Integration of Biochar with Vermicompost and Compost Improves Agro-Physiological Properties and Nutritional Quality of Greenhouse Sweet Pepper
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Location, Experimental Design, and Data Analysis
2.2. Analyzed Traits
- -
- Plant height: measured from cotyledon level to the terminal bud 90 days after transplanting.
- -
- Number of branches and number of leaves: average number of leaves and average number of branches were counted 90 days after transplanting.
- -
- Total chlorophyll: ten mature leaves from terminal bud from each experimental plot were selected and measured 90 days after transplanting of the two seasons using Minolta Chlorophyll Meter (SPAD 502 Minolta Co., Osaka, Japan).
- -
- Leaf nutrient content: The fifth leaf from the top of the plant was collected from three plants in each replicate for chemical analysis 90 days after transplanting in both seasons. The collected samples were dried at 70 °C before chemical analysis using a forced-air oven. The concentrations of N, P, K, and Ca in the dry leaves were assessed. Nitrogen, phosphorous, and potassium were estimated in the acid-digested solution using Micro-Kjeldahle for N determination, colorimetric method (ammonium molybdate) using a spectrophotometer (Model 6300, Jenway, UK) for P determination, and flame photometer to determine potassium and calcium (Model PFP7, Jenway, UK) according to methods labelled by Chapman and Pratt [21].
- -
- Total yield: cumulative yield and total fruit weight was recorded throughout the whole season (number and weight/m2).
- -
- Physicochemical contents of fruits: A sample of three fruits was taken 120 days after transplanting to assess the chemical contents. In this respect, ascorbic acid, total phenol, total soluble solids (TSS), and β-carotene were determined in fresh fruits. However, total N, P, K, and Ca were evaluated in dried fruits using the oven, as follows. Fresh fruit ascorbic acid (vitamin C) was determined using the 2, 6 Dichlorophenol indophenol technique, as defined by A. O. A. C. [22]. TSS% was determined using a hand refractometer (Model PAL-1, Atago, Tokyo, Japan), total phenols were evaluated using the Folin–Ciocalteu method described by Hernández et al. [23], and β-carotene was analyzed by the technique of Mejia et al. [24]. The dry weight of the fruit was estimated using an air-forced oven at 70 °C. The concentration of N, P, and K in the dry fruits was determined using the techniques mentioned previously for the leaves. Furthermore, the titratable acidity of fruit was determined using the technique stated, by using 5 g of pepper samples mixed with 50 mL of distilled water, then the mixture was filtrated. The filtrate was titrated with NaOH (0.1 N) utilizing phenolphthalein as an indicator until the pH of the filtrate reached to 8.1; values are reported as g L−1 of citric acid fresh weight using citric acid as a control [25]. The fruit diameter and flesh thickness were assessed using digital feet, while the fruit length was determined using a graded ruler.
2.3. Data Analysis
3. Results
3.1. Morphological Traits of Sweet Pepper Plants
3.2. Fruit Yield
3.3. Nutrient Content in Leaves and Fruits of Pepper Plants
3.4. Fruit Nitrate Content of Sweet Pepper
3.5. Fruit Quality of Sweet Pepper
3.6. Correlation Study
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galanakis, C.M. The Future of Food. Foods 2024, 13, 506. [Google Scholar] [CrossRef] [PubMed]
- Abdeldaym, E.A.; Traversa, A.; Cocozza, C.; Brunetti, G. Effects of a 2-Year application of different residual biomasses on soil properties and potato yield. Clean–Soil Air Water 2018, 46, 1800261. [Google Scholar] [CrossRef]
- Han, J.; Dong, Y.; Zhang, M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl. Soil Ecol. 2021, 165, 103966. [Google Scholar] [CrossRef]
- Cocozza, C.; Abdeldaym, E.A.; Brunetti, G.; Nigro, F.; Traversa, A. Synergistic effect of organic and inorganic fertilization on the soil inoculum density of the soilborne pathogens Verticillium dahliae and Phytophthora spp. under open-field conditions. Chem. Biol. Technol. Agric. 2021, 8, 24. [Google Scholar] [CrossRef]
