Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site Description
2.2. Experimental Design
Test Materials
2.3. Experimental Treatments
2.4. Collection of Plant Samples
2.5. Indicators and Methods
2.5.1. Sucrose Concentration Determination
2.5.2. Measurement of Sucrose Metabolism Enzyme Activity
Extraction of Sucrose Phosphate Synthase (SPS) and Sucrose Synthase (SS)
Determination of Sucrose Phosphate Synthase (SPS) Activity
Determination of Sucrose Synthase Activity in the Synthesis Direction (SSII)
Determination of Sucrose Synthase Activity in the Decomposition Direction (SSI)
Extraction of Invertase Enzymes
Determination of Cytoplasmic Invertase (CINV)
2.5.3. Extraction of Total RNA and Synthesis of cDNA from Sugar Beet
2.5.4. Gene Expression Analysis through qRT–PCR
2.6. Data Analysis
3. Results
3.1. Effect of Water and Fertilizer Reduction on Sugar Accumulation in Sugar Beet Root
Effect of Water and Fertilizer Reduction on Sucrose Concentration of Sugar Beet Root
3.2. Influence of Water and Fertilizer Reduction on Crucial Enzymes Associated with Sucrose Metabolism in Sugar Beet Root
3.2.1. Sucrose Phosphate Synthase
3.2.2. Sucrose Synthase
3.2.3. Invertase
Cytoplasmic Invertase
Vacuolar Acid Invertase
Cell-Wall Binding Acid Invertase
3.3. Correlation Analysis between Sucrose Accumulation and Crucial Enzyme Activities Associated with Its Metabolism
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.W.; Li, Y.C.; Yu, L.Y.; Wang, Y.Q.; Ni, H.T. Analysis of the development of beet sugar industry in China’s three major producing areas. Sugar. Crops Chin. 2017, 39, 74–76. [Google Scholar]
- Zhou, Y.L.; Li, X.W.; Liu, N.; Zhang, W.B.; Wu, Y.L.; Lu, B.F.; Liu, X.X. Discussion and Analysis on Development of Beet Sugar Industry in Inner Mongolia. Sugar. Crops Chin. 2020, 42, 59–64. [Google Scholar]
- Wang, Y.; Zhao, Y.H.; Li, B.; Fan, X.Y. Affecting Factors of Farmers’ Willingness to Adopt Water-saving Technology in Northwest Arid Region of China-Case study of Middle Reaches of Heihe River. Water Saving Irrig. 2012, 11, 50–54. [Google Scholar]
- Li, W.J.; Zhang, F.S. Discussion on Rational Application of Nitrogen Fertilizer in Sugar Beet. Sugar. Crops Chin. 2020, 42, 50–56. [Google Scholar]
- Szczepaniak, W.; Pepliński, K.; Barłóg, P.; Cyna, K.; Grzebisz, W. Effect of differentiated fertilizing systems on nitrogen accumulation patterns during the growing season-a sugar beet example. J. Element. 2012, 17, 669–688. [Google Scholar] [CrossRef]
- Mustafa, M.E. Effect of Nitrogen and Phosphorus Fertilization on the Performance of Three Sugar beet (Beta vulgaris. L) Cultivars. Agric. Food Sci. 2015, 24, 68–83. [Google Scholar]
- Zhang, Y.T.; Wang, H.Y.; Lei, Q.L.; Zhang, J.Z.; Zhai, L.M.; Ren, T.Z.; Liu, H.B. Recommended Methods for Optimal Nitrogen Application Rate. Sci. Agric. Sin. 2018, 51, 2937–2947. [Google Scholar]
- Bai, X.S.; Lin, M.; Yang, H.Z.; Wang, S.L.; Pan, J.H.; Liu, H.J.; Chen, Y.Q.; Deng, C.H.; Li, C.Y.; Zhou, J.C. Demonstration of Sugar beet Integrated Cultivation Technology for Saving Cost, Stable Yield and Increasing Sugar Production in the Northern of Tianshan Mountain. Sugar. Crops Chin. 2018, 40, 37–40. [Google Scholar]
- Turner, N.C. Plant water relations and irrigation management. Agric. Water Manag. 1990, 17, 57–79. [Google Scholar] [CrossRef]
- Yan, B.J.; He, X.C.; Zhao, L.M.; Li, K.; Wang, Y.H. Study and Application of Cultivation Practices for Stable Yield and High Sugar Content in Sugar Beet. Sugar. Crops Chin. 2019, 41, 41–46. [Google Scholar]
