Effect of Light Intensity and Two Different Nutrient Solutions on the Yield of Flowers and Cannabinoids in Cannabis sativa L. Grown in Controlled Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Cultivation Methods
2.2. Fertilization Strategy
2.2.1. Type of Fertilizers
- (1)
- During the vegetative phase, the plants were watered manually, with the volume of water and nutrients increased each week.
- (2)
- In the flowering phase, the AutoPot system (AutoPot (Global) Ltd., Hampshire, UK) was used for watering. Water consumption per plant was calculated based on the frequency of replenishment of nutrient solution.
2.2.2. Fertilizers Preparation
2.2.3. Fertilizers Composition and Concentration
2.2.4. Fertilization Intervals
- Week 1: daily 50 mL of nutrient solution per plant
- Week 2: daily 100 mL of nutrient solution per plant
- Week 3: 4 times a week, 200 mL of nutrient solution per plant
- Week 4: 3 times a week, 300 mL of nutrient solution per plant
- Weeks 1–3: daily 500 mL of nutrient solution per plant
- Weeks 4 to 5: daily 700 mL of nutrient solution per plant
- Weeks 6 to 8: daily 900 mL of nutrient solution per plant
2.3. Lighting Strategy
Light Intensity
2.4. Sample Collection
2.5. Laboratory Analysis
Statistical Analysis
3. Results
3.1. Plant Morphology and Visual Appearance—Influence of Light and Nutrition
3.2. Yield and Cannabinoid Content—Influence of Light and Nutrition
4. Discussion
4.1. Effect of Light on Yield
4.2. Effect of Fertilizers on Yield
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abel, E.L. Marijuana: The First Twelve Thousand Years; Springer: New York, NY, USA, 1980. [Google Scholar] [CrossRef]
- Li, H.L. An archaeological and historical account of cannabis in China. Econ. Bot. 1973, 28, 437–448. [Google Scholar] [CrossRef]
- Mercuri, A.M.; Accorsi, C.A.; Bandini Mazzanti, M. The long history of cannabis and its cultivation by the Romans in central Italy, shown by pollen records from Lago Albano and Lago di Nemi. Veg. Hist. Archaeobot 2002, 11, 263–276. [Google Scholar] [CrossRef]
- Clarke, R.C.; Merlin, M.D. Cannabis: Evolution and Ethnobotany; Berkley, M.I., Ed.; University of California Press: Los Angeles, CA, USA, 2013. [Google Scholar]
- Clarke, R.C.; Merlin, M.D. Cannabis domestication, breeding history, present-day genetic diversity, and future prospects. CRC Crit. Rev. Plant Sci. 2016, 35, 293–327. [Google Scholar] [CrossRef]
- Small, E.; Jui, P.Y.; Lefkovitch, L.P. A numerical taxonomic analysis of cannabis with special reference to species delimitation. Syst. Bot. 1976, 1, 67. [Google Scholar] [CrossRef]
- Hillig, K.W. Genetic evidence for speciation in Cannabis (Cannabaceae). Genet. Resour. Crop Evol. 2005, 52, 161–180. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Cannabis sativa L.: Botany and horticulture. In Cannabis sativa L.—Botany and Biotechnology; Chandra, S., Ed.; Springer: New York, NY, USA, 2017; pp. 79–100. [Google Scholar]
- Small, E. Classification of Cannabis sativa L. in relation to agricultural, biotechnological, medical and recreational utilization. In Cannabis sativa L.—Botany and Biotechnology; Chandra, S., Ed.; Springer: New York, NY, USA, 2017; pp. 1–62. [Google Scholar]
- McPartland, J.M. Cannabis systematics at the levels of family, genus, and species. Cannabis Cannabinoid Res. 2018, 3, 203–212. [Google Scholar] [CrossRef]
- Small, E. Evolution and classification of Cannabis sativa (Marijuana, Hemp) in relation to human utilization. Bot. Rev. 2015, 81, 189–294. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, X.; Guo, H.; Trindade, L.M.; Salentijn, E.M.J.; Guo, R. Latitudinal adaptation and genetic insights into the origins of Cannabis sativa L. Front. Plant Sci. 2018, 9, 1876. [Google Scholar] [CrossRef]
