Progress and Hotspot Analysis of Bibliometric-Based Research on Agricultural Irrigation Patterns on Non-Point Pollution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection and Preparation
2.2. Research Methodology
2.3. Formatting of Mathematical Components
3. Results and Discussion
3.1. Disciplinary Co-Occurrence Analysis
3.2. Analysis of Annual Publication Number and Countries of Origin
3.3. Analysis of Publishing Institution and Authors
3.4. Keyword Analysis
3.4.1. Exploration of Hot Topics in Review Articles
3.4.2. Analysis of Keyword Co-Occurrence
3.4.3. Keyword Clustering Relating to IRR-NPS Research Literature According to Time of Citation
3.4.4. Analysis of Keyword Bursts
3.5. Analysis of Reference Co-Citation
4. Discussion and Recommendations
- Select Practical, Low-Cost Precision Irrigation Strategies:
- 2.
- Accelerate Innovative Research on Multi-Segment NPS Pollution Control Methods:
- 3.
- Programming Languages Aid in Integrating Remote Sensing and Sensor Technology in IRR-NPS Strategies
- 4.
- Increase Innovative Research on Soil Improvement Measures
- 5.
- Research on measures to increase collaborative use of datasets and software.
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
non-point source pollution (NPS) |
irrigation-related NPS pollution (IRR-NPS) |
Log-Likelihood Ratio algorithm (LLR) |
Betweenness Centrality (BC) |
Connection strength |
Equal Scarcity (ES) method |
Yield Stress (YS) irrigation method |
water use efficiency (WUE) |
nitrogen use efficiency (NUE) |
microbial desalination cells (MDCs) |
reverse osmosis (RO) processes |
microbial fuel cells (MFC) |
anion exchange membranes (AEM) |
ridge-furrow rainfall harvesting (RFRH) system |
ordinary furrow irrigation (OFI) |
variable alternate furrow irrigation (VAFI) |
fixed alternate furrow irrigation (FAFI) |
total nitrogen (TN) |
closed aquifers (CT) |
shallow water irrigation (FSI) |
rainwater-controlled irrigation (RC-CI) |
straw-covered dry farming (DPS) |
artificial intelligence irrigation (ACO/LIDM) |
normalized sparse autoencoder-adaptive neuro-fuzzy inference system (NSAE-ANFIS) |
machine learning (ML) |
communication technology (ICT) |
References
- Verstraeten, I.M.; Sibray, S.S.; Cannia, J.C.; Tanner, D.Q. Reconnaissance of Ground-Water Quality in the North Platte Natural Resources District, Western Nebraska, June–July 1991; U.S. Geological Surve: Reston, VA, USA, 1995. [Google Scholar] [CrossRef]
- Xiong, L.-P.; Li, C.-J.; Peng, H.; Li, S.-N.; Zhu, J.; Cai, J.-P.; Ji, X.-H. Current Situation and Control Measures of Agricultural Non-point Source Pollution in Typical Basin of South China. Agric. Sci. Technol. 2019, 4, 49–58. [Google Scholar] [CrossRef]
- Shuiwang, D.; Shen, Z.; Hongyu, H. Transport of dissolved inorganic nitrogen from the major rivers to estuaries in China. Nutr. Cycl. Agroecosyst. 2000, 57, 13–22. [Google Scholar] [CrossRef]
- Bar-Yosef, B. Advances in fertigation. Adv. Agron. 1999, 65, 1–77. [Google Scholar] [CrossRef]
- Dawson, J.C.; Huggins, D.R.; Jones, S.S. Characterizing nitrogen use efficiency in natural and agricultural ecosystems to improve the performance of cereal crops in low-input and organic agricultural systems. Field Crops Res. 2008, 107, 89–101. [Google Scholar] [CrossRef]
- Liang, H.; Gao, S.; Qi, Z.; Hu, K.; Xu, J. Leaching loss of dissolved organic nitrogen from cropland ecosystems. Environ. Rev. 2021, 29, 23–30. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978–2017. J. Environ. Manag. 2020, 263, 110400. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Lenzen, M.; McBratney, A.; Maggi, F. Risk of pesticide pollution at the global scale. Nat. Geosci. 2021, 14, 206–210. [Google Scholar] [CrossRef]
- Kumar, A.; Mishra, S.; Bakshi, S.; Upadhyay, P.; Thakur, T.K. Response of eutrophication and water quality drivers on greenhouse gas emissions in lakes of China: A critical analysis. Ecohydrology 2022, 16, e2483. [Google Scholar] [CrossRef]
- Xiao, M.; Li, Y.; Wang, J.; Hu, X.; Wang, L.; Miao, Z. Study on the Law of Nitrogen Transfer and Conversion and Use of Fertilizer Nitrogen in Paddy Fields under Water-Saving Irrigation Mode. Water 2019, 11, 218. [Google Scholar] [CrossRef]
- Kumar, A.; Upadhyay, P.; Prajapati, S.K. Impact of microplastics on riverine greenhouse gas emissions: A view point. Environ. Sci. Pollut. Res. Int. 2022, 30, 107300–107303. [Google Scholar] [CrossRef] [PubMed]
- Jasemizad, T.; Sun, P.; Padhye, L.P. Aqueous N-nitrosamines: Precursors, occurrence, oxidation processes, and role of inorganic ions. Crit. Rev. Environ. Sci. Technol. 2021, 52, 3604–3650. [Google Scholar] [CrossRef]
- French, A.N.; Hunsaker, D.J.; Sanchez, C.A.; Saber, M.; Gonzalez, J.R.; Anderson, R. Satellite-based NDVI crop coefficients and evapotranspiration with eddy covariance validation for multiple durum wheat fields in the US Southwest. Agric. Water Manag. 2020, 239, 106266. [Google Scholar] [CrossRef]
- Bornmann, L.; Leydesdorff, L. Scientometrics in a changing research landscape. EMBO Rep. 2014, 15, 1228–1232. [Google Scholar] [CrossRef]
- Chen, C. Science Mapping: A Systematic Review of the literature. J. Data Inf. Sci. 2017, 2, 1–40. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.E.; Holland, E.; Johnes, P.J.; Katzenberger, J.; Martinelli, L.A.; Matson, P.A.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Leifeld, J. Current approaches neglect possible agricultural cutback under large-scale organic farming. A comment to Ponisio et al. Proc. R. Soc. Biol. Sci. 2016, 283, 20151623. [Google Scholar] [CrossRef]
- Conant, R.T.; Berdanier, A.B.; Grace, P.R. Patterns and trends in nitrogen use and nitrogen recovery efficiency in world agriculture. Glob. Biogeochem. Cycles 2013, 27, 558–566. [Google Scholar] [CrossRef]
