Fermentation and Nutritive Value of Pineapple Stubble Silage Supplemented with Leucaena Hay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Ethics Committee Protocol Number
2.2. Experimental Design and Treatments
2.3. Handling and Silage Preparation
2.4. Silo Opening and Sample Preparation for Analyses
2.5. In Situ Degradability
2.6. In Vitro Gas Production Measurements
2.7. Statistical Analysis
3. Results
3.1. Fermentation Characteristics and Chemical Composition of Silages
3.2. In Situ Degradability
3.3. In Vitro Gas Production
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Companhia Nacional de Abastecimento—CONAB. Compêndio de Estudos CONAB. V. 24; CONAB: Brasília, Brazil, 2020. [Google Scholar]
- Kiggundu, M.; Kabi, F. Effect of wilting organic pineapple by-products and jack bean (Canavalia ensiformis) foliage inclusion on silage fermentation and its nutritive value. Anim. Feed. Sci. Technol. 2019, 258, 114303. [Google Scholar] [CrossRef]
- López-Herrera, M.; WingChing-Jones, R.; Rojas-Baurrillón, A. Meta-análisis de los subproductos de piña (Ananas comosus) para la alimentación animal. Agron. Mesoam. 2014, 25, 383–392. [Google Scholar] [CrossRef]
- Daniel, J.L.P.; Bernardes, T.F.; Jobim, C.C.; Schmidt, P.; Nussio, L.G. Production and utilization of silages in tropical areas with a focus on Brazil. Grass Forage Sci. 2019, 74, 188–200. [Google Scholar] [CrossRef]
- Webster, J. The Biochemistry of Silage (Second Edition). By P. McDonald, A.R. Henderson, and S.J.E. Heron. Marlow, Bucks, UK: Chalcombe Publications, (1991), pp. 340, £49.50, ISBN 0-948617-225. Exp. Agric. 1992, 28, 125. [Google Scholar] [CrossRef]
- Araújo, K.G. Características Produtivas, Nutricionais e Fermentativas e Cinética de Trânsito de Partículas de Silagem de Milho. Master’s Thesis, Universidade Federal do Maranhão, São Luís, Brazil, 2011. [Google Scholar]
- Razak, O.A.; Masaaki, H.; Yimamu, A.; Meiji, O. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-Product Feedstuffs. Asian-Australas. J. Anim. Sci. 2012, 25, 471–478. [Google Scholar] [CrossRef] [PubMed]
- dos Santos Costa, C.; Rodrigues, R.C.; De ArauÃÅjo, R.A.; De Sousa Santos, F.N.; Sousa, G.O.C.; Lima, J.R.L.; Rodrigues, M.M.; Da Silva, I.R.; De Jesus, A.P.R.; Miranda, B.E.C. Nutritional composition of “Ponta Negra” forage sorghum silage enriched with dried Leucaena leucocephala forage. Semin. CieÃÇncias AgraÃÅrias 2019, 40, 2397–2406. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Oliviera, J.; Nunes, R.; Rodrigues, L.; Rocha, A. Efeito de aditivo em silagens de leguminosas forrageiras. Cienc. Práx. 2015, 8, 53–57. [Google Scholar]
- Bolsen, K.K.; Lin, C.; Brent, B.E.; Feyerherm, A.M.; Urban, J.E.; Aimutis, W.R. Effect of Silage Additives on the Microbial Succession and Fermentation Process of Alfalfa and Corn Silages. J. Dairy Sci. 1992, 75, 3066–3083. [Google Scholar] [CrossRef]
- Playne, M.J.; McDonald, P. The buffering constituents of herbage and silage. J. Sci. Food Agric. 1966, 17, 264–268. [Google Scholar] [CrossRef]
- Zanine, A.D.M.; Santos, E.M.; Dórea, J.R.R.; Dantas, P.A.D.S.; Silva, T.C.D.; Pereira, O.G. Avaliação da silagem de grama de elefante com a adição de raspagens de mandioca. Rev. Bras. Zootec. 2010, 39, 2611–2616. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- Detmann, E.; Souza, M.A.; Valadares Filho, S.C.; Queiroz, A.C.; Berchielli, T.T.; Saliba, E.O.E.; Cabral, L.S.; Pina, D.S.; Ladeira, M.M.; Azevedo, J.A.G. Métodos Para Análise de Alimentos; (INCT—Ciência animal); Universidade Federal de Viçosa: Viçosa, Brazil, 2012; 214p. [Google Scholar]
- Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016.