- Ilikj, M.; Brchina, I.; Ugrinova, L.; Karcev, V.; Grozdanova, A. GMP/GACP—New Standards for Quality Assurance of Cannabis; LAP LAMBERT Academic Publishing: Saarbrucken, Germany, 2021. [Google Scholar]
- Lefsrud, M.G.; Kopsell, D.A.; Kopsell, D.E.; Curran-Celentano, J. Irradiance levels affect growth parameters and carotenoid pigments in kale and spinach grown in a controlled environment. Physiol. Plant 2006, 127, 624–631. [Google Scholar] [CrossRef]
- Chandra, S.; Lata, H.; Khan, I.A.; Elsohly, M.A. Photosynthetic response of Cannabis sativa L. to variations in photosynthetic photon flux densities, temperature and CO2 conditions. Physiol. Mol. Biol. Plants 2008, 14, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Magagnini, G.; Grassi, G.; Kotiranta, S. The effect of light spectrum on the morphology and cannabinoid content of Cannabis sativa L. Med. Cannabis Cannabinoids 2018, 1, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Temperature response of photosynthesis in different drug and fiber varieties of Cannabis sativa L. Physiol. Mol. Biol. Plants 2011, 17, 297. [Google Scholar] [CrossRef]
- Upton, R.; Craker, L.; ElSohly, M.; Romm, A.; Russo, E.; Sexton, M. Cannabis Inflorescence: Cannabis spp. In Standards of Identity, Analysis, and Quality Control; American Herbal Pharmacopoeia: Scotts Valley, CA, USA, 2013. [Google Scholar]
- Caplan, D.; Dixon, M.; Zheng, Y. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. HortScience 2017, 52, 1307–1312. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary metabolism in cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Hanus, L.O.; Meyer, S.M.; Muñoz, E.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A unified critical inventory. Nat. Prod. Rep. 2016, 33, 1357–1392. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.J.; Williams, C.M.; Whalley, B.J.; Stephens, G.J. Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol. Ther. 2012, 133, 79–97. [Google Scholar] [CrossRef]
- Sirikantaramas, S.; Taura, F. Cannabinoids: Biosynthesis and biotechnological applications. In Cannabis sativa L.—Botany and Biotechnology; Springer: New York, NY, USA, 2017; pp. 183–206. [Google Scholar] [CrossRef]
- Izzo, A.A.; Borrelli, F.; Capasso, R.; Di Marzo, V.; Mechoulam, R. Non-psychotropic plant cannabinoids: New therapeutic opportunities from an ancient herb. Trends Pharmacol. Sci. 2009, 30, 515–527. [Google Scholar] [CrossRef]
- Pertwee, R.G. The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Zerahia, R.; Koch, S. Impact of N, P, K, and humic acid supplementation on the chemical profile of medical cannabis (Cannabis sativa L). Front. Plant Sci. 2019, 10, 736. [Google Scholar] [CrossRef]
- Saloner, A.; Sacks, M.M.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) genotypes to K supply under long photoperiod. Front. Plant Sci. 2019, 10, 1369. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) to nitrogen supply under long photoperiod. Front. Plant Sci. 2020, 11, 572293. [Google Scholar] [CrossRef] [PubMed]
- Eaves, J.; Eaves, S.; Morphy, C.; Murray, C. The relationship between light intensity, cannabis yields, and profitability. Agron. J. 2020, 112, 1466–1470. [Google Scholar] [CrossRef]
- Caplan, D.; Stemeroff, J.; Dixon, M.; Zheng, Y. Vegetative propagation of cannabis by stem cuttings: Effects of leaf number, cutting position, rooting hormone and removal of leaf tips. Can. J. Plant Sci. 2018, 98, 1126–1132. [Google Scholar] [CrossRef]
- Moher, M.; Llewellyn, D.; Jones, M.; Zheng, Y. High light intensities can be used to grow healthy and robust cannabis plants during the vegetative stage of indoor production. Preprints 2021, 2021040417. [Google Scholar] [CrossRef]
- Lawlor, D.W. Photosynthesis, productivity and environment. J. Exp. Bot. 1995, 46, 1449–1461. [Google Scholar] [CrossRef]
- Casal, J.J.; Yanovsky, M.J. Regulation of gene expression by light. Int. J. Dev. Biol. 2005, 49, 501–511. [Google Scholar] [CrossRef]