- Ritter, W.F. Reducing impacts of nonpoint source pollution from agriculture: A review. J. Environ. Sci. Health Part A Environ. Sci. Eng. 1988, 23, 645–667. [Google Scholar] [CrossRef]
- Hai, R. Using best management practices to control agricultural non-point source pollution. Ecol. Sci. 2005, 24, 173–177. [Google Scholar]
- An, Z.-Z.; Suo, L.-N.; Liu, B.-C. Prospect and research on agricultural non-point source pollution in China. J. Plant Nutr. Fertil. 2024, 30, 1422–1436. [Google Scholar] [CrossRef]
- Lou, H.; Wu, X.; Hao, F.; Yang, S.; Zhang, X. Research progress of non-point source pollution in China over the past 30 years and discussion of the future direction development. Acta Sci. Circumstantiae 2020, 40, 1535–1549. [Google Scholar] [CrossRef]
- Chen, C.; Hu, Z.; Liu, S.; Tseng, H. Emerging trends in regenerative medicine: A scientometric analysis in CiteSpace. Expert Opin. Biol. Ther. 2012, 12, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Niazi, M.A. Review of “CiteSpace: A Practical Guide for Mapping Scientific Literature” by Chaomei Chen. Complex Adapt. Syst. Model. 2016, 4, 23. [Google Scholar] [CrossRef]
- Ji, W.; Yu, S.; Shen, Z.; Wang, M.; Cheng, G.; Yang, T.; Yuan, Q. Knowledge Mapping with CiteSpace, VOSviewer, and SciMAT on Intelligent Connected Vehicles: Road Safety Issue. Sustainability 2023, 15, 12003. [Google Scholar] [CrossRef]
- Xiao, Y.; Sun, C.; Wang, D.; Li, H.; Guo, W. Analysis of hotspots in subsurface drip irrigation research using CiteSpace. Agriculture 2023, 13, 1463. [Google Scholar] [CrossRef]
- Yang, F.; Jia, C.; Yang, H.; Yang, X. Development, hotspots and trend directions of groundwater salinization research in both coastal and inland areas: A bibliometric and visualization analysis from 1970 to 2021. Environ. Sci. Pollut. Res. Int. 2022, 29, 67704–67727. [Google Scholar] [CrossRef]
- Xiao, J.; Wei, J.; Wu, M.; Cao, X. Bibliometric and Visual analysis of crop water footprint: A widely used agricultural water resources evaluation method. Water 2022, 14, 2866. [Google Scholar] [CrossRef]
- Arango, C.R.; Alvarado, R.U. Red de co-palabras en la bibliometría mexicana. Investig. Bibl. Arch. Bibl. E Inf. Investig. Bibl. 2017, 31, 17. [Google Scholar] [CrossRef]
- Peng, R.; Zhu, C.; Wu, W. Visualizing the Emerging Trends of acculturation Research: A Bibliometric analysis from 2000 to 2020. J. Cross-Cult. Psychol. 2021, 52, 794–800. [Google Scholar] [CrossRef]
- Sabe, M.; Pillinger, T.; Kaiser, S.; Chen, C.; Taipale, H.; Tanskanen, A.; Tiihonen, J.; Leucht, S.; Correll, C.U.; Solmi, M. Half a century of research on antipsychotics and schizophrenia: A scientometric study of hotspots, nodes, bursts, and trends. Neurosci. Biobehav. Rev. 2022, 136, 104608. [Google Scholar] [CrossRef] [PubMed]
- Calvet-Mir, L.; Corbera, E.; Martin, A.; Fisher, J.; Gross-Camp, N. Payments for ecosystem services in the tropics: A closer look at effectiveness and equity. Curr. Opin. Environ. Sustain. 2015, 14, 150–162. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, Q.; Liu, Y. Analysis of knowledge bases and research focuses of cerebral ischemia-reperfusion from the perspective of mapping knowledge domain. Brain Res. Bull. 2020, 156, 15–24. [Google Scholar] [CrossRef]
- Chu, P.; Wang, T.; Zheng, J.; Xu, C.; Yan, Y.; Ma, Q.; Yin, M.-C.; Tian, D.-S. Global and current research trends of Unilateral Biportal Endoscopy/Biportal Endoscopic spinal surgery in the treatment of lumbar degenerative Diseases: A Bibliometric and Visualization study. Orthop. Surg. 2022, 14, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Chen, L. Interventional Impacts of Watershed Ecological Compensation on Regional Economic Differences: Evidence from Xin’an River, China. Int. J. Environ. Res. Public Health 2020, 17, 6389. [Google Scholar] [CrossRef] [PubMed]
- Small, H. Co-citation in the scientific literature: A new measure of the relationship between two documents. J. Am. Soc. Inf. Sci. 1973, 24, 265–269. [Google Scholar] [CrossRef]
- Li, T.; Niu, Y.; Pang, J.; Geng, S.; Wang, Y.; Li, J.; Xiong, Y.; Wang, L. Temporal and spatial characteristics of agricultural non-point source pollution in Hebei Province from 2000 to 2021. Front. Environ. Sci. 2024, 12, 1439806. [Google Scholar] [CrossRef]
- Ren, B.; Sun, B.; Shi, X.; Zhao, S.; Wang, X. Analysis of the cooperative carrying capacity of Ulan Suhai Lake based on the coupled Water Resources–Water Environment–Water Ecology System. Water 2022, 14, 3102. [Google Scholar] [CrossRef]
- Zhu, Y.; Kim, M.C.; Chen, C. An Investigation of the Intellectual Structure of Opinion Mining Research. Inf. Res. 2017, 22, 739. [Google Scholar]
- Che, Z.; Wang, J.; Li, J. Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China. Agric. Water Manag. 2021, 247, 106738. [Google Scholar] [CrossRef]
- Zapata, N.; Bahddou, S.; Latorre, B.; Playán, E. A simulation tool to optimize the management of modernized infrastructures in collective and on-farm irrigation systems. Agric. Water Manag. 2023, 284, 108337. [Google Scholar] [CrossRef]
- Lin, X.; Wang, Z.; Li, J. Spatial variability of salt content caused by nonuniform distribution of irrigation and soil properties in drip irrigation subunits with different lateral layouts under arid environments. Agric. Water Manag. 2022, 266, 107564. [Google Scholar] [CrossRef]
- Luo, Z.; Liu, H.; Li, W.; Zhao, Q.; Dai, J.; Tian, L.; Dong, H. Effects of reduced nitrogen rate on cotton yield and nitrogen use efficiency as mediated by application mode or plant density. Field Crops Res. 2018, 218, 150–157. [Google Scholar] [CrossRef]
