Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area and Material Overview
2.2. Experimental Design
2.3. Measurements and Calculations
2.3.1. Gas Sampling
2.3.2. Analysis of the Gas Samples
2.3.3. Soil Physicochemical Properties
2.3.4. Determination of the Yield and Its Fresh–Dry Ratio
2.4. Statistical Analysis
3. Results
3.1. Effect of Planting Density and Nitrogen Application on Soil GHGs Emission Fluxes
3.2. Effects of Planting Density and Nitrogen Application on the GHGs’ Cumulative Emissions and Global Warming Trends in the Alfalfa Field
3.3. Effect of Planting Density and Nitrogen Application on Soil Hydrothermal Properties
3.4. Effect of Planting Density and Nitrogen Application on Soils’ Physical and Chemical Properties
3.5. Effect of Planting Density and Nitrogen Application on the Yield and Fresh–Dry Ratio of Alfalfa
3.6. Related Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shakoor, A.; Shahbaz, M.; Farooq, T.H.; Sahar, N.E.; Shahzad, S.M.; Altaf, M.M.; Ashraf, M. A global meta-analysis of greenhouse gases emission and crop yield under no-tillage as compared to conventional tillage. Sci. Total. Environ. 2021, 750, 142299. [Google Scholar] [CrossRef]
- Kan, Z.R.; Liu, W.X.; Liu, W.S.; Lal, R.; Dang, Y.P.; Zhao, X.; Zhang, H.L. Mechanisms of soil organic carbon stability and its response to no-till: A global synthesis and perspective. Glob. Chang. Biol. 2022, 28, 693–710. [Google Scholar] [CrossRef]
- Malhi, S.S.; Zentner, R.P.; Heier, K. Effectiveness of alfalfa in reducing fertilizer N input for optimum forage yield, protein concentration, returns and energy performance of bromegrass-alfalfa mixtures. Nutr. Cycl. Agroecosyst. 2002, 62, 219–227. [Google Scholar] [CrossRef]
- Li, C.; Xiong, Y.; Huang, Q.; Xu, X.; Huang, G. Impact of irrigation and fertilization regimes on greenhouse gas emissions from soil of mulching cultivated maize (Zea mays L.) field in the upper reaches of Yellow River, China. J. Clean. Prod. 2020, 259, 120873. [Google Scholar] [CrossRef]
- IPCC. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Vermeulen, S.J.; Campbell, B.M.; Ingram, J.S.I. Climate change and food systems. Annu. Rev. Environ. Resour. Econ. 2012, 37, 195–222. [Google Scholar] [CrossRef]
- Smith, P.; Martino, D.; Cai, Z.; Gwary, D.; Janzen, H.; Kumar, P.; Bruce, M.C.; Stephen, O.; Frank, O.; Charles, R.; et al. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B 2008, 363, 789–813. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Huang, S.; Tian, B.; Ren, J.; Meng, Q.; Wang, P. Manipulating planting density and nitrogen fertilizer application to improve yield and reduce environmental impact in Chinese maize production. Front. Plant. Sci. 2017, 8, 1234. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wang, Y.; Zhao, Z.; Cui, F.; Gu, J.; Zheng, X. The effect of planting density on carbon dioxide, methane and nitrous oxide emissions from a cold paddy field in the Sanjiang Plain, northeast China. Agric. Ecosyst. Environ. 2013, 178, 64–70. [Google Scholar] [CrossRef]
- Yang, T.; Li, F.; Zhou, X.; Xu, C.; Feng, J.; Fang, F. Impact of nitrogen fertilizer, greenhouse, and crop species on yield-scaled nitrous oxide emission from vegetable crops: A meta-analysis. Ecol. Indic. 2019, 105, 717–726. [Google Scholar] [CrossRef]
- He, H.; Hu, Q.; Pan, F.; Pan, X. Evaluating Nitrogen Management Practices for Greenhouse Gas Emission Reduction in a Maize Farmland in the North China Plain: Adapting to Climate Change. Plants 2023, 12, 3749. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate; Agenda: Newcastle upon Tyne, UK, 2021. [Google Scholar]
- Wang, X.; Chen, Y.; Chen, X.; He, R.; Guan, Y.; Gu, Y.; Chen, Y. Crop production pushes up greenhouse gases emissions in China: Evidence from carbon footprint analysis based on national statistics data. Sustainability 2019, 11, 4931. [Google Scholar] [CrossRef]