- Casal, J.J.; Fankhauser, C.; Coupland, G.; Blázquez, M.A. Signalling for developmental plasticity. Trends Plant Sci. 2004, 9, 309–314. [Google Scholar] [CrossRef]
- Chen, M.; Galvão, R.M.; Li, M.; Burger, B.; Bugea, J.; Bolado, J.; Chory, J. Arabidopsis HEMERA/pTAC12 initiates photomorphogenesis by phytochromes. Cell 2010, 141, 1230–1240. [Google Scholar] [CrossRef] [PubMed]
- McCree, K. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- McCree, K. Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agric. Meteorol. 1972, 10, 443–453. [Google Scholar] [CrossRef]
- Van Iersel, M.W. Optimizing LED lighting in controlled environment agriculture. In Light Emitting Diodes for Agriculture; Gupta, S.D., Ed.; Springer: Singapore, 2017; pp. 59–80. [Google Scholar]
- Zhen, S.; van Iersel, M.W. Far-red light is needed for efficient photochemistry and photosynthesis. J. Plant Physiol. 2017, 209, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Kono, M.; Kawaguchi, H.; Mizusawa, N.; Yamori, W.; Suzuki, Y.; Terashima, I. Far-red light accelerates photosynthesis in the low-light phases of fluctuating light. Plant Cell Physiol. 2020, 61, 192–202. [Google Scholar] [CrossRef] [PubMed]
- Zhen, S.; van Iersel, M.W.; Bugbee, B. Why far-red photons should be included in the definition of photosynthetic photons and the measurement of horticultural fixture efficacy. Front. Plant Sci. 2021, 12, e693445. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M.W.; Bugbee, B. Photosynthesis in sun and shade: The surprising importance of far-red photons. New Phytol. 2022, 236, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Llewellyn, D.; Golem, S.; Foley, E.; Dinka, S.; Jones, M.; Zheng, Y. Cannabis yield increased proportionally with light intensity, but additional ultraviolet radiation did not affect yield or cannabinoid content. Preprints 2021, 2021030327. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M.; Meinen, E.; Nijs, E.M.F.M.; Raaphorst, M.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Danziger, N.; Bernstein, N. Light matters: Effect of light spectra on cannabinoid profile and plant development of medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 164, 113351. [Google Scholar] [CrossRef]
- Meng, Q.; Boldt, J.; Runkle, E.S. Blue radiation interacts with green radiation to influence growth and predominantly controls quality attributes of lettuce. J. Am. Soc. Hortic. Sci. 2020, 145, 75–87. [Google Scholar] [CrossRef]
- Naznin, M.T.; Lefsrud, M.; Gravel, V.; Azad, O.K. Blue light added with red LEDs enhance growth characteristics, pigments content, and antioxidant capacity in lettuce, spinach, kale, basil, and sweet pepper in a controlled environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef]
- Vanhove, W.; Van Damme, P.; Meert, N. Factors determining yield and quality of illicit indoor cannabis (Cannabis spp.) production. Forensic Sci. Int. 2011, 212, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Potter, D.J.; Duncombe, P. The effect of electrical lighting power and irradiance on indoor-grown cannabis potency and yield. J. Forensic Sci. 2012, 57, 618–622. [Google Scholar] [CrossRef] [PubMed]
- Hoagland, D.R.; Snyder, W.C. Nutrition of strawberry plant under controlled conditions: (a) Effects of deficiencies of boron and certain other elements: (b) Susceptibility to injury from sodium salts. Proc. Am. Soc. Hortic. Sci. 1933, 30, 288–294. [Google Scholar]
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil, 347th ed.; California Agricultural Experiment Station: Davis, CA, USA, 1938; Available online: http://www.ledson.ufla.br/wp-content/uploads/2019/11/Hoagland-Arnon-the-water-culture-method-for-growing-plants-without-soil.1938.pdf (accessed on 1 November 2024).