- Min, J.; Zhang, H.; Shi, W. Optimizing nitrogen input to reduce nitrate leaching loss in greenhouse vegetable production. Agric. Water Manag. 2012, 111, 53–59. [Google Scholar] [CrossRef]
- Yang, M.; Xiao, W.; Zhao, Y.; Li, X.; Huang, Y.; Lu, F.; Hou, B.; Li, B. Assessment of potential climate change effects on the rice yield and water footprint in the Nanliujiang Catchment, China. Sustainability 2018, 10, 242. [Google Scholar] [CrossRef]
- Malek, K.; Adam, J.C.; Stöckle, C.O.; Peters, R.T. Climate change reduces water availability for agriculture by decreasing non-evaporative irrigation losses. J. Hydrol. 2018, 561, 444–460. [Google Scholar] [CrossRef]
- Huang, X.; Bai, J.; Liu, X.; Meng, Z.; Shang, Y.; Jiao, T.; Chen, G.; Deng, J. Scientometric Analysis of Dental Implant Research over the Past 10 Years and Future Research Trends. BioMed Res. Int. 2021, 2021, 6634055. [Google Scholar] [CrossRef]
- Lang, N.P.; Berglundh, T. Periimplant diseases: Where are we now?—Consensus of the Seventh European Workshop on Periodontology. J. Clin. Periodontol. 2011, 38, 178–181. [Google Scholar] [CrossRef]
- Jung, R.E.; Zembic, A.; Pjetursson, B.E.; Zwahlen, M.; Thoma, D.S. Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin. Oral Implant. Res. 2012, 23, 2–21. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. How moderate water stress can affect water use efficiency Indices in potato. Agronomy 2020, 10, 1034. [Google Scholar] [CrossRef]
- García, L.; Parra, L.; Jiménez, J.M.; Lloret, J.; Lorenz, P. IoT-Based Smart Irrigation Systems: An overview on the recent trends on sensors and IoT systems for irrigation in precision agriculture. Sensors 2020, 20, 1042. [Google Scholar] [CrossRef]
- Glória, A.; Dionisio, C.; Simões, G.; Cardoso, J.; Sebastião, P. Water management for sustainable irrigation systems using Internet-of-Things. Sensors 2020, 20, 1402. [Google Scholar] [CrossRef]
- Sowby, R.B.; Lunstad, N.T. Why is residential irrigation so hard to optimize? Water 2023, 15, 3177. [Google Scholar] [CrossRef]
- Luo, X.; Kou, C.; Wang, Q. Optimal fertilizer application reduced nitrogen leaching and maintained high yield in Wheat-Maize cropping system in north China. Plants 2022, 11, 1963. [Google Scholar] [CrossRef]
- Qi, D.; Zhu, J.; Wang, X. Root growth in rice (Liangyou 152) under alternate wetting and drying irrigation and mixed application of polymer-coated and common urea. J. Soil Sci. Plant Nutr. 2023, 23, 6838–6850. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Y.; Yang, F.; Zhao, Y.; Zheng, H. Effects of agricultural practices on nitrogen distribution in unsaturated soils. Environ. Earth Sci. 2017, 76, 831. [Google Scholar] [CrossRef]
- Peng, L.; Jianyuan, C.; Ji, L.; Tiantian, W.; Jian, Y. Hydrogeochemical characteristics and solute sources of groundwater in the Yuhengbei mining area, Shaanxi Province, China. Environ. Earth Sci. 2022, 81, 516. [Google Scholar] [CrossRef]
- Voloudakis, D.; Karamanos, A.; Economou, G.; Kalivas, D.; Vahamidis, P.; Kotoulas, V.; Kapsomenakis, J.; Zerefos, C. Prediction of climate change impacts on cotton yields in Greece under eight climatic models using the AquaCrop crop simulation model and discriminant function analysis. Agric. Water Manag. 2015, 147, 116–128. [Google Scholar] [CrossRef]
- Doulgeris, C.; Georgiou, P.; Papadimos, D.; Papamichail, D. Water allocation under deficit irrigation using MIKE BASIN model for the mitigation of climate change. Irrig. Sci. 2015, 33, 469–482. [Google Scholar] [CrossRef]
- Communar, G.; Friedman, S.P. Determination of Soil Hydraulic Parameters with CyclicIrrigation Tests. Vadose Zone J. 2014, 13, 1–12. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, L.; Xia, X. Model predictive control of a Venlo-type greenhouse system considering electrical energy, water and carbon dioxide consumption. Appl. Energy 2021, 298, 117163. [Google Scholar] [CrossRef]
- Ping, Q.; Huang, Z.; Dosoretz, C.; He, Z. Integrated experimental investigation and mathematical modeling of brackish water desalination and wastewater treatment in microbial desalination cells. Water Res. 2015, 77, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Abu-Reesh, I.M.; He, Z. Treatment and desalination of domestic wastewater for water reuse in a four-chamber microbial desalination cell. Environ. Sci. Pollut. Res. 2016, 23, 17236–17245. [Google Scholar] [CrossRef] [PubMed]
- Ghasemipanah, K. Treatment of ion-exchange resins regeneration wastewater using reverse osmosis method for reuse. Desalination Water Treat. 2013, 51, 5179–5183. [Google Scholar] [CrossRef]
- Zou, S.; He, Z. Enhancing wastewater reuse by forward osmosis with self-diluted commercial fertilizers as draw solutes. Water Res. 2016, 99, 235–243. [Google Scholar] [CrossRef]
- Ping, Q.; Abu-Reesh, I.M.; He, Z. Enhanced boron removal by electricity generation in a microbial fuel cell. Desalination 2016, 398, 165–170. [Google Scholar] [CrossRef]
- Ferreira, A.R.; Guedes, P.; Mateus, E.P.; Ribeiro, A.B.; Couto, N. Emerging organic contaminants in soil irrigated with effluent: Electrochemical technology as a remediation strategy. Sci. Total Environ. 2020, 743, 140544. [Google Scholar] [CrossRef]
- Jia, Q.; Chen, K.; Chen, Y.; Ali, S.; Manzoor, N.; Sohail, A.; Fahad, S. Mulch covered ridges affect grain yield of maize through regulating root growth and root-bleeding sap under simulated rainfall conditions. Soil Tillage Res. 2018, 175, 101–111. [Google Scholar] [CrossRef]
- Sakho, I.; Dupont, J.-P.; Cisse, M.T.; Janyani, S.E.; Loum, S. Hydrological responses to rainfall variability and dam construction: A case study of the upper Senegal River basin. Environ. Earth Sci. 2017, 76, 253. [Google Scholar] [CrossRef]
