Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Mailer, R.J. Oilseeds: Overview. In Encyclopedia of Food Grains: The World of Food Grains; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; Volume 1, pp. 221–222. [Google Scholar]
- McVetty, P.B.; Lukow, O.M.; Hall, L.M.; Rajcan, I.; Rahman, H. Grain production and consumption: Oilseeds in North America. In Encyclopedia of Food Grains, 2nd ed.; Wrigley, C., Corke, H., Seetharaman, K., Faubion, J., Eds.; Academic Press: Oxford, UK, 2016; pp. 401–408. [Google Scholar]
- Beszterda, M.; Nogala-Kalucka, M. Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). Eur. J. Lipid Sci. Technol. 2019, 121, 1800045. [Google Scholar] [CrossRef]
- Hudson, K.A.; Hudson, M.E. Genetic variation for seed oil biosynthesis in soybean. Plant Mol. Bio. Rep. 2021, 39, 700–709. [Google Scholar] [CrossRef]
- USDA-ERS. Oil Crops Yearbook. 2023. Available online: https://www.ers.usda.gov/data-products/oil-crops-yearbook/oil-crops-yearbook (accessed on 28 November 2023).
- Statistics Canada. Principal Field Crop Areas, June 2023. Available online: https://www150.statcan.gc.ca/n1/daily-quotidien/230628/dq230628a-eng.htm (accessed on 28 November 2023).
- Kogan, M.; Waldbauer, G.P.; Boiteau, G.; Eastman, C.E. Sampling bean leaf beetles on soybean. In Sampling Methods in Soybean Entomology; Kogan, M., Herzog, D.C., Eds.; Springer: New York, NY, USA, 1980; pp. 202–215. [Google Scholar]
- Pedigo, L.P.; Zeiss, M.R. Effect of soybean planting date on bean leaf beetle (Coleoptera: Chrysomelidae) abundance and pod injury. J. Econ. Entomol. 1996, 89, 183–188. [Google Scholar] [CrossRef]
- French, B.W.; Hammack, L. Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma spp. (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 2007, 100, 59–63. [Google Scholar]
- Bradshaw, J.D.; Rice, M.E.; Hill, J.H. Evaluation of management strategies for bean leaf beetles (Coleoptera: Chrysomelidae) and bean pod mottle virus (Comoviridae) in soybean. J. Econ. Entomol. 2008, 101, 1211–1227. [Google Scholar] [CrossRef]
- Varenhorst, A. Scout Soybeans for Bean Leaf Beetle Feeding. SDSU Extension. 2020. Available online: https://extension.sdstate.edu/scout-soybeans-bean-leaf-beetle-feeding (accessed on 13 January 2024).
- Bradshaw, J.; Rice, M.; Dean, A.; Hodgson, E. Bean Leaf Beetle. ISU Extension and Outreach Integrated Crop Management. 2022. Available online: https://crops.extension.iastate.edu/bean-leaf-beetle (accessed on 13 January 2024).
- Musser, F.; Hodgson, E.; Mueller, D. Bean Leaf Beetle in Soybean. USDA Crop Protect. Network. 2023. Available online: https://cropprotectionnetwork.org/encyclopedia/bean-leaf-beetle-in-soybean (accessed on 13 January 2024).