- Hoagland, D.R.; Arnon, D.I. The Water-Culture Method for Growing Plants Without Soil, 347th ed.; California Agricultural Experiment Station: Davis, CA, USA, 1950; Available online: https://www.nutricaodeplantas.agr.br/site/downloads/hoagland_arnon.pdf (accessed on 1 November 2024).
- Bugbee, B. Nutrient management in recirculating hydroponic culture. In Proceedings of the South Pacific Soilless Culture Conference-SPSCC 648, Palmerston North, New Zealand, 10–13 February 2003; pp. 99–112. [Google Scholar]
- Langenfeld, N.J.; Pinto, D.F.; Faust, J.E.; Heins, R.; Bugbee, B. Principles of nutrient and water management for indoor agriculture. Sustainability 2022, 14, 10204. [Google Scholar] [CrossRef]
- Cockson, P.; Schroeder-Moreno, M.; Veazie, P.; Barajas, G.; Logan, D.; Davis, M. Impact of phosphorus on Cannabis sativa reproduction, cannabinoids, and terpenes. Appl. Sci. 2020, 10, 7875. [Google Scholar] [CrossRef]
- Veazie, P.; Cockson, P.; Kidd, D.; Whip, B. Elevated phosphorus fertility impact on Cannabis sativa ‘BaOx’ growth and nutrient accumulation. Int. J. Innov. Sci. Eng. Technol. 2021, 8, 345–351. [Google Scholar]
- Rodriguez-Morrison, V.; Llewellyn, D.; Zheng, Y. Cannabis yield, potency, and leaf photosynthesis respond differently to increasing light levels in an indoor environment. Front. Plant Sci. 2021, 12, 646020. [Google Scholar] [CrossRef]
- Moher, M.; Llewellyn, D.; Jones, M.; Zheng, Y. Light intensity can be used to modify the growth and morphological characteristics of cannabis during the vegetative stage of indoor production. Ind. Crops Prod. 2022, 183, 114909. [Google Scholar] [CrossRef]
- Kim, I.S.; Zhang, C.; Kang, H.M.; Mackay, B. Control of stretching of cucumber and tomato plug seedlings using supplemental light. Hortic. Environ. Biotechnol. 2008, 49, 287–292. [Google Scholar]
- Morello, V.; Brousseau, V.D.; Wu, N.; Wu, B.S.; MacPherson, S.; Lefsrud, M. Light quality impacts vertical growth rate, phytochemical yield and cannabinoid production efficiency in Cannabis sativa. Plants 2022, 11, 2982. [Google Scholar] [CrossRef]
- Parry, C.; Bugbee, B. Reduced root-zone phosphorus concentration decreases iron chlorosis in maize in soilless substrates. HortTechnology 2017, 27, 490–493. [Google Scholar] [CrossRef]
- Shiponi, S.; Bernstein, N. Response of medical cannabis (Cannabis sativa L.) genotypes to P supply under long photoperiod: Functional phenotyping and the ionome. Ind. Crops Prod. 2021, 161, 113154. [Google Scholar] [CrossRef]
- Westmoreland, F.M.; Bugbee, B. Sustainable cannabis nutrition: Elevated root-zone phosphorus significantly increases leachate P and does not improve yield or quality. Front. Plant Sci. 2022, 13, 1015652. [Google Scholar] [CrossRef]
- Ma, Q.; Longnecker, N.; Atkins, C. Varying phosphorus supply and development, growth and seed yield in narrow-leafed lupin. Plant Soil. 2002, 239, 79–85. [Google Scholar] [CrossRef]