- Li, D.; Wang, Y.; He, L.; Shi, X.Y.; Ma, F.M. Relationship between Sucrose Metabolism Related Enzymes and Sucrose Accumulation in Sugar beet. Crops 2009, 3, 27–31. [Google Scholar]
- Shao, K. The Relationship between the Growth of Tuber Root and Sugar Content and Sucrose Metabolizing Enzymes in Sugar Beet (Beta vulgaris L.) and Its Physiological Basis and Practice of Nutritional Regulation. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2014. [Google Scholar]
- Rossouw, D.; Kossmann, J.; Botha, F.C.; Groenewald, J.H. Reduced neutral invertase activity in the culm tissues of transgenic sugarcane plants results in a decrease in respiration and sucrose cycling and an increase in the sucrose to hexose ratio. Funct. Plant Biol. 2010, 37, 22–31. [Google Scholar] [CrossRef]
- Ripoll, J.; Urban, L.; Brunel, B.; Bertin, N. Water deficit effects on tomato quality depend on fruit developmental stage and genotype. J. Plant Physiol. 2016, 190, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Julie, R.; Laurent, U.; Michael, S.; Félicie, L.; Luc, P.R.B.; Nadia, B. Water shortage and quality of fleshy fruits—Making the most of the unavoidable. J. Exp. Bot. 2014, 65, 4097–4117. [Google Scholar]
- Beckles, D.; Hong, N.; Stamova, L.; Luengwilai, K. Biochemical factors contributing to tomato fruit sugar content: A review. Fruits 2012, 67, 49–64. [Google Scholar] [CrossRef]
- Da Silva, J.R.; Boaretto, R.M.; Lavorenti, J.A.L.; Dos Santos, B.C.F.; Coletta-Filho, H.D.; Mattos, D. Effects of Deficit Irrigation and Huanglongbing on Sweet Orange Trees. Front. Plant Sci. 2021, 12, 731314. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.Y.; Li, T.L.; Zhang, J.; Wang, L.; Chen, Y.H. Effects of Irrigation on Sucrose Metabolism, Dry Matter Distribution and Fruit Quality of Tomato Under Water Deficit. Sci. Agric. Sin. 2004, 37, 1045–1049. [Google Scholar]
- Zhang, P.; Zheng, G.Q.; Zheng, G.B.; Zhang, Y.P.; Xu, X. Effects of deficit irrigation on accumulation of sugar and activity of sugar metabolism-related enzymes of Lycium barbarum L. Agric. Res. Arid Areas 2009, 27, 160–163. [Google Scholar]
- Niedźwiedź-Siegień, I.; Bogatek-Leszczyńska, R.; Côme, D.; Corbineau, F. Effects of drying rate on dehydration sensitivity of excised wheat seedling shoots as related to sucrose metabolism and antioxidant enzyme activities. Plant Sci. 2004, 167, 879–888. [Google Scholar] [CrossRef]
- Kawatra, M.; Kaur, K.; Kaur, G. Effect of osmo priming on sucrose metabolism in spring maize, during the period of grain filling, under limited irrigation conditions. Physiol. Mol. Biol. Plants 2019, 25, 1367–1376. [Google Scholar] [CrossRef]
- Yang, S.; Fang, X.; Zhang, Q.Q.; Gong, M.J.; Zhou, H.K.; Mo, J.J. Impacts of drought on sucrose metabolism of sugarcane and its related plants. Jiangsu Agric. Sci. 2023, 51, 94–100. [Google Scholar]
- Liu, N.N. Effect of Deficit Irrigation at Leaf Cluster Stage on Source and Sink Characteristics of Drip Irrigation Sugar Beet. Ph.D. Thesis, Shihezi University, Shihezi, China, 2021. [Google Scholar]
- Crespi, M.D.; Zabaleta, E.J.; Pontis, H.G.; Salerno, G.L. Sucrose synthase expression during cold acclimation in wheat. Plant Physiol. 1991, 96, 887–891. [Google Scholar] [CrossRef] [PubMed]
- Ruan, Y.L. Sucrose metabolism: Gateway to diverse carbon use and sugar signaling. Annu. Rev. Plant Biol. 2014, 65, 33–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.H.; Yang, X.M.; Jia, H.; Song, L.H. Effects of Elevated Temperature and Drought on Sugar Accumulation, Key Sucrose Enzymes Metabolism and Related Gene Expression in Fruit of Jujube Cultivar Lingwuchangzao. J. Acta Agric. Nucl. Sin. 2020, 34, 2112–2123. [Google Scholar]