- Hadi, B.A.; Bradshaw, J.D.; Rice, M.E.; Hill, J.H. Bean leaf beetle (Coleoptera: Chysomelidae) and bean pod mottle virus in soybean: Biology, ecology, and management. J. Integr. Pest Mgmt. 2012, 3, B1–B7. [Google Scholar] [CrossRef]
- Smelser, R.B.; Pedigo, L.P. Bean leaf beetle (Coleoptera: Chrysomelidae) herbivory on leaf, stem, and pod components of soybean. J. Econ. Entomol. 1992, 85, 2408–2412. [Google Scholar] [CrossRef]
- Smelser, R.B.; Pedigo, L.P. Soybean seed yield and quality reduction by bean leaf beetle (Coleoptera, Chrysomelidae) pod injury. J. Econ. Entomol. 1992, 85, 2399–2403. [Google Scholar] [CrossRef]
- Giesler, L.J.; Ghabrial, S.A.; Hunt, T.E.; Hill, J.H. Bean pod mottle virus: A threat to US soybean production. Plant Dis. 2002, 86, 1280–1289. [Google Scholar] [CrossRef]
- Krell, R.K.; Pedigo, L.P.; Hill, J.H.; Rice, M.E. Bean leaf beetle (Coleoptera: Chrysomelidae) management for reduction of bean pod mottle virus. J. Econ. Entomol. 2004, 97, 192–202. [Google Scholar] [CrossRef]
- Hill, J.H.; Koval, N.C.; Gaska, J.M.; Grau, C.R. Identification of field tolerance to bean pod mottle and soybean mosaic viruses in soybean. Crop Sci. 2007, 47, 212–218. [Google Scholar] [CrossRef]
- Sikora, E.J.; Murphy, J.F.; Conner, K.N. Monitoring bean pod mottle virus and soybean mosaic virus incidence at different soybean growth stages in Alabama. Plant Health Prog. 2017, 18, 166. [Google Scholar] [CrossRef]
- Vojvodic, M.; Bazok, R. Future of insecticide seed treatment. Sustainability 2021, 13, 8792. [Google Scholar] [CrossRef]
- Jeschke, P.; Nauen, R. Neonicotinoids—From zero to hero in insecticide chemistry. Pest Manag. Sci. 2008, 64, 1084–1098. [Google Scholar] [CrossRef]
- Nauen, R.; Jeschke, P.; Copping, L. In focus: Neonicotinoid insecticides. Pest Manag. Sci. 2008, 64, 1081. [Google Scholar] [CrossRef] [PubMed]
- Knodel, J.J.; Lubenow, L.A.; Olson, D.L. Integrated Pest Management of Flea Beetles in Canada. NDSU Extension Serv. 2017. Available online: https://www.ag.ndsu.edu/publications/crops/integrated-pest-management-of-flea-beetles-in-canola (accessed on 24 November 2023).
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef]
- Zhang, L.; Greenberg, S.M.; Zhang, Y.; Liu, T. Effectiveness of thiamethoxam and imidacloprid seed treatments against Bemisia tabaci (Hemiptera: Aleyrodidae) on cotton. Pest Manag. Sci. 2011, 67, 226–232. [Google Scholar] [CrossRef]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
- Thrash, B.; Adamczyk, J.J.; Lorenz, G.; Scott, A.W.; Armstrong, J.S.; Pfannenstiel, R.; Taillon, N. Laboratory evaluation of lepidopteran-active soybean seed treatments on survivorship of fall armyworm (Lepidopter: Noctuidae) larvae. Fla. Entomol. 2013, 96, 724–730. [Google Scholar] [CrossRef]
- Tiwari, S.; Stelinski, L.L. Effects of cyantraniliprole, a novel anthranilic diamide insecticide, against Asian citrus psyllid under laboratory and field conditions. Pest Manag. Sci. 2013, 69, 1066–1072. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhang, Z.; Cui, K.; Zhao, Y.; Han, J.; Liu, F.; Mu, W. Effects of sublethal concentrations of cyantraniliprole on the development, fecundity, and nutritional physiology of the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae). PLoS ONE 2016, 11, e0156555. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Ding, J.; Zhao, Y.; Luo, J.; Mu, W.; Zhang, Z. Cyantraniliprole at sublethal dosages negatively affects the development, reproduction, and nutrient utilization of Ostrinia furnacalis (Lepidoptera: Crambidae). J. Econ. Entomol. 2017, 110, 230–238. [Google Scholar] [PubMed]
- Pes, M.P.; Melo, A.A.; Stacke, R.S.; Zanella, R.; Perini, C.R.; Silva, F.M.A.; Carus Guedes, J.V. Translocation of chlorantraniliprole and cyantraniliprole applied to corn as seed treatment and foliar spraying to control Spodoptera frugiperda (Lepidoptera: Noctuidae). PLoS ONE 2020, 15, e0229151. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.E.; Villegas, J.M.; Way, M.O.; Pearson, R.A.; Stout, M.J. Cyantraniliprole: A new insecticidal seed treatment for U.S. rice. Crop Prot. 2021, 140, 105410. [Google Scholar] [CrossRef]