- Malhotra, H.; Vandana, S.; Sharma; Pandey, R. Phosphorus nutrition: Plant growth in response to deficiency and excess. In Plant Nutrients and Abiotic Stress Tolerance; Springer: Berlin/Heidelberg, Germany, 2018; pp. 171–190. [Google Scholar]
- Kim, H.J.; Li, X. Effects of phosphorus on shoot and root growth, partitioning, and phosphorus utilization efficiency in Lantana. HortScience 2016, 51, 1001–1009. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Nitrogen supply affects cannabinoid and terpenoid profile in medical cannabis (Cannabis sativa L.). Ind. Crops Prod. 2021, 167, 113516. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Effect of potassium (K) supply on cannabinoids, terpenoids and plant function in medical cannabis. Agronomy 2022, 12, 1242. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Nitrogen source matters: High NH4/NO3 ratio reduces cannabinoids, terpenoids, and yield in medical cannabis. Front. Plant Sci. 2022, 13, 830224. [Google Scholar] [CrossRef]
- Massuela, D.C.; Munz, S.; Hartung, J.; Nkebiwe, P.M.; Graeff-Hönninger, S. Cannabis hunger games: Nutrient stress induction in flowering stage-impact of organic and mineral fertilizer levels on biomass, cannabidiol (CBD) yield and nutrient use efficiency. Front. Plant Sci. 2023, 14, 1233232. [Google Scholar] [CrossRef]
Group 1 | Active absorption | NO3, NH4, P, K, Mn |
Group 2 | Moderate absorption | Mg, S, Fe, Zn, Cu, Mo, Cl |
Group 3 | Passive absorption | Ca, B |
Vegetative Phase | ||||||
---|---|---|---|---|---|---|
Temperature | Humidity | CO2 (ppm) | ||||
Day | Night | Day | Night | Day | Night | |
Experiment 1 | 23.4 °C | 20.6 °C | 78.7% | 54.3% | 406 | 428 |
Experiment 2 | 23.8 °C | 20.9 °C | 76.3% | 52.1% | 411 | 436 |
Flowering Phase | ||||||
Temperature | Humidity | CO2 (ppm) | ||||
Day | Night | Day | Night | Day | Night | |
Experiment 1 | 26.1 °C | 22.3 °C | 58.5% | 48.4% | 410 | 443 |
Experiment 2 | 26.8 °C | 22.6 °C | 61.2% | 50.3% | 414 | 449 |
R1 | R2 | R2 | |||
---|---|---|---|---|---|
V + F | Vegetation | Flower | |||
Nutrient | mg/L | R1 × R2 (V) | mg/L | R1 × R2 (F) | mg/L |
N (NO3−) | 131.25 | 0.76 × less in R1 | 171.26 | 1.38 × more in R1 | 97.96 |
N (NH4+) | 6.23 | 1.19 × more in R1 | 5.26 | 1.07 × more in R1 | 5.82 |
P2O5 | 30.87 | 0.55 × less in R1 | 65.91 | 8.49 × less in R1 | 262.66 |
K2O | 112.04 | 0.51 × less in R1 | 222.79 | 1.13 × less in R1 | 244.07 |
CaO | 147.99 | 1.19 × more in R1 | 125.70 | 1.10 × more in R1 | 138.26 |
MgO | 45.68 | 0.51 × less in R1 | 78.88 | 1.87 × less in R1 | 85.21 |
SO42− | 45.08 | 0.68 × less in R1 | 66.94 | 6.25 × less in R1 | 281.54 |
Parameter | Light S1 | Light S2 | ||
---|---|---|---|---|
V | F | V | F | |
PPFD (µmol/m2/s) | 300 | 900 | 500 | 1300 |
Power (W) | 360 | 540 | 540 | 900 |
Experiment 1—vegetation phase | |||
---|---|---|---|
Light S1 + Fertilizer R1 + R2 | Light S2 + Fertilizer R1 + R2 | ||
Average PPFD | 334.6 µmol/m²/s | Average PPFD | 471 µmol/m²/s |
Rounded PPFD | 300 µmol/m²/s | Rounded PPFD | 500 µmol/m²/s |