- Nocek, J.E. In situ and Other Methods to Estimate Ruminal Protein and Energy Digestibility: A Review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Quantification of Tannins in Tree Foliage: A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Ørskov, E.R.; Mcdonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to the rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Maurício, R.M.; Molde, F.; Dhanoa, M.; Owen, E.; Channa, K.; Theodorou, M. A semi-automated in vitro gas production technique for ruminant feedstuff evaluation. Anim. Feed. Sci. Technol. 1999, 79, 321–330. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage review: Factors affecting dry matter and quality losses in silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed]
- Bueno, I.C.S.; Cabral Filho, S.L.S.; Gobbo, S.P.; Louvandini, H.; Vitti, D.M.S.S.; Abdalla, A.L. Influence of inoculum source in a gas production method. Anim. Feed. Sci. Technol. 2005, 123–124, 95–105. [Google Scholar] [CrossRef]
- Nocek, J.E.; Hart, S.P.; Polan, C.E. Influence of ration protein content and degradability on milk production and composition in early lactation and mid-lactation Holstein cows. J. Dairy Sci. 1987, 70, 1947–1957. [Google Scholar]
- Palmquist, D.L.; Conrad, H.R. Origin of plasma fatty acids in lactating cows fed high grain or high-fat diets. J. Dairy Sci. 1971, 54, 1025–1033. [Google Scholar]
- Malavolta, E.; Vitti, G.C.; Oliveira, S.A. Avaliação do Estado Nutricional das Plantas: Princípios E Aplicações; POTAFOS: Piracicaba, Brazil, 1997; p. 319. ISBN 0-948617-225. [Google Scholar]
- Zanine, A.M.; de Sene, O.A.; de Jesus Ferreira, D.; Parente, H.N.; de Oliveira Maia Parente, M.; Pinho, R.M.A.; Santos, E.M.; Nascimento, T.V.C.; de Oliveira Lima, A.G.V.; Perazzo, A.F.; et al. Fermentative profile, losses, and chemical composition of silage soybean genotypes amended with sugarcane levels. Sci. Rep. 2020, 10, 521. [Google Scholar] [CrossRef]
- Kung, L., Jr.; Shaver, R.D.; Grant, R.J.; Schmidt, R.J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 2018, 101, 4020–4033. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: New York, NY, USA, 1994. [Google Scholar]
- Gonçalves, R.N.; Gozzini Barbosa, S.D.; da Silva-López, R.E. Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology. Biotechnol. Res. Int. 2016, 2016, 3427098. [Google Scholar] [CrossRef] [PubMed]
- Grabber, J.H. How Do Lignin Composition, Structure, and Cross-Linking Affect Degradability? A Review of Cell Wall Model Studies. Crop Sci. 2005, 45, 820–831. [Google Scholar] [CrossRef]
- Getachew, G.; Robinson, P.H.; DePeters, E.J.; Taylor, S.J. Relationships between chemical composition, dry matter degradations, and in vitro gas production of several ruminant feeds. Anim. Feed. Sci. Technol. 2004, 111, 57–71. [Google Scholar] [CrossRef]