- Fernández, J.A.; Ayastuy, M.E.; Belladonna, D.P.; Comezaña, M.M.; Contreras, J.; de Maria Mourão, I.; Orden, L.; Rodríguez, R.A. Current Trends in Organic Vegetable Crop Production: Practices and Techniques. Horticulturae 2022, 8, 893. [Google Scholar] [CrossRef]
- Smoluk-Sikorska, J.; Śmiglak-Krajewska, M.; Rojík, S.; Fulnečková, R. Prices of organic food—The gap between willingness to pay and price premiums in the organic food market in Poland. Agriculture 2024, 14, 17. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Gou, J. Effects of short-term application of Moutai lees biochar on nutrients and fungal community structure in yellow soil of Guizhou. Environ. Sci. Pollut. Res. 2021, 28, 67404–67413. [Google Scholar] [CrossRef] [PubMed]
- Matisic, M.; Dugan, I.; Bogunovic, I. Challenges in Sustainable Agriculture—The Role of Organic Amendments. Agriculture 2024, 14, 643. [Google Scholar] [CrossRef]
- Shifa, S.; Worku, M.; Beyene, A. Co-application of compost and biochar improves soil properties and Desho grass growth on acidic soils in a tropical environment of Southwestern Ethiopia. Cogent Food Agric. 2024, 10, 2290338. [Google Scholar] [CrossRef]
- Abdeldaym, E.A.; El-Sawy, M.B.I.; El-Helaly, M.A. Combined application of different sources of nitrogen fertilizers for improvement of potato yield and quality. Plant Arch. 2019, 19, 2513–2521. [Google Scholar]
- Brust, G.E. Management strategies for organic vegetable fertility. In Safety and Practice for Organic Food; Academic Press: Cambridge, MA, USA, 2019; pp. 193–212. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wei, Q.; Liu, L.; Gu, X.; Gou, J.; Wang, M. Effects of biochar and vermicompost on growth and economic benefits of continuous cropping pepper at karst yellow soil region in Southwest China. Front. Plant Sci. 2023, 14, 1238663. [Google Scholar] [CrossRef] [PubMed]
- Hagemann, N.; Joseph, S.; Schmidt, H.P.; Kammann, C.I.; Harter, J.; Borch, T.; Young, R.B.; Varga, K.; Taherymoosavi, S.; Elliott, R.B.; et al. Organic coating on biochar explains its nutrient retention and stimulation of soil fertility. Nat. Commun. 2017, 8, 1089. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, H.P.; Pandit, B.H.; Martinsen, V.; Cornelissen, G.; Conte, P.; Kammann, C.I. Fourfold increase in pumpkin yield in response to low-dosage root zone application of urine-enhanced biochar to a fertile tropical soil. Agriculture 2015, 5, 723–741. [Google Scholar] [CrossRef]
- Lacomino, G.; Sarker, T.C.; Ippolito, F.; Bonanomi, G.; Vinale, F.; Staropoli, A.; Idbella, M. Biochar and Compost Application either Alone or in Combination Affects Vegetable Yield in a Volcanic Mediterranean Soil. Agronomy 2022, 12, 1996. [Google Scholar] [CrossRef]
- Liu, M.; Liu, W.J.; Jiang, H.; Chen, J.J.; Li, W.W.; Yu, H.Q. Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour. Technol. 2012, 121, 235–240. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Ajibade, F.O.; Atakpa, E.O.; Abdulaha-Al Baquy, M.; Mia, S.; Odii, E.C.; Xu, R. Reduction of heavy metal uptake from polluted soils and associated health risks through biochar amendment: A critical synthesis. J. Hazard. Mater. Adv. 2022, 6, 100086. [Google Scholar] [CrossRef]
- Aransiola, S.A.; Josiah, I.U.J.; Abioye, O.P.; Bala, J.D.; Rivadeneira-Mendoza, B.F.; Prasad, R.; Luque, R.; Rodríguez-Díaz, J.M.; Maddela, N.R. Micro and vermicompost assisted remediation of heavy metal contaminated soils using phytoextractors. Case Stud. Chem. Environ. Eng. 2024, 9, 100755. [Google Scholar] [CrossRef]
- Ravindran, B.; Wong, J.W.; Selvam, A.; Sekaran, G. Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresour. Technol. 2016, 217, 200–204. [Google Scholar] [CrossRef]
- Kumar, V.; Pathania, N.; Sharma, S.; Sharma, R. Dynamics of plant nutrient signaling through compost. Microbe 2024, 2, 100047. [Google Scholar] [CrossRef]
- Chapman, H.D.; Pratt, F. Methods of Analysis for Soil, Plant, and Water; Division of Agric. Sci., Berkeley University: Berkeley, CA, USA, 1961; pp. 150–152. [Google Scholar]
- AOAC. Official Methods of Analysis of Association of Official Methods of Analytical Chemists, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990; 1025p, Available online: https://search.worldcat.org/title/Official-methods-of-analysis-of-the-Association-of-Official-Analytical-Chemists/oclc/20709424 (accessed on 17 October 2024).