- Abagandura, G.O.; Sekaran, U.; Singh, S.; Singh, J.; Ibrahim, M.A.; Subramanian, S.; Owens, V.N.; Kumar, S. Intercropping kura clover with prairie cordgrass mitigates soil greenhouse gas fluxes. Sci. Rep. 2020, 10, 7334. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Jiang, S.; Xu, J.; Wang, J.; Li, Z.; Wu, J.; Zhang, J. Lowering nitrogen inputs and optimizing fertilizer types can reduce direct and indirect greenhouse gas emissions from rice-wheat rotation systems. Eur. J. Soil Biol. 2020, 97, 103152. [Google Scholar] [CrossRef]
- Solanki, M.K.; Wang, F.; Wang, Z.; Li, C.; Lan, T.; Singh, R.K.; Singh, P.; Yang, L.; Li, Y. Rhizospheric and endospheric diazotrophs mediated soil fertility intensification in sugarcane-legume intercropping systems. J. Soils Sediments 2019, 19, 1911–1927. [Google Scholar] [CrossRef]
- Layek, J.; Das, A.; Mitran, T.; Nath, C.; Meena, R.S.; Yadav, G.S.; Shivakumar, B.G.; Kumar, S.; Lal, R. Cereal+ legume intercropping: An option for improving productivity and sustaining soil health. In Legumes for Soil Health and Sustainable Management; Springer: Singapore, 2018; pp. 347–386. [Google Scholar]
- Gao, J.S.; Cao, W.D.; Li, D.C.; Xu, M.; Zeng, X.; Me, J.; Zhang, W. Effects of long-term double-rice and green manure rotation on rice yield and soil organic matter in paddy field. Shengtai Xuebao/Acta Ecol. Sin. 2011, 31, 4542–4548. [Google Scholar]
- Sainju, U.M.; Caesar-TonThat, T.; Lenssen, A.W.; Barsotti, J.L. Dryland soil greenhouse gas emissions affected by cropping sequence and nitrogen fertilization. Soil. Sci. Soc. Am. J. 2012, 76, 1741–1757. [Google Scholar] [CrossRef]
- Meng, Y.Q.; Liu, Y.F.; Wan, S.M.; Zhou, T.T.; Li, Y.F.; Wang, P.J.; Tian, Y.G.; Chen, G.D. Effects of Distance from Tree Line on Soil Physicochemical Properties Along with Alfalfa Yield in jujube–alfalfa Intercropping System. J. Tarim Univ. 2020, 32, 24–30. [Google Scholar]
- Yin, W.; Chai, Q.; Guo, Y.; Feng, F.; Zhao, C.; Yu, A.; Liu, C.; Fan, Z.; Hu, F.; Chen, G. Reducing carbon emissions and enhancing crop productivity through strip intercropping with improved agricultural practices in an arid area. J. Clean. Prod. 2017, 166, 197–208. [Google Scholar] [CrossRef]
- Chapagain, T.; Pudasaini, R.; Ghimire, B.; Gurung, K.; Choi, K.; Rai, L.; Magar, S.; Bishnu, B.K.; Raizada, M.N. Intercropping of maize, millet, mustard, wheat and ginger increased land productivity and potential economic returns for smallholder terrace farmers in Nepal. Field Crop. Res. 2018, 227, 91–101. [Google Scholar] [CrossRef]
- Fan, W.X.; Li, T.T.; Chen, G.D.; Mao, T.Y.; Hu, Q.; Zhai, Y.L.; Wan, S.M. Effects of spacing on soil aggregate organic carbon, total nitrogen and yield of alfalfa intercropped with jujube. Soil Fertil. Sci. China 2023, 8, 67–75. [Google Scholar]
- Fan, W.X.; Wang, M.G.; Chen, G.D.; Li, T.T.; Lin, F.; Zhai, Y.L.; Wu, Q.Z.; Wan, S.M. Effect of a jujube–alfalfa intercropping system on soil chemical properties and microorganisms in the oasis irrigation area of southern Xinjiang. Pratacult. Sci. 2022, 39, 39–47. [Google Scholar]
- Rolston, D.E. Gas flux. In Methods of Soil Analysis Part 1. Agronomy Monograph 9, 2nd ed.; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 1103–1119. [Google Scholar]
- Afreh, D.; Zhang, J.; Guan, D.; Liu, K.; Song, Z.; Zheng, C.; Deng, A.; Feng, X.; Zhang, X.; Wu, Y.; et al. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Tillage Res. 2018, 180, 259–267. [Google Scholar] [CrossRef]
- Ghani, M.U.; Kamran, M.; Ahmad, I.; Arshad, A.; Zhang, C.; Zhu, W.; Shanning, L.; Hou, F. Alfalfa-grass mixtures reduce greenhouse gas emissions and net global warming potential while maintaining yield advantages over monocultures. Sci. Total Environ. 2022, 849, 157765. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.D. Soil Agrochemical Analysis; China Agricultural Press: Beijing, China, 2000. [Google Scholar]
- LY/T1217-1999; Forestry Industry Standard of the People’s Republic of China-Determination of forest soll permanent wilting water content. China Forestry Administration: Beijing, China, 1999.