- Getachew, G.; De Peters, E.J.; Robinson, P.H.; Fadel, J.G. Use of an in vitro rumen gas production technique to evaluate microbial fermentation of ruminant feeds and its impact on fermentation products. Anim. Feed. Sci. Technol. 2005, 123–124, 547–559. [Google Scholar] [CrossRef]
Chemical Composition (% DM) | Pineapple Stubble | Leucaena Hay |
---|---|---|
Dry matter (% as fed basis) | 19.11 | 91.17 |
Crude protein | 6.26 | 17.81 |
Soluble carbohydrates | 11.68 | 6.54 |
Neutral detergent fiber | 51.40 | 43.60 |
Acid detergent fiber | 26.90 | 23.90 |
Hemicellulose | 24.50 | 19.70 |
Lignin | 4.87 | 9.74 |
Ash | 15.57 | 13.82 |
Buffering capacity * | 51.67 | 22.48 |
Ingredients | Proportions (% DM) |
---|---|
Elephant grass | 70 |
Corn | 21 |
Soybean meal | 8.4 |
Mineral mix | 0.6 |
Item | Ingredients (% DM) | |||
---|---|---|---|---|
Elephant Grass | Corn | Soybean Meal | Mineral Mix | |
Dry matter | 22 | 88 | 90 | 98 |
Crude protein | 8 | 9.0 | 45 | - |
Neutral detergent fiber | 65 | 8.0 | 10 | - |
Acid detergente fiber | 40 | 5.0 | 12 | - |
Ether extract | 3 | 4 | 2 | - |
Total digestible nutrients | 55 | 86 | 80 | - |
Calcium | 0.3 | 0.02 | 0.02 | 0.30 |
Phosphorus | 0.2 | 0.30 | 0.7 | 10 |
Variable | Wilted Pineapple | Levels of Inclusion (%) | SEM | R2 | ||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | ||||
pH 1 | 3.81 | 3.73 * | 3.82 | 3.90 * | 3.97 * | 4.06 * | 0.02 | 0.94 *** |
Buffering capacity (e.mg NaOH 100 g·DM−1) 2 | 98.35 | 102.42 | 79.59 * | 56.16 * | 52.23 * | 40.44 * | 4.56 | 0.87 *** |
Water-soluble carbohydrates (%) 3 | 3.62 | 3.91 | 3.05 | 2.41 | 1.81 * | 1.12 * | 0.23 | 0.56 *** |
Gas losses (%) 4 | 3.73 | 3.28 | 3.67 | 1.54 * | 1.22 * | 0.82 * | 0.27 | 0.83 *** |
Effluent losses (%) 5 | 2.97 | 11.11 * | 3.98 | 2.29 | 1.67 | 0.63 * | 0.70 | 0.71 *** |
Dry matter recovery. (%) 6 | 90.73 | 82.04 * | 91.06 | 95.30 * | 96.80 * | 97.64 * | 1.05 | 0.93 *** |
Propionic acid (ppm) 7 | 2.45 | 2.44 | 2.42 * | 2.44 | 2.43 | 2.45 | 0.004 | NS |
Butyric acid (ppm) 8 | 2.09 | 2.06 | 1.95 | 1.98 | 1.86 * | 1.95 | 0.04 | NS |
Variable | Wilted Pineapple | Levels of Inclusion (%) | SEM | R2 | ||||
---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | ||||
Dry matter (%) 1 | 27.00 | 21.9 * | 27.65 | 31.80 * | 36.25 * | 43.50 * | 1.34 | 0.97 *** |
crude protein (%) 2 | 6.49 | 6.24 | 9.33 * | 10.90 * | 12.79 * | 12.92 * | 0.54 | 0.90 *** |
Neutral detergent fiber (%) 3 | 52.01 | 54.54 | 53.30 | 52.89 | 52.99 | 51.29 | 0.41 | 0.24 NS |
Acid detergent fiber (%) 4 | 29.70 | 31.08 | 30.73 | 30.12 | 28.77 | 28.81 | 0.33 | 0.24 NS |
Hemicellulose (%) 5 | 22.31 | 22.30 | 22.57 | 22.77 | 23.22 | 22.48 | 0.17 | 0.02 NS |
Lignin (%) 6 | 4.63 | 5.01 | 7.12 * | 8.09 * | 9.13 * | 9.96 * | 0.37 | 0.93 *** |
Ash (%) 7 | 14.28 | 14.82 | 14.78 | 14.90 | 14.42 | 14.32 | 0.14 | 0.07 NS |
Treatments | a (%) | b (%) | c (%/h) | A | R2 | Effective Degradability (%) | ||
---|---|---|---|---|---|---|---|---|
