under different irrigation and nitrogen levels in an arid region. Agric. Water Manag. 2012, 110, 9–15. [Google Scholar] [CrossRef]
- Yuan, B.Z.; Nishiyama, S.; Kang, Y. Effects of different irrigation regimes on the growth and yield of drip-irrigated potato. Agric. Water Manag. 2003, 63, 153–167. [Google Scholar] [CrossRef]
- Ahmad, F.A.; Salih, S.A.; Mahmood, Y.A. The Effect of Different Irrigation Interval on Tuber Yield and Quality of Potato (Solanum tuberosum L.). Kurd. J. Appl. Res. 2018, 3, 27–30. [Google Scholar]
- Tolessa, E.S.; Belew, D.; Debela, A.; Kedi, B. Effect of Nitrogen Rates and Irrigation Regimes on Water Use Efficiency of Selected Potato Varieties in Jimma Zone, West Ethiopia. Adv. Crop Sci. Technol. 2016, 4, 244. [Google Scholar] [CrossRef]
Sites | pH | EC (ds/m) | OM (%) | CEC (cmol/kg) | TN (%) | Av. P (ppm) | BD (g/cm3) | FC (%) | PWP (%) | TAW (mm/m) | Particle Size (%) | Soil Texture | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | ||||||||||||
Elalla | 7.02 | 0.63 | 1.62 | 43.13 | 0.09 | 15.89 | 1.28 | 32.5 | 18.5 | 140 | 40 | 22 | 38 | Clay loam |
Aynalem | 7.25 | 0.37 | 2.25 | 27.20 | 0.12 | 49.02 | 1.51 | 30.5 | 15.5 | 150 | 48 | 10 | 42 | Sandy clay |
Genotype | Days to Flowering | Days to Maturity | ||
---|---|---|---|---|
Supplement Irrigation | No Irrigation | Supplement Irrigation | No Irrigation | |
CIP-394611.112 | 46.5 e | 46.25 e | 85.75 c | 81.75 d |
CIP-3960478.90 | 46.58 e | 46.42 e | 85.58 c | 82.25 d |
CIP-392661.18 | 56.75 a | 55.08 b | 113.67 a | 107.00 b |
Gudanie | 54.00 c | 53.75 c | 112.92 a | 107.33 b |
Seohong | 51.58 d | 51.75 d | 85.67 c | 81.92 d |
CV (%) | 1.8 | 1.5 | ||
LSD (p < 0.05) | 0.7289 * | 1.162 *** |
Treatment | Plant Height (cm) | Average Number of Tubers Per Plant | Average Tuber Weight (gm) | Average Tuber Diameter (mm) |
---|---|---|---|---|
Genotype | ||||
CIP-394611.112 | 56.19 b | 11.14 a | 64.83 ab | 48.04 a |
CIP-3960478.90 | 56.80 b | 11.39 a | 62.21 b | 46.95 ab |
CIP-392661.18 | 64.32 a | 11.24 a | 67.04 a | 47.50 ab |
Gudanie | 69.73 a | 9.99 b | 62.38 b | 48.95 a |
Seohong | 49.82 c | 8.95 b | 53.28 c | 45.69 b |
CV (%) | 9.4 | 10.38 | 9.8 | 7.4 |
LSD (p < 0.05) | 4.059 *** | 1.002 *** | 4.940 * | 2.848 * |
Irrigation | ||||
1. No irrigation | 58.76 a | 9.89 b | 59.71 b | 46.70 b |
2. Supplement Irrigation | 59.98 a | 11.19 a | 64.42 a | 48.16 a |
CV (%) | 9.4 | 10.7 | 9.8 | 14.8 |
LSD (p < 0.05) | 1.815 ns | 0.842 *** | 2.209 * | 1.274 * |
Genotype | Marketable Tuber Yield (t/ha) | Total Tuber Yield | ||
---|---|---|---|---|
Supplement Irrigation | No Irrigation | Supplement Irrigation | No Irrigation | |