- Enokido, T.; Taniar, D.; Hussain, O.K. Special issue: Intelligent edge, FoG and internet of things (IoT)-based services. Future Gener. Comput. Syst. 2020, 109, 710–711. [Google Scholar] [CrossRef]
- Shi, D.; Zhou, J.; Wang, D.; Wu, X. Research Status, Hotspots, and Evolutionary Trends of Intelligent Education from the Perspective of Knowledge Graph. Sustainability 2022, 14, 10934. [Google Scholar] [CrossRef]
- Trabucchi, D.; Bellis, P.; Di Marco, D.; Buganza, T.; Verganti, R. Attitude vs involvement: A systematic literature review at the intersection between engagement and innovation. Eur. J. Innov. Manag. 2020, 24, 1730–1762. [Google Scholar] [CrossRef]
- Berbel, J.; Gutiérrez-Martín, C.; Rodríguez-Díaz, J.A.; Camacho, E.; Montesinos, P. Literature review on rebound effect of water saving measures and analysis of a Spanish case study. Water Resour. Manag. 2014, 29, 663–678. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Zhong, X.; Lampayan, R.M.; Singleton, G.R.; Huang, N.; Liang, K.; Peng, B.; Tian, K. Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric. Water Manag. 2017, 184, 191–200. [Google Scholar] [CrossRef]
- Barzegari, M.; Sepaskhah, A.R.; Ahmadi, S.H. Irrigation and nitrogen managements affect nitrogen leaching and root yield of sugar beet. Nutr. Cycl. Agroecosyst. 2017, 108, 211–230. [Google Scholar] [CrossRef]
- Agbna, G.H.D.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Pires, L.F.; Auler, A.C.; Roque, W.L.; Mooney, S.J. X-ray microtomography analysis of soil pore structure dynamics under wetting and drying cycles. Geoderma 2020, 362, 114103. [Google Scholar] [CrossRef]
- Ohana-Levi, N.; Munitz, S.; Ben-Gal, A.; Schwartz, A.; Peeters, A.; Netzer, Y. Multiseasonal grapevine water consumption—Drivers and forecasting. Agric. For. Meteorol. 2020, 280, 107796. [Google Scholar] [CrossRef]
- Allakonon, M.G.B.; Zakari, S.; Tovihoudji, P.G.; Fatondji, A.S.; Akponikpè, P.B.I. Grain yield, actual evapotranspiration and water productivity responses of maize crop to deficit irrigation: A global meta-analysis. Agric. Water Manag. 2022, 270, 107746. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Williams, J.; Perry, C.J.; Molle, F.; Ringler, C.; Steduto, P.; Udall, B.; Wheeler, S.A.; Wang, Y.; Garrick, D.; et al. The paradox of irrigation efficiency. Science 2018, 361, 748–750. [Google Scholar] [CrossRef] [PubMed]
- Ishfaq, M.; Farooq, M.; Zulfiqar, U.; Hussain, S.; Akbar, N.; Nawaz, A.; Anjum, S.A. Alternate wetting and drying: A water-saving and ecofriendly rice production system. Agric. Water Manag. 2020, 241, 106363. [Google Scholar] [CrossRef]
- Borrego-Marín, M.M.; Berbel, J. Cost-benefit analysis of irrigation modernization in Guadalquivir River Basin. Agric. Water Manag. 2018, 212, 416–423. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, X.; Xiong, J.; Xiao, J. Water Allocation and Integrative Management of Precision Irrigation: A Systematic review. Water 2020, 12, 3135. [Google Scholar] [CrossRef]
- Zhang, S.; Cheng, G.; Tan, Q.; Zhao, H.; Zhang, T. An agro-hydrological process-based export coefficient model for estimating monthly non-point source loads in a semiarid agricultural area. J. Clean. Prod. 2023, 385, 135519. [Google Scholar] [CrossRef]
- Qi, D.; Zhu, J.; Wang, X. Nitrogen loss via runoff and leaching from paddy fields with the proportion of controlled-release urea and conventional urea rates under alternate wetting and drying irrigation. Environ. Sci. Pollut. Res. Int. 2023, 30, 61741–61752. [Google Scholar] [CrossRef]
- Zhuang, Y.; Zhang, L.; Li, S.; Liu, H.; Zhai, L.; Zhou, F.; Ye, Y.; Ruan, S.; Wen, W. Effects and potential of water-saving irrigation for rice production in China. Agric. Water Manag. 2019, 217, 374–382. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, H.; Yao, M.; Zhou, J.; Wu, K.; Hu, M.; Shen, H.; Chen, D. Estimation of nitrogen runoff loss from croplands in the Yangtze River Basin: A meta-analysis. Environ. Pollut. 2021, 272, 116001. [Google Scholar] [CrossRef]
- Hao, S.; Ding, T.; Wang, X.; Liu, X.; Guo, Y. Effects of different irrigation and drainage modes on lodging resistance of super rice Japonica 9108. Agronomy 2022, 12, 2407. [Google Scholar] [CrossRef]
- Zhang, C.; Long, D. Estimating spatially explicit irrigation water use based on remotely sensed evapotranspiration and modeled root zone soil moisture. Water Resour. Res. 2021, 57, e2021WR031382. [Google Scholar] [CrossRef]
- García-Mollá, M.; Puertas, R.; Sanchis-Ibor, C. Application of data envelopment analysis to evaluate investments in the modernization of collective management irrigation systems in Valencia (Spain). Water Resour. Manag. 2021, 35, 5011–5027. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.; Konar, M.; Wang, Y.; Yao, J. The grain Food-Energy-Water nexus in China: Benchmarking sustainability with generalized data envelopment analysis. Sci. Total Environ. 2023, 887, 164128. [Google Scholar] [CrossRef]
- Chen, P.; Xu, J.; Zhang, Z.; Nie, T.; Wang, K.; Guo, H. Where the straw-derived nitrogen gone in paddy field subjected to different irrigation regimes and straw placement depths? Evidence from 15N labeling. Agric. Water Manag. 2022, 273, 107921. [Google Scholar] [CrossRef]
- Tarki, M.; Dassi, L.; Hamed, Y.; Jedoui, Y. Geochemical and isotopic composition of groundwater in the Complex Terminal aquifer in southwestern Tunisia, with emphasis on the mixing by vertical leakage. Environ. Earth Sci. 2010, 64, 85–95. [Google Scholar] [CrossRef]