- Barry, J.D.; Protillo, H.E.; Annan, I.B.; Cameron, R.A.; Clagg, D.G.; Dietrich, R.F.; Watson, L.J.; Leighty, R.M.; Ryan, D.L.; McMillan, J.A.; et al. Movement of cyantraniliprole in plants after foliar applications and its impact on the control of sucking and chewing insects. Pest Manag. Sci. 2014, 71, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Li, P.; Yao, X.; Sun, S.; Li, X.; Zhang, F.; Jiang, X. Cyantraniliprole seed treatment effectively controls wireworms (Ipleonomus canaliculatus Faldermann) and white grubs (Anomala corpulenta Motschulsky) in maize fields. Heliyon 2023, 9, e17302. [Google Scholar] [CrossRef]
- Trybom, J.; Jeschke, M.; Butzen, S. Seed treatment effects on stand establishment and yield in soybean. Pioneer Agron. Sci. Field Facts 2010, 9, 2–4. [Google Scholar]
- Gaspar, A.P.; Marburger, D.A.; Mourzinis, S.; Conley, S.P. Soybean seed yield response to multiple seed treatment components across diverse environments. Agron. J. 2014, 106, 1955–1962. [Google Scholar] [CrossRef]
- Cook, D.R.; Crow, W.; Gore, J.; Threet, M. Impact of selected insecticide seed treatments on soybean stand establishment and yield, 2020. Arthropod Manag. Tests 2021, 46, tsab086. [Google Scholar] [CrossRef]
- Cox, W.J.; Shields, E.; Cherney, J.H. Planting dates and seed treatment effects on soybean in the Northeastern United States. Agron. J. 2008, 100, 1662–1665. [Google Scholar] [CrossRef]
- Cox, W.J.; Cherney, J.H. Location, variation, and seedling rate interactions with soybean seed-applied insecticide/fungicides. Agron. J. 2011, 103, 1366–1371. [Google Scholar] [CrossRef]
- Labrie, G.; Gagnon, A.V.; Vanasse, A.; Latraverse, A.; Tremblay, G. Impacts of neonicotinoid seed treatments on soil-dwelling pest populations and agronomic parameters in corn and soybean in Quebec (Canada). PLoS ONE 2020, 15, e0229136. [Google Scholar] [CrossRef] [PubMed]
- Puri, V.; Nayyar, A.; Raja, L. Agriculture drones: A modern breakthrough in precision agriculture. J. Stat. Manag. Syst. 2017, 20, 4507–4518. [Google Scholar] [CrossRef]
- Daponte, P.; De Vito, L.; Glielmo, L.; Iannelli, L.; Liuzza, D.; Picariello, F.; Silano, G. A review on the use of drones for precision agriculture. IOP Conf. Ser. Earth Environ. Sci. 2019, 275, 012022. [Google Scholar] [CrossRef]
- Milics, G. Application of UAVs in Precision Agriculture. In International Climate Protection; Palocz-Andresen, M., Szalay, D., Gosztom, A., Sipos, L., Taligas, T., Eds.; Springer: Cham, Switzerland, 2019; pp. 93–97. [Google Scholar]
- Narayanan, B.; Floyd, B.; Tu, K.; Ries, L.; Hausmann, N. Improving soybean breeding using UAS measurements of physiological maturity. Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV. In Proceedings of the SPIE Defense + Commercial Sensing, Baltimore, MD, USA, 3–7 April 2019; Volume 110080U. [Google Scholar] [CrossRef]
- Olson, D.; Anderson, J. Review on unmanned aerial vehicles, remote sensors, imagery processing, and their applications in agriculture. Agron. J. 2021, 113, 971–992. [Google Scholar] [CrossRef]
- Hegstad, J.M.; Gaspar, A.P.; Feng, L.; Lackermann, K.; Hudson, A.; Howieson, M. Agronomic and efficacy evaluations of oxathiapiprolin as a soybean seed treatment. Agron. J. 2021, 113, 4850–4864. [Google Scholar] [CrossRef]
- Stroup, W.W.; Milliken, G.A.; Claassen, E.A.; Wolfinger, R.D. SAS® for Mixed Models: Introduction and Basic Applications; SAS Institute Inc.: Cary, NC, USA, 2019. [Google Scholar]
- Koch, R.L.; Burkness, E.C.; Hutchinson, W.D.; Rabeay, T.L. Efficacy of systemic insecticide seed treatments for protection of early-growth stage snap beans from bean leaf beetle (Coleoptera: Chrysomelidae) foliar feeding. Crop Prot. 2005, 24, 734–742. [Google Scholar] [CrossRef]
- Bradshaw, J.; Rice, M.; Hill, J. Seed Treatments in Soybean: Managing Bean Leaf Beetles; Integrated Crop Management; Iowa State University: Ames, IA, USA, 2007; Available online: https://crops.extension.iastate.edu/encyclopedia/seed-treatments-soybean-managing-bean-leaf-beetles (accessed on 13 January 2024).