Experiment 1—flowering phase | |||
Light S1 + Fertilizer R1 + R2 | Light S2 + Fertilizer R1 + R2 | ||
Average PPFD | 927 µmol/m2/s | Average PPFD | 1299 µmol/m²/s |
Rounded PPFD | 900 µmol/m²/s | Rounded PPFD | 1300 µmol/m²/s |
Experiment 2—vegetation phase | |||
Light S1 + Fertilizer R1 + R2 | Light S2 + Fertilizer R1 + R2 | ||
Average PPFD | 315.4 µmol/m²/s | Average PPFD | 492 µmol/m²/s |
Rounded PPFD | 300 µmol/m²/s | Rounded PPFD | 500 µmol/m²/s |
Experiment 2—flowering phase | |||
Light S1 + Fertilizer R1 + R2 | Light S2 + Fertilizer R1 + R2 | ||
Average PPFD | 914.6 µmol/m²/s | Average PPFD | 1308 µmol/m²/s |
Rounded PPFD | 900 µmol/m²/s | Rounded PPFD | 1300 µmol/m²/s |
Effect | Yield (g DM) | CBD (%) | THC (%) | CBG (%) | CBC (%) | |
---|---|---|---|---|---|---|
Nutrition | R1 | 60.85 ± 3.94 | 10.05 ± 0.65 | 0.446 ± 0.03 | 0.846 ± 0.11 | 0.160 ± 0.02 |
R2 | 58.34 ± 3.57 | 9.58 ± 0.20 | 0.428 ± 0.01 | 0.749 ± 0.08 | 0.193 ± 0.03 | |
p-Value | ns | ns | ns | ns | ns | |
Light | S1 | 44.30 ± 1.61 b | 9.04 ± 0.39 b | 0.400 ± 0.02 b | 0.670 ± 0.06 | 0.145 ± 0.02 |
S2 | 74.90 ± 3.27 a | 10.59 ± 0.38 a | 0.474 ± 0.02 a | 0.925 ± 0.11 | 0.208 ± 0.02 | |
p-Value | ** | ** | * | † | † | |
Nutrition and Light | R1S1 | 45.63 ± 3.22 | 8.75 ± 0.79 | 0.38 ± 0.04 | 0.64 ± 0.11 | 0.13 ± 0.06 |
R1S2 | 76.08 ± 4.80 | 11.35 ± 0.46 | 0.51 ± 0.03 | 1.05 ± 0.13 | 0.20 ± 0.11 | |
R2S1 | 42.97 ± 0.33 | 9.33 ± 0.25 | 0.42 ± 0.02 | 0.70 ± 0.06 | 0.17 ± 0.05 | |
R2S2 | 73.72 ± 4.58 | 9.83 ± 0.29 | 0.44 ± 0.02 | 0.80 ± 0.17 | 0.22 ± 0.11 | |
p-Value | ns | † | † | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konvalina, P.; Neumann, J.; Hoang, T.N.; Bernas, J.; Trojan, V.; Kuchař, M.; Lošák, T.; Varga, L. Effect of Light Intensity and Two Different Nutrient Solutions on the Yield of Flowers and Cannabinoids in Cannabis sativa L. Grown in Controlled Environment. Agronomy 2024, 14, 2960. https://doi.org/10.3390/agronomy14122960
Konvalina P, Neumann J, Hoang TN, Bernas J, Trojan V, Kuchař M, Lošák T, Varga L. Effect of Light Intensity and Two Different Nutrient Solutions on the Yield of Flowers and Cannabinoids in Cannabis sativa L. Grown in Controlled Environment. Agronomy. 2024; 14(12):2960. https://doi.org/10.3390/agronomy14122960
Chicago/Turabian StyleKonvalina, Petr, Jaroslav Neumann, Trong Nghia Hoang, Jaroslav Bernas, Václav Trojan, Martin Kuchař, Tomáš Lošák, and Ladislav Varga. 2024. "Effect of Light Intensity and Two Different Nutrient Solutions on the Yield of Flowers and Cannabinoids in Cannabis sativa L. Grown in Controlled Environment" Agronomy 14, no. 12: 2960. https://doi.org/10.3390/agronomy14122960
APA StyleKonvalina, P., Neumann, J., Hoang, T. N., Bernas, J., Trojan, V., Kuchař, M., Lošák, T., & Varga, L. (2024). Effect of Light Intensity and Two Different Nutrient Solutions on the Yield of Flowers and Cannabinoids in Cannabis sativa L. Grown in Controlled Environment. Agronomy, 14(12), 2960. https://doi.org/10.3390/agronomy14122960