- Abd-El-Aty, M.S.; Abo-Youssef, M.I.; Bahgt, M.M.; Ibrahim, O.M.; Faltakh, H.; Nouri, H.; Korany, S.M.; Alsherif, E.A.; AbdElgawad, H.; El-Tahan, A.M. Mode of gene action and heterosis for physiological, biochemical, and agronomic traits in some diverse rice genotypes under normal and drought conditions. Front. Plant Sci. 2023, 14, 1108977. [Google Scholar] [CrossRef] [PubMed]
- Hamze, M.; Cheviron, B.; Baghdadi, N.; Lo, M.; Courault, D.; Zribi, M. Detection of irrigation dates and amounts on maize plots from the integration of Sentinel-2 derived Leaf Area Index values in the Optirrig crop model. Agric. Water Manag. 2023, 283, 108315. [Google Scholar] [CrossRef]
- Shen, Z.Y.; Chen, L.; Liao, Q.; Liu, R.M.; Huang, Q. A comprehensive study of the effect of GIS data on hydrology and non-point source pollution modeling. Agric. Water Manag. 2013, 118, 93–102. [Google Scholar] [CrossRef]
- Meybeck, M. Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 1982, 282, 401–450. [Google Scholar] [CrossRef]
- Jenkins, A.; Meybeck, M.; Chapman, D.V.; Helmer, R. Global Environmental Monitoring System. Global Freshwater Quality: A first assessment. Geogr. J. 1991, 157, 86. [Google Scholar] [CrossRef]
- Shen, Z.; Baia, J.; Liaoa, Q.; Chena, L. An overview of China’s agricultural non-point source issues and the development of related research. Hydrol. Curr. Res. 2014, 5, 1. [Google Scholar] [CrossRef]
- Xia, Y.; Zhang, M.; Tsang, D.C.W.; Geng, N.; Lu, D.; Zhu, L.; Igalavithana, A.D.; Dissanayake, P.D.; Rinklebe, J.; Yang, X.; et al. Recent advances in control technologies for non-point source pollution with nitrogen and phosphorous from agricultural runoff: Current practices and future prospects. Appl. Biol. Chem. 2020, 63, 8. [Google Scholar] [CrossRef]
- Spalding, R.F.; Exner, M.E. Occurrence of Nitrate in Groundwater—A Review. J. Environ. Qual. 1993, 22, 392–402. [Google Scholar] [CrossRef]
- He, D.; Liu, X.; Fu, Y.; Wang, T.; Zhu, B. Field baseflow eluting SOM-Rich sandy soil to exacerbate Non-Point source pollution of Lake Erhai, southwest China. Horticulturae 2023, 9, 898. [Google Scholar] [CrossRef]
- Ouyang, W.; Huang, H.; Hao, F.; Guo, B. Synergistic impacts of land-use change and soil property variation on non-point source nitrogen pollution in a freeze–thaw area. J. Hydrol. 2013, 495, 126–134. [Google Scholar] [CrossRef]
- Papastergiadou, E.; Kagalou, I.; Stefanidis, K.; Retalis, A.; Leonardos, I. Effects of anthropogenic influences on the trophic state, land uses and aquatic vegetation in a shallow Mediterranean lake: Implications for restoration. Water Resour. Manag. 2009, 24, 415–435. [Google Scholar] [CrossRef]
- Rather, M.I.; Rashid, I.; Shahi, N.; Murtaza, K.O.; Hassan, K.; Yousuf, A.R.; Romshoo, S.A.; Shah, I.Y. Massive land system changes impact water quality of the Jhelum River in Kashmir Himalaya. Environ. Monit. Assess. 2016, 188, 1–20. [Google Scholar] [CrossRef]
- Nyakudya, I.W.; Stroosnijder, L. Water management options based on rainfall analysis for rainfed maize (Zea mays L.) production in Rushinga district, Zimbabwe. Agric. Water Manag. 2011, 98, 1649–1659. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.; Wu, Y.; Chen, D.; Zhao, X.; Ma, Y.; Niu, S.; Wang, Y.; Zhang, F.; Xu, C.; et al. Nationwide estimates of nitrogen and phosphorus losses via runoff from rice paddies using data-constrained model simulations. J. Clean. Prod. 2021, 279, 123642. [Google Scholar] [CrossRef]
- López-Morales, J.A.; Martínez, J.A.; Skarmeta, A.F. Improving energy efficiency of irrigation wells by using an IoT-Based platform. Electronics 2021, 10, 250. [Google Scholar] [CrossRef]
- Perea, R.G.; Daccache, A.; Díaz, J.a.R.; Poyato, E.C.; Knox, J.W. Modelling impacts of precision irrigation on crop yield and in-field water management. Precis. Agric. 2017, 19, 497–512. [Google Scholar] [CrossRef]
- Alsenjar, O.; Cetin, M.; Aksu, H.; Golpinar, M.S.; Akgul, M.A. Actual evapotranspiration estimation using METRIC model and Landsat satellite images over an irrigated field in the Eastern Mediterranean Region of Turkey. Mediterr. Geosci. Rev. 2023, 5, 35–49. [Google Scholar] [CrossRef]
- Stoochnoff, J.A.; Graham, T.; Dixon, M.A. Drip irrigation scheduling for container grown trees based on plant water status. Irrig. Sci. 2018, 36, 179–186. [Google Scholar] [CrossRef]
- Ganjegunte, G.; Clark, J. Improved irrigation scheduling for freshwater conservation in the desert southwest U.S. Irrig. Sci. 2017, 35, 315–326. [Google Scholar] [CrossRef]
- Khadra, R.; Moreno, M.A.; Awada, H.; Lamaddalena, N. Energy and Hydraulic Performance-Based management of Large-Scale pressurized irrigation systems. Water Resour. Manag. 2016, 30, 3493–3506. [Google Scholar] [CrossRef]
- Arora, V.K.; Joshi, R.; Singh, C.B. Irrigation and deep tillage effects on productivity of Dry-Seeded rice in a subtropical environment. Agric. Res. 2018, 7, 416–423. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumari, V.V.; Gupta, R.; Singh, P.; Solomon, S. Efficient irrigation water management in Sugarcane through alteration of field application parameters under subtropical India. Sugar Tech 2017, 20, 21–28. [Google Scholar] [CrossRef]
- Peng, J.; Yuan, X.; Qi, L.; Li, Q. A study of multi-objective dynamic water resources allocation modeling of Huai River. Water Supply 2015, 15, 817–824. [Google Scholar] [CrossRef]
- Hu, A.; Yu, Z.; Liu, X.; Gao, W.; He, Y.; Li, J. The effects of irrigation and fertilization on the migration and transformation processes of main chemical components in the soil profile. Environ. Geochem. Health 2019, 41, 2631–2648. [Google Scholar] [CrossRef]
- Liang, Z.; Liao, S.; Wen, Y.; Liu, X. Working parameter optimization of strengthen waterjet grinding with the orthogonal-experiment-design-based ANFIS. J. Intell. Manuf. 2016, 30, 833–854. [Google Scholar] [CrossRef]