- Conceicao, G.M.; Barbieri, A.P.P.; Lucio, A.D.; Martin, T.N.; Mertz, L.M.; Mattioni, N.M.; Lorentz, L.H. Seedlings performance and yield of soybean submitted to different chemical treatment in seeds. Biosci. J. 2014, 30, 1711–1720. [Google Scholar]
- Finch-Savage, W.E.; Bassel, G.W. Seed vigour and crop establishment: Extending performance beyond adaptation. J. Exp. Bot. 2016, 67, 567–591. [Google Scholar] [CrossRef] [PubMed]
- Virk, G.; Snider, J.L.; Pilon, C. Physiological contributors to early season whole-crop vigor in cotton. Crop Sci. 2019, 59, 2774–2783. [Google Scholar] [CrossRef]
- Nazari, R.; Parsa, S.; Afshari, R.T.; Mahmoodi, S.; Seyyedi, S.M. Salacylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. J. Crop Improv. 2020, 34, 218–237. [Google Scholar] [CrossRef]
- Smith, J.L.; Baute, T.S.; Schaafsma, A.W. Quantifying early season pest injury and yield protection of insecticide seed treatments in corn and soybean production in Ontario, Canada. J. Econ. Entom. 2020, 113, 2197–2212. [Google Scholar] [CrossRef]
- Esker, P.D.; Conley, S.P. Probability of yield response and breaking even for soybean seed treatments. Crop Sci. 2012, 52, 351–359. [Google Scholar] [CrossRef]
- Seagraves, M.P.; Lundgren, J.G. Effects of neonicotinoid seed treatments on soybean aphid and its natural enemies. J. Pest Sci. 2012, 85, 125–132. [Google Scholar] [CrossRef]
- Gaspar, A.P.; Mitchell, P.D.; Conley, S.P. Economic risk and profitability of soybean fungicide and insecticide seed treatments at reduced seeding rates. Crop Sci. 2015, 55, 924–933. [Google Scholar] [CrossRef]
- Alford, A.M.; Krupke, C.H. A meta-analysis and economic evaluation of neonicotinoid seed treatments and other prophylactic insecticides in Indiana maize from 2000–2015 with IPM recommendations. J. Econ. Entomol. 2018, 111, 689–699. [Google Scholar] [CrossRef] [PubMed]
- Averitt, B.J.; Welbaum, G.E.; Li, X.Y.; Prenger, E.; Qin, J.; Zhang, B. Evaluating genotypes and seed treatments to increase field emergence of low phytic acid soybeans. Agriculture 2020, 10, 516. [Google Scholar] [CrossRef]
- North, J.H.; Gore, J.; Cachot, A.L.; Stewart, S.D.; Lorenz, G.M.; Musser, F.R.; Cook, D.R.; Kerns, D.L.; Dodds, D.M. Value of neonicotinoid insecticide seed treatments in mid-south soybean (Glycine max) production systems. J. Econ. Entom. 2016, 109, 1156–1160. [Google Scholar] [CrossRef] [PubMed]
- Gaspar, A.P.; Mueller, D.S.; Wise, K.A.; Chilvers, M.I.; Tenuta, A.U.; Conley, S.P. Response of broad-spectrum and target-specific seed treatment and seeding rate on soybean seed yield, profitability, and economic risk. Crop Sci. 2016, 56, 2251–2262. [Google Scholar] [CrossRef]
Year | City, State | Variety | Planting Date | Avg. BLB Feeding Score/Group 1 | Harvest Date 2 |
---|---|---|---|---|---|
2018 | Mansfield, Illinois | P36T36X | 30 April 2018 | 6 Low | 11 October 2018 |
2018 | Pesotum, Illinois | P36T36X | 28 April 2018 | 6 Low | 12 October 2018 |
2018 | Seymour, Illinois | P36T36X | 26 April 2018 | 7 Low | 28 October 2018 |
2018 | Colfax, Indiana | P36T36X | 1 May 2018 | 6 Low | 24 October 2018 |
2018 | Windfall1, Indiana | P36T36X | 15 May 2018 | 5 High | 22 October 2018 |