- Gan, Y.; Liang, C.; Wang, X.; McConkey, B. Lowering carbon footprint of durum wheat by diversifying cropping systems. Field Crop. Res. 2011, 122, 199–206. [Google Scholar] [CrossRef]
- Yin, W.; Feng, F.; Zhao, C.; Yu, A.; Hu, F.; Chai, Q.; GAN, Y.T.; Guo, Y. Integrated double mulching practices optimizes soil temperature and improves soil water utilization in arid environments. Int. J. Biometeopol. 2016, 60, 1423–1437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.G.; Zhang, Z.P.; Zhang, J.; Deng, A.X.; Zhang, W.J. Effects of increased planting density with reduced nitrogen fertilizer application on rice yield, N use efficiency and greenhouse gas emission in Northeast China. Chin. J. Appl. Ecol. 2016, 27, 453–461. [Google Scholar]
- Daly, E.J.; Hernandez-Ramirez, G. Sources and priming of soil N2O and CO2 production: Nitrogen and simulated exudate additions. Soil Biol. Biochem. 2020, 149, 107942. [Google Scholar] [CrossRef]
- Wang, X.; Chen, Y.; Yang, K.; Duan, F.; Liu, P.; Wang, Z.; Wang, J. Effects of legume intercropping and nitrogen input on net greenhouse gas balances, intensity, carbon footprint and crop productivity in sweet maize cropland in South China. J. Clean. Prod. 2021, 314, 127997. [Google Scholar] [CrossRef]
- Fan, Y.; Hao, X.; Carswell, A.; Misselbrook, T.; Ding, R.; Li, S.; Kang, S. Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system. Soil Till. Res. 2021, 206, 104848. [Google Scholar] [CrossRef]
- Sainju, U.M.; Stevens, W.B.; Caesar-TonThat, T.; Liebig, M.A. Soil greenhouse gas emissions affected by irrigation, tillage, crop rotation, and nitrogen fertilization. J. Environ. Qual. 2012, 41, 1774–1786. [Google Scholar] [CrossRef]
- Singh, B.K.; Bardgett, R.D.; Smith, P.; Reay, D.S. Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 2010, 8, 779–790. [Google Scholar] [CrossRef] [PubMed]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B 2013, 368, 20130122. [Google Scholar] [CrossRef] [PubMed]
- Tao, G.T.; Zhao, J.; Sun, Q.Z.; Zhu, Y.H.; Zhao, S.F. Effect of Differ ent Herbages on Soil Respir ation in Agropastor al Region. J. Agro-Environ. Sci. 2006, 06, 1513–1517. [Google Scholar]
- Li, H.S.; Liu, G.Q.; Wang, H.Z.; Li, W.H.; Chen, C.G. Seasonal changes in soil respiration and the driving factors of four woody plant communities in the Loess Plateau. Acta Ecol. Sin. 2008, 29, 4099–4106. [Google Scholar]
- Lin, Z.; Zhang, R.; Tang, J.; Zhang, J. Effects of high soil water content and temperature on soil respiration. Soil Sci. 2011, 176, 150–155. [Google Scholar] [CrossRef]
- Kitzler, B.; Zechmeister-Boltenstern, S.; Holtermann, C.; Skiba, U.; Butterbach-Bahl, K. Nitrogen oxides emission from two beech forests subjected to different nitrogen loads. Biogeosciences 2006, 3, 293–310. [Google Scholar] [CrossRef]