- Liang, Z.; Xie, B.; Liao, S.; Zhou, J. Concentration degree prediction of AWJ grinding effectiveness based on turbulence characteristics and the improved ANFIS. Int. J. Adv. Manuf. Technol. 2015, 80, 887–905. [Google Scholar] [CrossRef]
- Zhuang, Y.; Wen, W.; Ruan, S.; Zhuang, F.; Xia, B.; Li, S.; Liu, H.; Du, Y.; Zhang, L. Real-time measurement of total nitrogen for agricultural runoff based on multiparameter sensors and intelligent algorithms. Water Res. 2022, 210, 117992. [Google Scholar] [CrossRef]
- Han, H.; Gao, R.; Cui, Y.; Gu, S. A semi-empirical semi-process model of ammonia volatilization from paddy fields under different irrigation modes and urea application regimes. Agric. Water Manag. 2022, 272, 107841. [Google Scholar] [CrossRef]
- Foster, S.; Pulido-Bosch, A.; Vallejos, Á.; Molina, L.; Llop, A.; MacDonald, A.M. Impact of irrigated agriculture on groundwater-recharge salinity: A major sustainability concern in semi-arid regions. Hydrogeol. J. 2018, 26, 2781–2791. [Google Scholar] [CrossRef]
- Digna, R.F.; Mohamed, Y.A.; Van Der Zaag, P.; Uhlenbrook, S.; Van Der Krogt, W.; Corzo, G. Impact of water resources development on water availability for hydropower production and irrigated agriculture of the Eastern Nile Basin. J. Water Resour. Plan. Manag. 2018, 144, 05018007. [Google Scholar] [CrossRef]
- Suhardiman, D. Irrigation Management transfer and the shaping of irrigation realities in Indonesia: From means to empower farmers to a tool to transfer rent seeking? Hum. Organ. 2016, 75, 326–335. [Google Scholar] [CrossRef]
- Paranage, K. Understanding the Relationship between Water Infrastructure and Socio-Political Configurations: A Case Study from Sri Lanka. Water 2018, 10, 1402. [Google Scholar] [CrossRef]
- Hamze, M.; Cheviron, B.; Baghdadi, N.; Courault, D.; Zribi, M. Plot-Scale Irrigation Dates and Amount Detection Using Surface Soil Moisture Derived from Sentinel-1 SAR Data in the Optirrig Crop Model. Remote Sens. 2023, 15, 4081. [Google Scholar] [CrossRef]
- Prakosa, J.A.; Purwowibowo, P.; Kurniawan, E.; Wijonarko, S.; Maftukhah, T.; Rustandi, D.; Pratiwi, E.B.; Rahmanto, R. Experimental Design of Fast Terminal Sliding Mode Control for Valve Regulation under Water Load Uncertainty for Precision Irrigation. Actuators 2023, 12, 155. [Google Scholar] [CrossRef]
- Lu, Y.; Wang, C.; Yang, R.; Sun, M.; Zhang, L.; Zhang, Y.; Li, X. Research on the progress of Agricultural Non-Point Source Pollution Management in China: A review. Sustainability 2023, 15, 13308. [Google Scholar] [CrossRef]
- Yi, X.; Lin, D.; Li, J.; Zeng, J.; Wang, D.; Yang, F. Ecological treatment technology for agricultural non-point source pollution in remote rural areas of China. Environ. Sci. Pollut. Res. Int. 2020, 28, 40075–40087. [Google Scholar] [CrossRef]
- Wu, S.; Bashir, M.A.; Raza, Q.-U.-A.; Rehim, A.; Geng, Y.; Cao, L. Application of riparian buffer zone in agricultural non-point source pollution control—A review. Front. Sustain. Food Syst. 2023, 7, 985870. [Google Scholar] [CrossRef]
- Delgado, M.; De Imperial, R.M.; Alonso, F.; Rodríguez, C.; Martín, J.V. Ecotoxicity Bioassays on Leachates from Poultry Manure. Bull. Environ. Contam. Toxicol. 2013, 90, 401–404. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Ou, Z.; Fan, J.; Zeng, B.; Guan, W. Research on the non-point source pollution of microplastics. Front. Chem. 2022, 10, 956547. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Liu, X.; Legesse, N.; Liu, Y.; Wu, S.; Han, F.X.; Ma, Y. Evaluation of Agricultural Non-point Source Pollution: A Review. Water Air Soil Pollut. 2023, 234, 657. [Google Scholar] [CrossRef]
- André, L.; Pauss, A.; Ribeiro, T. Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresour. Technol. 2018, 247, 1027–1037. [Google Scholar] [CrossRef]
- Hamani, A.K.M.; Abubakar, S.A.; Si, Z.; Kama, R.; Gao, Y.; Duan, A. Suitable split nitrogen application increases grain yield and photosynthetic capacity in drip-irrigated winter wheat (Triticum aestivum L.) under different water regimes in the North China Plain. Front. Plant Sci. 2023, 13, 1105006. [Google Scholar] [CrossRef]
- Peng, Y.; Fei, L.; Liu, X.; Sun, G.; Hao, K.; Cui, N.; Zhao, L.; Liu, L.; Jie, F. Coupling of regulated deficit irrigation at maturity stage and moderate fertilization to improve soil quality, mango yield and water-fertilizer use efficiency. Sci. Hortic. 2023, 307, 111492. [Google Scholar] [CrossRef]
- Li, J.; Yang, Q.; Shi, Z.; Zang, Z.; Liu, X. Effects of deficit irrigation and organic fertilizer on yield, saponin and disease incidence in Panax notoginseng under shaded conditions. Agric. Water Manag. 2021, 256, 107056. [Google Scholar] [CrossRef]
- Han, S.; Li, Y.; Zhou, B.; Liu, Z.; Feng, J.; Xiao, Y. An in-situ accelerated experimental testing method for drip irrigation emitter clogging with inferior water. Agric. Water Manag. 2019, 212, 136–154. [Google Scholar] [CrossRef]
- Shafiquzzaman; Haider, H.; Ghazaw, Y.M.; Alharbi, F.; AlSaleem, S.S.; Almoshaogeh, M. Evaluation of a Low-Cost ceramic filter for sustainable reuse of urban stormwater in arid environments. Water 2020, 12, 460. [Google Scholar] [CrossRef]
- Zhou, L.; He, J.; Qi, Z.; Dyck, M.; Zou, Y.; Zhang, T.; Feng, H. Effects of lateral spacing for drip irrigation and mulching on the distributions of soil water and nitrate, maize yield, and water use efficiency. Agric. Water Manag. 2018, 199, 190–200. [Google Scholar] [CrossRef]
- Halder, D.; Panda, R.K.; Srivastava, R.K.; Kheroar, S.; Singh, S.P. Stochastic analysis of rainfall and its application in appropriate planning and management for Eastern India agriculture. Water Policy 2016, 18, 1155–1173. [Google Scholar] [CrossRef]