2018 | Windfall2, Indiana | P36T36X | 4 May 2018 | 5 High | 25 October 2018 |
2018 | Atlantic, Iowa | P28T71X | 10 May 2018 | 6 Low | 22 October 2018 |
2018 | Johnston, Iowa | P28T71X | 24 April 2018 | 5 High | 17 October 2018 |
2018 | Montezuma, Iowa | P28T71X | 25 April 2018 | 5 High | Not Harvested |
2018 | Prairie City, Iowa | P31A22X | 30 April 2018 | 6 Low | 25 October 2018 |
2018 | Winterset, Iowa | P28T71X | 25 April 2018 | 6 Low | 21 October 2018 |
2019 | Morrisonville, Illinois | P38A98X | 3 June 2019 | 6 Low | 23 October 2019 |
2019 | Seymour, Illinois | P38A98X | 18 May 2019 | 6 Low | 15 October 2019 |
2019 | Colfax, Indiana | P38A98X | 2 June 2019 | 6 Low | 11 October 2019 |
2019 | Windfall, Indiana | P38A98X | 16 May 2019 | 6 Low | 28 October 2019 |
2019 | Atlantic, Iowa | P31A22X | 4 May 2019 | 6 Low | 15 October 2019 |
2019 | Dallas Center, Iowa | P31A22X | 3 June 2019 | 7 Low | 23 October 2019 |
2019 | Johnston1, Iowa | P31A22X | 15 April 2019 | 7 Low | 18 October 2019 |
2019 | Johnston2, Iowa | P31A22X | 15 April 2019 | 6 Low | 20 October 2019 |
2019 | Johnston3, Iowa | P31A22X | 15 April 2019 | 6 Low | 22 October 2019 |
2019 | Reasoner, Iowa | P31A22X | 3 June 2019 | 6 Low | 18 October 2019 |
2019 | Washington, Iowa | P31A22X | 16 April 2019 | 5 High | 16 October 2019 |
2019 | Winterset, Iowa | P31A22X | 3 June 2019 | 5 High | 27 October 2019 |
2019 | Silverthorn, Missouri | P48A60X | 10 May 2019 | 5 High | 3 October 2019 |
2019 | Obion, Tennessee | P48A60X | 14 May 2019 | 6 Low | 5 October 2019 |
2020 | Champaign, Illinois | P36A83X | 10 April 2020 | 7 Low | 12 October 2020 |
2020 | Windfall1, Indiana | P36A83X | 9 May 2020 | 6 Low | Not Harvested |
2020 | Windfall2, Indiana | P36A83X | 25 April 2020 | 7 Low | 10 October 2020 |
2020 | DeSoto, Iowa | P31A22X | 2 May 2020 | 7 Low | 30 October 2020 |
2020 | Johnston1, Iowa | P31A22X | 20 April 2020 | 4 High | 30 October 2020 |
2020 | Johnston2, Iowa | P31A22X | 20 April 2020 | 5 High | 30 October 2020 |
2020 | Montezuma, Iowa | P31A22X | 12 May 2020 | 7 Low | 7 October 2020 |
2021 | Seymour, Illinois | P36A83X | 16 April 2021 | 2 High | 24 September 2021 |
2021 | Groomsville, Indiana | P36A83X | 27 April 2021 | 6 Low | 4 November 2021 |
2021 | Atlantic, Iowa | P33A53X | 24 April 2021 | 6 Low | 27 September 2021 |
2021 | Johnston1, Iowa | P33A53X | 6 May 2021 | 4 High | 5 October 2021 |
2021 | Johnston2, Iowa | P33A53X | 22 April 2021 | 5 High | 5 October 2021 |
2021 | Johnston3, Iowa | P33A53X | 7 April 2021 | 5 High | 5 October 2021 |
2021 | Johnston4, Iowa | P33A53X | 7 April 2021 | 4 High | 5 October 2021 |
2021 | Reasoner1, Iowa | P33A53X | 6 May 2021 | 4 High | 14 October 2021 |
2021 | Reasoner2, Iowa | P33A53X | 6 May 2021 | 5 High | 8 October 2021 |
2021 | Winterset1, Iowa | P33A53X | 5 May 2021 | 4 High | 5 October 2021 |
2021 | Winterset2, Iowa | P33A53X | 5 May 2021 | 4 High | 4 October 2021 |
2022 | Colfax, Indiana | P29A25X | 28 April 2022 | 1 High | 2 October 2022 |
2022 | Windfall, Indiana | P29A25X | 22 April 2022 | 1 High | 14 October 2022 |
2022 | Desoto, Iowa | P29A25X | 19 May 2022 | 3 High | 13 October 2022 |
2022 | Johnston1, Iowa | P29A25X | 31 May 2022 | 4 High | 17 October 2022 |