2%/h | 5%/h | 8%/h | ||||||
Wilted pineapple | 35.72 | 43.75 | 2.46 | 79.47 | 92.49 | 59.85 | 50.15 | 46.01 |
0 | 30.46 | 42.97 | 2.44 | 73.43 | 89.73 | 54.07 | 44.55 | 40.50 |
10 | 31.65 | 53.59 | 1.43 | 85.24 | 91.84 | 53.99 | 43.57 | 39.78 |
20 | 29.89 | 36.13 | 2.87 | 66.02 | 92.01 | 51.18 | 43.07 | 39.43 |
30 | 29.22 | 35.42 | 2.46 | 64.64 | 75.10 | 48.76 | 40.90 | 37.55 |
40 | 29.51 | 34.09 | 0.03 | 63.60 | 92.68 | 48.45 | 40.87 | 37.63 |
Parameters | Wilted Pineapple | Levels of Inclusion (%) | SEM | Equation | p Value | ||||
---|---|---|---|---|---|---|---|---|---|
0 | 10 | 20 | 30 | 40 | |||||
Gas production | |||||||||
mL g−1 DM | 133.9 | 134.4 | 130.8 | 133.7 | 129.1 | 132.5 | 1.566 | y = 133.15 − 0.05x | 0.92 |
mL g−1 OMD | 62.7 | 61.9 | 60.2 | 62.7 | 62.0 | 61.8 | 1.048 | y = 61.39 − 0.01x | 0.98 |
Nutrient degradability (g kg−1) | |||||||||
OMD | 480.3 | 472.8 | 460 | 484.4 | 479.4 | 476.4 | 2.743 | y = 469.3 − 0.26x | 0.14 |
PF | 1.5 | 1.5 | 1.4 | 1.6 | 1.5 | 1.5 | 0.028 | y = 1.47 | 0.47 |
Methane production (CH4) | |||||||||
mL g−1 DMD | 4.3 | 4.7 | 5.0 | 6.3 | 5.7 | 6.6 | 0.238 | y = 4.794 + 0.04x * | 0.12 |
mL g−1 OMD | 2.0 | 2.2 | 2.3 | 3.1 | 2.7 | 3.1 | 0.120 | y = 2.268 + 0.02x * | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, R.R.; Rodrigues, R.C.; Rodrigues, M.M.; Abdalla, A.L.; da Silva Cabral, L.; da Costa Araújo, D.L.; Olivera-Viciedo, D.; da Silva, E.C.; de Moura Zanine, A.; de Jesus Ferreira, D.; et al. Fermentation and Nutritive Value of Pineapple Stubble Silage Supplemented with Leucaena Hay. Agronomy 2024, 14, 2140. https://doi.org/10.3390/agronomy14092140
Silva RR, Rodrigues RC, Rodrigues MM, Abdalla AL, da Silva Cabral L, da Costa Araújo DL, Olivera-Viciedo D, da Silva EC, de Moura Zanine A, de Jesus Ferreira D, et al. Fermentation and Nutritive Value of Pineapple Stubble Silage Supplemented with Leucaena Hay. Agronomy. 2024; 14(9):2140. https://doi.org/10.3390/agronomy14092140
Chicago/Turabian StyleSilva, Raphael Ramos, Rosane Cláudia Rodrigues, Marcônio Martins Rodrigues, Adibe Luiz Abdalla, Luciano da Silva Cabral, Daniel Louçana da Costa Araújo, Dilier Olivera-Viciedo, Eduarda Castro da Silva, Anderson de Moura Zanine, Daniele de Jesus Ferreira, and et al. 2024. "Fermentation and Nutritive Value of Pineapple Stubble Silage Supplemented with Leucaena Hay" Agronomy 14, no. 9: 2140. https://doi.org/10.3390/agronomy14092140
APA StyleSilva, R. R., Rodrigues, R. C., Rodrigues, M. M., Abdalla, A. L., da Silva Cabral, L., da Costa Araújo, D. L., Olivera-Viciedo, D., da Silva, E. C., de Moura Zanine, A., de Jesus Ferreira, D., Santos, F. N. d. S., Costa, K. A. d. P., Santos, A. M. d. P., Rocha, P. L. O., & Perazzo, A. F. (2024). Fermentation and Nutritive Value of Pineapple Stubble Silage Supplemented with Leucaena Hay. Agronomy, 14(9), 2140. https://doi.org/10.3390/agronomy14092140