- Li, Y.; Shao, X.; Sheng, Z. Field experiments on reducing pollutants in Agricultural-Drained water using Soil-Vegetation buffer strips. Pol. J. Environ. Stud. 2016, 25, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Holtman, G.A.; Haldenwang, R.; Welz, P.J. Comparison of continuous and pulse mode of operation of pilot biosand reactors treating winery effluent. Soc. Sci. Res. Netw. 2022, 182, 106706. [Google Scholar] [CrossRef]
- Wani, A.K.; Mir, T.U.G.; Akhtar, N.; Chopra, C.; Bashir, S.M.; Hassan, S.; Kumar, V.; Singh, R.; Américo-Pinheiro, J.H.P. Algae-Mediated Removal of Prevalent Genotoxic Antibiotics: Molecular perspective on Algae-Bacteria consortia and Bioreactor-Based Strategies. Curr. Microbiol. 2024, 81, 112. [Google Scholar] [CrossRef] [PubMed]
- Zia, H.; Harris, N.R.; Merrett, G.V.; Rivers, M.; Coles, N. The impact of agricultural activities on water quality: A case for collaborative catchment-scale management using integrated wireless sensor networks. Comput. Electron. Agric. 2013, 96, 126–138. [Google Scholar] [CrossRef]
- Khan, M.A.; Costa, F.B.; Fenton, O.; Jordan, P.; Fennell, C.; Mellander, P.-E. Using a multi-dimensional approach for catchment scale herbicide pollution assessments. Sci. Total Environ. 2020, 747, 141232. [Google Scholar] [CrossRef]
- Iwanaga, T.; Partington, D.; Ticehurst, J.; Croke, B.F.W.; Jakeman, A.J. A socio-environmental model for exploring sustainable water management futures: Participatory and collaborative modelling in the Lower Campaspe catchment. J. Hydrol. Reg. Stud. 2020, 28, 100669. [Google Scholar] [CrossRef]
- Eron, F.; Noman, M.; De Oliveira, R.R.; Chalfun-Junior, A. Computer Vision-Aided Intelligent Monitoring of Coffee: Towards Sustainable Coffee Production. Sci. Hortic. 2024, 327, 112847. [Google Scholar] [CrossRef]
- Méndez-Zambrano, P.V.; Pérez, L.P.T.; Valdez, R.E.U.; Orozco, Á.P.F. Technological Innovations for Agricultural Production from an Environmental Perspective: A Review. Sustainability 2023, 15, 16100. [Google Scholar] [CrossRef]
- Wu, N.T.-Y. Radio frequency identification (RFID) with mobile-grid based framework for farmland irrigation facility management. Afr. J. Agric. Res. 2011, 6, 6499–6512. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Q.; Yan, C.; Wu, Q.; Gong, D.; He, W.; Liu, H.; Wang, J.; Mei, X. Mitigation of greenhouse gas emissions and improved yield by plastic mulching in rice production. Sci. Total Environ. 2023, 880, 162984. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Niu, W.; Li, Y. Effects of Drip Irrigation with Plastic on Photosynthetic Characteristics and Biomass Distribution of Muskmelon. Agriculture 2020, 10, 84. [Google Scholar] [CrossRef]
- Chen, L.; Liu, M.; Ali, A.; Zhou, Q.; Zhan, S.; Chen, Y.; Pan, X.; Zeng, Y. Effects of biochar on paddy soil fertility under different water management modes. J. Soil Sci. Plant Nutr. 2020, 20, 1810–1818. [Google Scholar] [CrossRef]
- Shan, Y.Y.; Li, G.; Bai, Y.G.; Liu, H.B.; Zhang, J.H.; Wei, K.; Wang, Q.J.; Cao, L. Effects of gypsum combined with different amounts biochemical humic acid on soil improvement and cotton Gossypium hirsutum L.) yield on saline-alkali land. Appl. Ecol. Environ. Res. 2022, 20, 841–854. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C.; Gao, Y.; Zhao, L.; Xi, B.; Tan, W. Structure and composition of rhizosphere-soil humic acid and fulvic acid as affected by the land-use change from paddy to upland fields. Sustain. Horiz. 2024, 10, 100097. [Google Scholar] [CrossRef]
- Xie, J.; Wei, L.; Luo, Y.; Dang, Q. A literature review on application progress and research prospects of CiteSpace. DEStech Trans. Soc. Sci. Educ. Hum. Sci. 2018, 15, 131–157. [Google Scholar] [CrossRef]
- Jia, W.; Peng, J.; Cai, N. An approach to improving the analysis of literature data in Chinese through an improved use of CiteSpace. Knowl. Manag. E-Learn. Int. J. 2020, 12, 256–267. [Google Scholar] [CrossRef]
- Kim, H.-J. A study on Visualization of Digital Preservation Knowledge Domain using CiteSpace. Hanguk Munheon Jeongbohak Hoeji 2005, 39, 89–104. [Google Scholar] [CrossRef]
- Hansen, C.; Steinmetz, H.; Block, J. How to conduct a meta-analysis in eight steps: A practical guide. Manag. Rev. Q. 2021, 72, 1–19. [Google Scholar] [CrossRef]
- Mathew, J.L. Systematic Reviews and Meta-Analysis: A guide for Beginners. Indian Pediatr. 2021, 59, 320–330. [Google Scholar] [CrossRef]
Rank | Number of Papers | Percentage % | Centrality | Burst | Country |
---|---|---|---|---|---|
1 | 451 | 54.34 | 0.64 | CHINA | |
2 | 91 | 10.96 | 0.33 | 2.3 | USA |
3 | 50 | 6.02 | 0.2 | 1.44 | SPAIN |
4 | 49 | 5.90 | 0.07 | 3.22 | INDIA |
5 | 29 | 3.49 | 0.12 | 4.9 | AUSTRALIA |
6 | 27 | 3.25 | 0.13 | ITALY | |
7 | 26 | 3.13 | 0.04 | 2 | IRAN |
8 | 22 | 2.65 | 0.16 | 2.87 | FRANCE |
9 | 18 | 2.17 | 0.13 | 2.72 | ENGLAND |
10 | 16 | 1.93 | 0.09 | 3.81 | GERMANY |
11 | 16 | 1.93 | 0.03 | 2.96 | CANADA |
12 | 16 | 1.93 | 0.06 | EGYPT | |
13 | 15 | 1.81 | 0.12 | 1.7 | TURKEY |
14 | 15 | 1.81 | 0.01 | ISRAEL | |
15 | 14 | 1.69 | 0.05 | PAKISTAN | |
16 | 14 | 1.69 | 0.13 | 3.62 | NETHERLANDS |
17 | 11 | 1.33 | 0.05 | SAUDI ARABIA | |
18 | 13 | 1.57 | 0.05 | 2.92 | PORTUGAL |
19 | 10 | 1.20 | 0.14 | BRAZIL | |
20 | 10 | 1.20 | 0.05 | 1.43 | SOUTH AFRICA |
Rank | Frequency | Centrality | Burst | Year | Institution |
---|---|---|---|---|---|
1 | 41 | 0.06 | 5 | 2017 | Northwest A&F Univ |
2 | 37 | 0.08 | 1.72 | 2010 | Chinese Acad Sci |
3 | 37 | 0.04 | 2.46 | 2012 | Hohai Univ |
4 | 32 | 0.06 | 2012 | Chinese Acad Agr Sci | |
5 | 28 | 0.06 | 3.95 | 2014 | China Agr Univ |