2022 | Johnston2, Iowa | P29A25X | 27 April 2022 | 1 High | 17 October 2022 |
2022 | Obion, Tennessee | P27A64X | 30 April 2022 | 5 High | 26 October 2022 |
2023 | Homer, Illinois | P35T15E | 13 April 2023 | 3 High | 3 October 2023 |
2023 | Perry, Indiana | P35T15E | 19 April 2023 | 3 High | 23 October 2023 |
2023 | Windfall, Indiana | P35T15E | 13 April 2023 | 6 Low | 30 September 2023 |
2023 | Baxter1, Iowa | P29A18E | 27 April 2023 | 6 Low | 10 October 2023 |
2023 | Baxter2, Iowa | P28A21X | 27 April 2022 | 5 High | 10 October 2023 |
2023 | Johnston1, Iowa | P28A65E | 27 April 2023 | 5 High | 22 October 2023 |
2023 | Johnston2, Iowa | P28A65E | 27 April 2023 | 6 Low | 22 October 2023 |
2023 | Johnston3, Iowa | P28A21X | 27 April 2023 | 5 High | 22 October 2023 |
2023 | Johnston4, Iowa | P28A21X | 13 April 2023 | 4 High | 30 September 2023 |
2023 | Johnston5, Iowa | P28A21X | 27 April 2023 | 4 High | 30 September 2023 |
2023 | Redfield, South Dakota | P09A62X | 17 May 2023 | 7 Low | 4 October 2023 |
Trait | BLB Pressure 1 | Effect | Num DF | Den DF | F Value | Prob F |
---|---|---|---|---|---|---|
BLB feeding score | Low | Seed Treatment | 2 | 49.7594 | 283.563 | 0.000 |
High | Seed Treatment | 2 | 59.9497 | 268.625 | 0.000 | |
UAV emergence gaps 2 | Low | Seed Treatment | 2 | 38.1304 | 1.34745 | 0.272 |
High | Seed Treatment | 2 | 62.0686 | 10.512 | 0.000 | |
UAV vigor 3 | Low | Seed Treatment | 2 | 37.5057 | 1.62668 | 0.210 |
High | Seed Treatment | 2 | 70.5389 | 17.4571 | 0.000 | |
UAV greenness 4 | Low | Seed Treatment | 2 | 30.4635 | 6.06129 | 0.006 |
High | Seed Treatment | 2 | 63.1174 | 25.0777 | 0.000 | |
Yield (kg/ha) | Low | Seed Treatment | 2 | 348.69 | 16.6767 | 0.000 |
High | Seed Treatment | 2 | 386.051 | 16.7091 | 0.000 |
BLB Feeding Score 1 | UAV Emergence Gaps 2 | UAV Vigor 3 | UAV Greenness 4 | Yield (kg/ha) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Seed Treatment | Low 5 | High 5 | Low 5 | High 5 | Low 5 | High 5 | Low 5 | High 5 | Low 5 | High 5 |
FST No IST | 6.3 b | 4.2 c | 61.5 a | 78.5 a | 11.8 a | 12.0 c | 60.8 b | 59.7 b | 4536.1 c | 4369.0 c |
Cyantraniliprole + FST | 8.4 a | 8.0 a | 52.5 a | 46.7 c | 12.2 a | 13.6 a | 61.1 a | 60.5 a | 4790.6 a | 4582.7 a |
Imidacloprid + FST | 8.3 a | 7.4 b | 60.2 a | 63.9 b | 12.1 a | 12.8 b | 61.2 a | 60.2 a | 4699.5 b | 4490.4 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hegstad, J.M.; Mo, H.; Gaspar, A.P.; Rule, D. Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments. Agronomy 2024, 14, 340. https://doi.org/10.3390/agronomy14020340
Hegstad JM, Mo H, Gaspar AP, Rule D. Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments. Agronomy. 2024; 14(2):340. https://doi.org/10.3390/agronomy14020340
Chicago/Turabian StyleHegstad, Jeffrey M., Hua Mo, Adam P. Gaspar, and Dwain Rule. 2024. "Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments" Agronomy 14, no. 2: 340. https://doi.org/10.3390/agronomy14020340
APA StyleHegstad, J. M., Mo, H., Gaspar, A. P., & Rule, D. (2024). Utilizing Remote Sensing to Quantify the Performance of Soybean Insecticide Seed Treatments. Agronomy, 14(2), 340. https://doi.org/10.3390/agronomy14020340