- Kakumanu, A.; Ambavaram, M.M.; Klumas, C.; Krishnan, A.; Batlang, U.; Myers, E.; Grene, R.; Pereira, A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant Physiol. 2012, 160, 846–867. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, A.C.O.; Rocha, D.S., Jr.; Silva, G.C.B.; Santos, M.G.M.; Camillo, L.R.; de Oliveira, P.H.G.A.; Cavalari, A.A.; Costa, M.G.C. Dynamics of the sucrose metabolism and related gene expression in tomato fruits under water deficit. Physiol. Mol. Biol. Plants 2023, 29, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Fritz, C.; Palacios-Rojas, N.; Feil, R.; Stitt, M. Regulation of secondary metabolism by the carbon-nitrogen status in tobacco: Nitrate inhibits large sectors of phenylpropanoid metabolism. Plant J. 2006, 46, 533–548. [Google Scholar] [CrossRef]
- Urbanczyk-Wochniak, E.; Fernie, A.R. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants. J. Exp. Bot. 2005, 56, 309–321. [Google Scholar] [CrossRef]
- Tschoep, H.; Gibon, Y.; Carillo, P.; Armengaud, P.; Szecowka, M.; Nunes-Nesi, A.; Fernie, A.R.; Koehl, K.; Stitt, M. Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant Cell Environ. 2009, 32, 300–318. [Google Scholar] [CrossRef]
- Du, F.; Liu, H.; Yin, X.; Zhao, Q.; Shi, C. Potassium-mediated regulation of sucrose metabolism and storage root formation in sweet potato. Archi. Agron. Soil Sci. 2020, 67, 703–713. [Google Scholar] [CrossRef]
- Si, C.; Shi, C.; Liu, H.; Zhan, X.; Yong, C.L. Effects of nitrogen forms on carbohydrate metabolism and storage-root formation of sweet potato. J. Plant Nutr. Soil Sci. 2018, 181, 419–428. [Google Scholar] [CrossRef]
- Chen, X.G.; Ding, Y.F.; Tang, Z.H.; Wei, M.; Shi, X.M.; Zhang, A.J.; Li, H.M. Suitable nitrogen rate for storage root yield and quality of sweet potato. J. Plant Nutr. Fertil. 2015, 21, 979–986. [Google Scholar]
- Wen, Z.J.; Guo, Y.P.; Zhang, W.; Mao, H.Y.; Liang, J. Effect of Different Levels of Nitrogen Spraying on Dynamic Changes of Starch, Sugar and Activities of Related Enzymes in Apple Fruits. Acta Agric. Boreali-Occident. Sin. 2018, 27, 846–853. [Google Scholar]
- Liu, N.; Song, B.Q.; Yan, Z.S.; Fan, Y.J.; Yang, J. Effect of Nitrogen Application on the Content of Soluble Sugar and Key Enzyme Activities in Sugar Metabolism of Sugar Beet. Chin. Agric. Sci. Bull. 2015, 31, 183–189. [Google Scholar]
- Park, M.R.; Baek, S.H.; de Los Reyes, B.G.; Yun, S.J.; Hasenstein, K.H. Transcriptome profiling characterizes phosphate deficiency effects on carbohydrate metabolism in rice leaves. J. Plant Physiol. 2012, 169, 193–205. [Google Scholar] [CrossRef]
- Li, H.; Wang, J.; Huang, X.; Zhou, Z.; Wang, S.; Hu, W. Phosphate fertilization promotes fiber elongation by affecting sucrose inversion, K+ accumulation, and malate synthesis in cotton fiber. Field Crops Res. 2023, 303, 109–119. [Google Scholar] [CrossRef]
- Wu, S.; Li, M.; Zhang, C.; Tan, Q.; Yang, X.; Sun, X.; Pan, Z.; Deng, X.; Hu, C. Effects of phosphorus on fruit soluble sugar and citric acid accumulations in citrus. Plant Physiol. Biochem. 2021, 160, 73–81. [Google Scholar] [CrossRef]