6 | 22 | 0.04 | 1.95 | 2010 | China Inst Water Resources & Hydropower Res |
7 | 16 | 0.01 | 2019 | North China Univ Water Resources & Elect Power | |
8 | 15 | 0.04 | 2016 | Wuhan Univ | |
9 | 15 | 0.01 | 2.74 | 2017 | Shihezi Univ |
10 | 12 | 0.02 | 0.71 | 2014 | Beijing Normal Univ |
11 | 11 | 0.01 | 2.39 | 2021 | Kunming Univ Sci & Technol |
12 | 11 | 0 | 1.24 | 2010 | CSIC |
13 | 10 | 0.02 | 2.95 | 2020 | Xian Univ Technol |
14 | 10 | 0.01 | 2.28 | 2021 | Yangzhou Univ |
15 | 10 | 0 | 2022 | Minist Agr & Rural Affairs | |
16 | 9 | 0.01 | 2019 | Univ Chinese Acad Sci | |
17 | 8 | 0 | 2022 | Gansu Agr Univ | |
18 | 8 | 0 | 3.28 | 2019 | Lanzhou Univ |
19 | 7 | 0 | 2018 | Guangxi Univ | |
20 | 6 | 0.01 | 2022 | Northeast Agr Univ | |
21 | 6 | 0 | 3 | 2020 | Univ Tehran |
22 | 5 | 0.02 | 2021 | Yangtze Univ | |
23 | 5 | 0.01 | 2019 | Inner Mongolia Agr Univ | |
24 | 5 | 0.01 | 1.1 | 2011 | Agr Res Org |
25 | 5 | 0 | 2020 | Univ Girona | |
26 | 5 | 0 | 0.77 | 2017 | Beijing Acad Agr & Forestry Sci |
27 | 5 | 0 | 2.21 | 2010 | INRA |
28 | 5 | 0 | 3.04 | 2010 | Univ Florida |
Rank | Label | Count | Keywords |
---|---|---|---|
1 | energy use | 29 | management × 3, performance × 2, model × 2, wheat × 2, deficit irrigation × 2, use efficiency × 2, performance measure, drip irrigation, design, network, irrigation system management, irrigation modernization, decision support system, input cost, environmental sustainability, agricultural water management, crop, low discharge, integrative management, on demand, optimization, agriculture |
2 | berry crop | 18 | abiotic stress × 3, plant abiotic stress, humic acid, fruit yield, foliar application, arbuscular mycorrhizal fungi, fruit specy, gene expression, heavy metal, growth promoting rhizobacteria, brassica napus, chlorophyll fluorescence, hydrogen peroxide, drought stress, fruit quality, drought tolerance |
3 | sewage treatment plant effluent | 13 | domestic sewage, posttreatment, anaerobic treatment, waste water treatment, activated sludge, scale uasb, treatment system, municipal wastewater, aerobic treatment, post treatment, expanded granular sludge, polishing pond, uasb reactor |
4 | nutrient use efficiency | 15 | growth × 4, perennial fruit, fertilizer use efficiency, rhizosphere hybridization, basin irrigation, long term, potassium fertilization, nutrient-microbe synergy, nagpur mandarin, microbial consortium, citrus reticulata blanco, co2 enrichment |
5 | intensive cotton | 13 | plant × 2, irrigation × 2, increases stand establishment, economic benefit, lint yield, challenges and countermeasure, light and simplified cultivation, bt cotton, intensive farming technology, cultivation, accumulation |
6 | collaborative catchment-scale management | 11 | framework, suspended sediment, food industry, wireless sensor network, surface, land use, eutrophication, pesticide, agricultural activity, pollution, time |
7 | cover | 12 | climate change × 3, wind, quality, agricultural irrigation reservoir, suppressant monolayer, temperature, dispersion behavior, stored water, shade cloth cover, spreading rate |
8 | actual evapotranspiration | 9 | drought × 2, nitrogen fertilizer rate, olea europaea, fulvic acid, actual evapotranspiration, corn grain yield, humic substance, component |
Rank | Number of Papers | Centrality | Burst | Year | Keywords |
---|---|---|---|---|---|
1 | 111 | 0.19 | 2011 | Yield | |
2 | 92 | 0.12 | 2010 | Growth | |
3 | 89 | 0.1 | 2012 | Irrigation | |
4 | 82 | 0.13 | 2012 | Management | |
5 | 72 | 0.15 | 2011 | Soil | |
6 | 71 | 0.2 | 1.98 | 2010 | Water |
7 | 64 | 0.17 | 4.29 | 2011 | System |
8 | 61 | 0.13 | 2011 | water use efficiency | |
9 | 58 | 0.08 | 2014 | drip irrigation | |
10 | 57 | 0.08 | 2014 | Quality | |
11 | 56 | 0.1 | 2014 | climate change | |
12 | 48 | 0.07 | 2014 | Impact | |
13 | 47 | 0.09 | 5.41 | 2012 | Performance |
14 | 47 | 0.06 | 2014 | Model | |
15 | 47 | 0.03 | 2018 | use efficiency | |
16 | 38 | 0.09 | 2018 | grain yield | |
17 | 36 | 0.09 | 2011 | deficit irrigation | |
18 | 31 | 0.04 | 2013 | Productivity | |
19 | 29 | 0.04 | 2018 | winter wheat | |
20 | 27 | 0.06 | 2015 | Nitrogen | |
21 | 26 | 0.04 | 2012 | Crop | |
22 | 26 | 0.02 | 2016 | Evapotranspiration | |
23 | 23 | 0.04 | 1.83 | 2016 | Plant |
24 | 21 | 0.03 | 2016 | Maize | |
25 | 21 | 0.05 | 2014 | Fertilizer | |
26 | 20 | 0.05 | 2.11 | 2011 | Area |
27 | 20 | 0.05 | 2010 | Stress | |
28 | 20 | 0.06 | 2011 | Efficiency |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, S.; Zhang, X.; Wang, S.; Fu, Y.; Li, W.; Dong, Y.; Yuan, H.; Li, Y.; Jiao, N. Progress and Hotspot Analysis of Bibliometric-Based Research on Agricultural Irrigation Patterns on Non-Point Pollution. Agronomy 2024, 14, 2604. https://doi.org/10.3390/agronomy14112604
Gao S, Zhang X, Wang S, Fu Y, Li W, Dong Y, Yuan H, Li Y, Jiao N. Progress and Hotspot Analysis of Bibliometric-Based Research on Agricultural Irrigation Patterns on Non-Point Pollution. Agronomy. 2024; 14(11):2604. https://doi.org/10.3390/agronomy14112604
Chicago/Turabian StyleGao, Shikai, Xiaoyuan Zhang, Songlin Wang, Yuliang Fu, Weiheng Li, Yuanzhi Dong, Hongzhuo Yuan, Yanbin Li, and Na Jiao. 2024. "Progress and Hotspot Analysis of Bibliometric-Based Research on Agricultural Irrigation Patterns on Non-Point Pollution" Agronomy 14, no. 11: 2604. https://doi.org/10.3390/agronomy14112604
APA StyleGao, S., Zhang, X., Wang, S., Fu, Y., Li, W., Dong, Y., Yuan, H., Li, Y., & Jiao, N. (2024). Progress and Hotspot Analysis of Bibliometric-Based Research on Agricultural Irrigation Patterns on Non-Point Pollution. Agronomy, 14(11), 2604. https://doi.org/10.3390/agronomy14112604