- Zhang, M.X.; Zhao, L.Y.; He, Y.Y.; Hu, J.P.; Hu, G.W.; Zhu, Y.; Aziz, k.; Xiong, Y.C.; Zhang, J.L. Potential roles of iron nanomaterials in enhancing growth and nitrogen fixation and modulating rhizomicrobiome in alfalfa (Medicago sativa L.). Bioresour. Technol. 2024, 391, 129987. [Google Scholar] [CrossRef]
- Yang, Y.D.; Wang, Z.M.; Zeng, Z.H. Effects of Long-Term Different Fertilization and lrrigation Managements on Soil Bacterial Abundance, Diversity and Composition. Sci. Agric. Sin. 2018, 51, 290–301. [Google Scholar]
- Luo, P.Y.; Fan, Y.; Yang, J.F.; Ge, Y.F.; Cai, F.F.; Huan, X.R. Influence of long-term fertilization on abundance of ammonia oxidizing bacteria and archaea in brown soil. J. Plant Nutr. Fertil. 2017, 23, 678–685. [Google Scholar]
- Sardans, J.; Penuelas, J.; Estiarte, M.; Prieto, P. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob. Chang. Biol. 2018, 14, 2304–2316. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Yang, Z.; Lin, C.; Xiong, D.; Lin, W.; Xu, C.; Chen, G.; Xie, J.; Li, Y.; et al. Will heterotrophic soil respiration be more sensitive to warming than autotrophic respiration in subtropical forests? Eur. J. Soil. Sci. 2018, 70, 655–663. [Google Scholar] [CrossRef]
- Meng, K.; Li, X.Y.; Jia, Z.Y.; Jin, H.Q.; Mi, F.G. Effects of planting density on the growth, yield and nutritional quality of alfalfa in central Inner Mongolia. Acta Pratacult. Sin. 2019, 28, 73. [Google Scholar]
- Li, X.Y.; Xiao, Y.Z.; Meng, K.; Mi, F.G. The Effect of Fertilizing with Formula on stem leaf ratio and ratio of dry-and-wet weight of alfalfa. Grassl. Pratacult. 2015, 27, 32–39. [Google Scholar]
Organic Matter | Total Nitrogen | Available Nitrogen | Available Phosphorus | Available Kalium | pH |
---|---|---|---|---|---|
(g kg−1) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | |
10.81 | 1.15 | 23.36 | 29.92 | 103.26 | 7.77 |
Planting Density | Nitrogen Rate | CO2 CE | N2O CE | CH4 CE | GWP | GHGI |
---|---|---|---|---|---|---|
(g m−2) | (mg m−2) | (mg m−2) | (kg ha−1) | (kg CO2-eq kg−1) | ||
D1 | N0 | 464.19 ± 36.85 c | 137.11 ± 11.27 c | −171.19 ± 53.08 b | 4948.35 ± 395.56 c | 0.090 ± 0.005 ab |
N1 | 587.86 ± 35.63 b | 205.55 ± 11.48 b | −149.47 ± 53.55 b | 6368.54 ± 334.78 b | 0.106 ± 0.012 b | |
N2 | 622.36 ± 35.66 b | 224.08 ± 19.04 b | −144.61 ± 49.23 b | 6759.67 ± 368.18 b | 0.091 ± 0.003 ab | |
N3 | 700.53 ± 29.78 a | 254.93 ± 20.45 a | −48.96 ± 33.71 a | 7645.21 ± 257.25 a | 0.103 ± 0.008 a | |
D2 | N0 | 329.64 ± 31.48 d | 152.82 ± 4.84 c | −346.21 ± 35.00 c | 3597.60 ± 326.66 d | 0.063 ± 0.007 b |
N1 | 421.25 ± 36.63 c | 189.73 ± 8.05 bc | −215.60 ± 79.66 b | 4642.12 ± 267.76 c | 0.066 ± 0.014 b | |
N2 | 502.31 ± 27.41 b | 218.08 ± 16.77 ab | −110.95 ± 39.11 ab | 5552.54 ± 292.11 b | 0.061 ± 0.007 b | |
N3 | 587.59 ± 22.48 a | 254.37 ± 52.59 a | −77.01 ± 58.54 a | 6507.06 ± 347.63 a | 0.086 ± 0.007 a | |
D3 | N0 | 415.41 ± 25.23 d | 155.37 ± 11.75 d | −196.57 ± 81.45 a | 4500.74 ± 263.77 d | 0.077 ± 0.012 ab |
N1 | 449.61 ± 22.99 c | 186.46 ± 11.24 c | −167.45 ± 148.43 a | 4937.52 ± 194.87 c | 0.069 ± 0.004 b | |