- Li, H.Y.; Xu, L.T.; Li, J.X.; Lyu, X.C.; Li, S.; Wang, C.; Wang, X.L.; Ma, C.M.; Yan, C. Multi-omics analysis of the regulatory effects of low-phosphorus stress on phosphorus transport in soybean roots. Front. Plant Sci. 2022, 13, 992036. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhou, Q.; Yu, H.B. Influence of Nitrogenous and Phosphorus Fertilizer on Sucrose Metabolizing Enzyme Activities in Sugar beet Leaf. Sugar. Crops Chin. 2006, 28, 30–33. [Google Scholar]
- Bai, R.X.; Fan, S.J.; He, H.X.; Luo, J.J.; Cui, Y. Effects of different nitrogen and phosphorus fertilizer application rates on growth, physiology, yield and quality of sugar beet. Jiangsu Agric. Sci. 2022, 50, 117–124. [Google Scholar]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Hua, M.Y.; Song, L.F.; Cui, S.J.; Tong, Y.N.; Tong, Y.N.; Yang, X.L. Effect of Potassium Fertilizer Treatment on Sugar Accumulation and Related Enzyme Activities in Strawberry Fruits. North. Hortic. 2019, 16, 38–43. [Google Scholar]
- Lester, G.E.; Jifon, J.L.; Makus, D.J. Supplemental foliar potassium applications with or without a surfactant can enhance netted muskmelon quality. HortScience 2006, 41, 741–744. [Google Scholar] [CrossRef]
- Zhang, W. Effect of Potassium on Apple Fruit Quality and Its Relationship with Trehalose 6-Phosphate Metabolism Pathway. Ph.D. Thesis, Northwest A&F University, Xi’an, China, 2017. [Google Scholar]
- Goyal, K.; Kaur, K.; Kaur, G. Foliar treatment of potassium nitrate modulates the fermentative and sucrose metabolizing pathways in contrasting maize genotypes under water logging stress. Physiol. Mol. Biol. Plants 2020, 26, 899–906. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Tu, B.; Li, Y.; Tian, B.; Zhang, Q.; Liu, X.; Herbert, S. Potassium Application Affects Key Enzyme Activities of Sucrose Metabolism during Seed Filling in Vegetable Soybean. Crop Sci. 2017, 57, 2707–2717. [Google Scholar] [CrossRef]
- Huber, S.C. Biochemical basis for effects of k-deficiency on assimilate export rate and accumulation of soluble sugars in soybean leaves. Plant Physiol. 1982, 76, 424–430. [Google Scholar] [CrossRef] [PubMed]
- Lindhauer, M.G.; De Fekete, M.A.R. Starch synthesis in potato (Solanum tuberosum) tubers: Activity of selected enzymes in dependence of potassium content in storage tissue. Plant Soil 1990, 124, 291–295. [Google Scholar] [CrossRef]
- Li, Y.S.; Du, M.; Zhang, Q.Y.; Wang, G.H.; Hashemi, M.; Liu, X.B. Greater differences exist in seed protein, oil, total soluble sugar and sucrose content of vegetable soybean genotypes [Glycine max (L.) Merrill] in Northeast China. Aust. J. Crop Sci. 2012, 6, 1681–1686. [Google Scholar]
- Zhu, Y.J.; Komor, E.; Moore, P.H. Sucrose Accumulation in the Sugarcane Stem Is Regulated by the Difference between the Activities of Soluble Acid Invertase and Sucrose Phosphate Synthase. Plant Physiol. 1997, 115, 609–616. [Google Scholar] [CrossRef]
- Xu, C.Q.; Li, T.L.; Qi, H.Y. Effects of Grafting on Development, Carbohydrate Content and Sucrose metabolizing Enzymes Activities of Muskmelon Fruit. Acta Hortic. Sin. 2006, 33, 773–778. [Google Scholar]
- Guo, Y. Fruit Sugar and Acid Accumulation and Changes of Enzyme Activities Related to Sugar Metabolism in Several Apple Varieties. Ph.D. Thesis, Northwest A&F University, Xi’an, China, 2012. [Google Scholar]
- Yu, C. Basic Study of the Substance and Energy Metabolism of Beet Root and Sugar Growth. Ph.D. Thesis, Inner Mongolia Agricultural University, Hohhot, China, 2014. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, F.L.; Kong, Q.B.; Zhuang, M.L. Effect of different reduced fertigation modes on the yield, quality and economic benefits of honey pomelo. J. Fruit Sci. 2021, 38, 361–371. [Google Scholar]