CIP-394611.112 | 26.65 a | 24.45 b | 28.14 a | 25.60 b |
CIP-3960478.90 | 27.13 a | 22.14 c | 28.71 a | 23.17 c |
CIP-392661.18 | 22.82 bc | 20.27 d | 25.16 b | 21.47 c |
Gudanie | 19.25 d | 14.62 e | 21.82 c | 16.85 d |
Seohong | 13.62 e | 13.08 e | 14.91 e | 14.13 e |
CV (%) | 10.00 | 9.60 | ||
LSD (p < 0.05) | 1.666 * | 1.722 * |
Treatment | DM (%) | Specific Gravity (gcm−3) | Starch Content (%) | Protein Content (%) |
---|---|---|---|---|
1. Genotype | ||||
CIP-394611.112 | 24.08 ab | 1.074 a | 12.58 a | 2.13 a |
CIP-3960478.90 | 24.77 a | 1.078 a | 13.28 a | 2.13 a |
CIP-392661.18 | 23.22 bc | 1.075 a | 12.78 a | 2.09 a |
Gudanie | 22.40 c | 1.072 a | 12.25 a | 2.21 a |
Seohong | 22.17 c | 1.070 a | 12.20 a | 2.09 a |
CV (%) | 10.10 | 2.7 | 24.9 | 13.7 |
LSD (p < 0.05) | 1.359 ** | 0.013 ns | 2.508 ns | 1.061 ns |
2. Irrigation | ||||
1. No irrigation | 23.29 a | 1.076 a | 13.01 a | 2.13 a |
2. Suplement irrigation | 23.36 a | 1.072 a | 12.23 a | 2.13 a |
CV (%) | 11.09 | 2.7 | 24.9 | 13.70 |
LSD (p < 0.05) | 0.860 ns | 0.008 ns | 1.586 ns | 0.671 ns |
Genotype | Total Water Productivity (kg m−3) | |
---|---|---|
Irrigated | No Irrigated | |
CIP-394611.112 | 7.42 b | 8.51 a |
CIP-3960478.90 | 7.59 b | 7.71 b |
CIP-392661.18 | 3.84 f | 4.53 e |
Gudanie | 5.41 d | 6.79 c |
Seohong | 4.60 e | 4.91 de |
CV (%) | 14.54 | |
LSD (p < 0.05) | 0.541 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misgina, N.A.; Beshir, H.M.; Yohannes, D.B.; Gebreyohanes, G.H. Growth, Yield, and Water Productivity of Potato Genotypes Under Supplemental and Non-Supplemental Irrigation in Semi-Arid Areas of Northern Ethiopia. Agronomy 2025, 15, 72. https://doi.org/10.3390/agronomy15010072
Misgina NA, Beshir HM, Yohannes DB, Gebreyohanes GH. Growth, Yield, and Water Productivity of Potato Genotypes Under Supplemental and Non-Supplemental Irrigation in Semi-Arid Areas of Northern Ethiopia. Agronomy. 2025; 15(1):72. https://doi.org/10.3390/agronomy15010072
Chicago/Turabian StyleMisgina, Niguse Abebe, Hussien Mohammed Beshir, Derbew Belew Yohannes, and Gebre Hadgu Gebreyohanes. 2025. "Growth, Yield, and Water Productivity of Potato Genotypes Under Supplemental and Non-Supplemental Irrigation in Semi-Arid Areas of Northern Ethiopia" Agronomy 15, no. 1: 72. https://doi.org/10.3390/agronomy15010072
APA StyleMisgina, N. A., Beshir, H. M., Yohannes, D. B., & Gebreyohanes, G. H. (2025). Growth, Yield, and Water Productivity of Potato Genotypes Under Supplemental and Non-Supplemental Irrigation in Semi-Arid Areas of Northern Ethiopia. Agronomy, 15(1), 72. https://doi.org/10.3390/agronomy15010072