N2 | 524.68 ± 9.32 b | 215.39 ± 5.59 b | −160.01 ± 86.60 a | 5776.59 ± 110.51 b | 0.075 ± 0.004 ab | |
N3 | 601.36 ± 5.38 a | 278.39 ± 16.02 a | −102.22 ± 24.80 a | 6699.71 ± 42.29 a | 0.084 ± 0.002 a | |
F-number | D Factor | 51.19 ** | Ns | ns | 43.86 ** | 21.24 ** |
N Factor | 132.91 ** | 63.65 ** | 7.92 ** | 166.92 ** | 8.65 ** | |
D × N | ns | Ns | ns | 2.65 * | 3.18 ** |
Planting Density | Nitrogen Rate | pH | TN | AN | SOM | SOC | SBD |
---|---|---|---|---|---|---|---|
g kg−1 | mg kg−1 | g kg−1 | g kg−1 | g cm−3 | |||
D1 | N0 | 7.89 ± 0.19 ab | 0.81 ± 0.43 b | 18.50 ± 10.58 a | 12.33 ± 0.67 a | 7.15 ± 0.39 a | 1.26 ± 0.10 ab |
N1 | 7.91 ± 0.05 a | 1.19 ± 0.25 ab | 18.66 ± 2.02 a | 12.48 ± 0.05 a | 7.22 ± 0.03 a | 1.28 ± 0.07 b | |
N2 | 7.81 ± 0.12 ab | 1.61 ± 0.14 a | 33.83 ± 12.29 a | 12.97 ± 0.34 a | 7.54 ± 0.20 a | 1.20 ± 0.04 ab | |
N3 | 7.67 ± 0.05 b | 1.76 ± 0.63 a | 33.73 ± 16.17 a | 12.58 ± 0.13 a | 7.35 ± 0.08 a | 1.37 ± 0.05 a | |
D2 | N0 | 7.88 ± 0.19 a | 0.77 ± 0.15 c | 29.50 ± 8.54 b | 12.73 ± 0.15 c | 7.42 ± 0.09 c | 1.3 ± 0.05 a |
N1 | 7.83 ± 0.12 a | 1.36 ± 0.29 bc | 38.67 ± 5.92 a | 13.52 ± 0.02 a | 7.84 ± 0.01 b | 1.26 ± 0.05 a | |
N2 | 7.53 ± 0.19 b | 2.34 ± 0.59 a | 48.67 ± 3.25 ab | 14.14 ± 0.52 b | 8.20 ± 0.30 a | 1.11 ± 0.11 b | |
N3 | 7.79 ± 0.03 ab | 2.02 ± 0.24 ab | 37.33 ± 4.04 ab | 12.64 ± 0.04 c | 7.33 ± 0.03 c | 1.35 ± 0.07 a | |
D3 | N0 | 7.71 ± 0.11 a | 0.9 ± 0.18 b | 30.00 ± 11.06 a | 12.43 ± 1.20 a | 7.25 ± 0.70 a | 1.25 ± 0.07 ab |
N1 | 7.68 ± 0.18 a | 1.38 ± 0.25 ab | 37.33 ± 4.04 a | 12.52 ± 0.06 a | 7.26 ± 0.04 a | 1.33 ± 0.02 a | |
N2 | 7.68 ± 0.04 a | 1.45 ± 0.54 ab | 38.50 ± 14.00 a | 13.50 ± 0.13 a | 7.83 ± 0.07 a | 1.21 ± 0.06 b | |
N3 | 7.62 ± 0.09 a | 1.96 ± 0.62 a | 40.83 ± 2.02 a | 12.82 ± 0.74 a | 7.35 ± 0.43 a | 1.30 ± 0.05 ab | |
F-number | D Factor | ns | ns | ns | 7.65 * | 7.18 * | ns |
N Factor | ns | 13.71 ** | 4.28 * | 5.80 ** | 5.37 ** | 3.80 * | |
D×N | ns | ns | ns | ns | ns | 4.23 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, T.; Wan, S.; Chen, G.; Cui, Z.; Wang, J.; Fan, Z.; Zhai, Y. Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas. Agronomy 2024, 14, 273. https://doi.org/10.3390/agronomy14020273
Li T, Wan S, Chen G, Cui Z, Wang J, Fan Z, Zhai Y. Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas. Agronomy. 2024; 14(2):273. https://doi.org/10.3390/agronomy14020273
Chicago/Turabian StyleLi, Tiantian, Sumei Wan, Guodong Chen, Zhengjun Cui, Jinbin Wang, Zhilong Fan, and Yunlong Zhai. 2024. "Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas" Agronomy 14, no. 2: 273. https://doi.org/10.3390/agronomy14020273
APA StyleLi, T., Wan, S., Chen, G., Cui, Z., Wang, J., Fan, Z., & Zhai, Y. (2024). Effects of Planting Density and Nitrogen Application on Soil Greenhouse Gas Fluxes in the Jujube–Alfalfa Intercropping System in Arid Areas. Agronomy, 14(2), 273. https://doi.org/10.3390/agronomy14020273