- Diao, Q.N.; Ni, X.H.; Fan, H.W.; Zhang, W.X.; Wang, H.; Zhang, Y.P. Effect of Different Fertilizers on Growth, Fruit Quality and Sucrose Metabolism of Cucumis melo. Chin. Agric. Sci. Bull. 2020, 19, 32–38. [Google Scholar]
- Lowell, C.A.; Tomlinson, P.T.; Koch, K.E. Sucrose-Metabolizing Enzymes in Transport Tissues and Adjacent Sink Structures in Developing Citrus Fruit. Plant Physiol. 1989, 90, 1394–1402. [Google Scholar] [CrossRef]
- Shao, K.; Bai, Z.Q.; Li, M.H.; Yu, C.; Shao, J.W.; Sun, Y.Q.; Li, G.L.; Zhang, S.Y.; Wang, R.G. Sucrose Metabolism Enzymes Affect Sucrose Content Rather than Root Weight in Sugar Beet (Beta vulgaris) at Different Growth Stages. Sugar Tech. 2019, 22, 504–517. [Google Scholar] [CrossRef]
- Klotz, K.L.; Campbell, L.G. Sucrose Catabolism in Developing Roots of Three Beta vulgaris Genotypes with Different Yield and Sucrose Accumulating Capacities. J. Sugar Beet Res. 2004, 41, 20–31. [Google Scholar] [CrossRef]
- Patrick, J.W. Phloem Unloading: Sieve Element Unloading and Post-Sieve Element Transport. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1997, 48, 191–222. [Google Scholar] [CrossRef]
- Takayanagi, T.; Yokotsuka, K. Relationship Between Sucrose Accumulation and Sucrose Metabolizing Enzymes in Developing Grapes. Am. J. Enol. Vitic. 1997, 48, 403–407. [Google Scholar] [CrossRef]
- Zhang, G.W.; Hu, Q.Z.; Xu, S.C.; Gong, Y.M. Study on sucrose accumulation and enzyme activities involved in sucrose metabolism in developing seeds of vegetable soybean. Acta Agric. ZheJiangensis 2012, 24, 1015–1020. [Google Scholar]
Year | Total N (g·kg−1) | Total P (g·kg−1) | Total K (g·kg−1) | Available N (mg·kg−1) | Available P (mg·kg−1) | Available K (mg·kg−1) | pH | Organic Matter (g·kg−1) |
---|---|---|---|---|---|---|---|---|
2022 | 2.07 | 0.97 | 22.11 | 134.91 | 10.31 | 197.5 | 7.98 | 32.02 |
2023 | 0.71 | 0.46 | 16.31 | 111.07 | 9.23 | 153.01 | 7.71 | 18.21 |
Treatment | Amount of Fertilizer Application (kg·hm−2) | Total Irrigation Volume (m3·hm−2) | ||
---|---|---|---|---|
N | P(P2O5) | K(K2O) | ||
CK | 135 | 150 | 150 | 1350 |
F3W2 | 1147.5 | |||
F3W1 | 945 | |||
F2W3 | 121.5 | 135 | 135 | 1350 |
F2W2 | 1147.5 | |||
F2W1 | 945 | |||
F1W3 | 108 | 120 | 120 | 1350 |
F1W2 | 1147.5 | |||
F1W1 | 945 |
Primer | R 5′ to 3′ | F 5′ to 3′ |
---|---|---|
ACT | TGCTTGACTCTGGTGATGGT | AGCAAGATCCAAACGGAGAATG |
SPS | CGGCTTCTATCCTACGCATTATTT | AACGGGGCATTCTCTTGG |
CINV | CACACAGACTCAACCCTCCTT | GCAACCGAAAGACGATGCTG |
VINV | CTCCCATTGCTCATCCTCTTCC | GCATCACATCCCGAGTTTACC |
CWINV | AAGGGTTTGTCTCCATTGCCT | TAGTCCAGTTTCTCTCCACCAC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.; Zhang, B.; Li, G.; Zhang, P.; Liu, H.; Zhang, S. Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets. Agronomy 2024, 14, 539. https://doi.org/10.3390/agronomy14030539
Chang Y, Zhang B, Li G, Zhang P, Liu H, Zhang S. Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets. Agronomy. 2024; 14(3):539. https://doi.org/10.3390/agronomy14030539
Chicago/Turabian StyleChang, Yuxin, Bowen Zhang, Guolong Li, Peng Zhang, Huiyu Liu, and Shaoying Zhang. 2024. "Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets" Agronomy 14, no. 3: 539. https://doi.org/10.3390/agronomy14030539
APA StyleChang, Y., Zhang, B., Li, G., Zhang, P., Liu, H., & Zhang, S. (2024). Influence of Water and Fertilizer Reduction on Sucrose Metabolism in Sugar Beets. Agronomy, 14(3), 539. https://doi.org/10.3390/agronomy14030539