- Hernández, J.; Goycoolea, F.M.; Quintero, J.; Acosta, A.; Castañeda, M.; Domínguez, Z.; Robles, R.; Vázquez-Moreno, L.; Velázquez, F.E.; Astiazaran, H.; et al. Sonoran propolis: Chemical composition and antiproliferative activity on cancer cell lines. Planta Medica 2007, 73, 1469–1474. [Google Scholar] [CrossRef]
- Mejia, L.A.; Hudson, E.; Gonzalez De Mejia, E.; Vazquez, F. Carotenoid content and vitamin A activity of some common cultivars of Mexican peppers (Capsicum annuum) as determined by HPLC. J. Food Sci. 1988, 53, 1448–1451. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of the Association of Official Analytical Chemist (AOAC), 12th ed.; The Association, Benjamin Franklin station: Washington, DC, USA, 1975; 1094p. [Google Scholar] [CrossRef]
- Kolmogorov, A. Sulla determinazione empirica di una lgge di distribuzione. Inst. Ital. Attuari Giorn. 1933, 4, 83–91. [Google Scholar]
- SRplot, Online Platform for Data Analysis and Visualization. Available online: https://www.bioinformatics.com.cn/en?keywords=heatmap (accessed on 5 August 2024).
- Matthew, N.B.; Augustine, A.U.; Shaibu, S.E.; Akpomie, K.G.; Etim, E.U.; Efiong, N.E.; Oleh, F. Spectroscopic evaluation of nitrate and nitrite concentrations in selected fruits and vegetables. Int. J. Sci. Eng. Sci. 2019, 3, 32–35. [Google Scholar]
- Libutti, A.; Trotta, V.; Rivelli, A.R. Biochar, vermicompost, and compost as soil organic amendments: Influence on growth parameters, nitrate and chlorophyll content of swiss chard (Beta vulgaris L. var. cycla). Agronomy 2020, 10, 346. [Google Scholar] [CrossRef]
- Manzoor; Ma, L.; Ni, K.; Ruan, J. Effect of integrated use of rapeseed cake, biochar and chemical fertilizers on root growth, nutrients use efficiency and productivity of tea. Agronomy 2022, 12, 1823. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, W.; Xiu, L.; Sun, Y.; Gu, W.; Wang, Y.; Zhang, H.; Chen, W. Soybean yield response of biochar-regulated soil properties and root growth strategy. Agronomy 2022, 12, 1412. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wang, Q.; Chang, T.; Shaghaleh, H.; Hamoud, Y.A. Improvement of photosynthesis by biochar and vermicompost to enhance tomato (Solanum lycopersicum L.) yield under greenhouse conditions. Plants 2022, 11, 3214. [Google Scholar] [CrossRef] [PubMed]
- Arancon, N.; Edwards, C.A.; Webster, K.A.; Buckerfield, J.C. The potential of vermicomposts as plant growth media for greenhouse crop production. In Vermiculture Technology: Earthworms, Organic Wastes, and Environmental Management; CRC: Boca Raton, FL, USA, 2010; pp. 103–128. [Google Scholar]
- Przemieniecki, S.; Zapałowska, A.; Skwiercz, A.; Damszel, M.; Telesiński, A.; Sierota, Z.; Gorczyca, A. An evaluation of selected chemical, biochemical, and biological parameters of soil enriched with vermicompost. Environ. Sci. Pollut. Res. 2020, 28, 8117–8127. [Google Scholar] [CrossRef]
- Pokharel, P.; Chang, S.X. Biochar decreases and nitrification inhibitor increases phosphorus limitation for microbial growth in a wheat-canola rotation. Sci. Total Environ. 2023, 858, 159773. [Google Scholar] [CrossRef]
- Li, S.; Zhao, L.; Wang, C.; Huang, H.; Zhuang, M. Synergistic improvement of carbon sequestration and crop yield by organic material addition in saline soil: A global meta-analysis. Sci. Total Environ. 2023, 891, 164530. [Google Scholar] [CrossRef]
- He, X.; Cong, R.; Gao, W.; Duan, X.; Gao, Y.; Li, H.; Li, Z.; Diao, H.; Luo, J. Optimization of composting methods for efficient use of cassava waste, using microbial degradation. Environ. Sci. Pollut. Res. 2023, 30, 51288–51302. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost improves tomato yield and quality and the biochemical properties of soils with different tomato planting history in a greenhouse study. Front. Plant Sci. 2017, 8, 1978. [Google Scholar] [CrossRef] [PubMed]
- Bader, B.R.; Taban, S.K.; Fahmi, A.H.; Abood, M.A.; Hamdi, G.J. Potassium availability in soil amended with organic matter and phosphorous fertiliser under water stress during maize (Zea mays L.) growth. J. Saudi Soc. Agric. Sci. 2021, 20, 390–394. [Google Scholar] [CrossRef]
- Sabah, N.U.; Tahir, M.A.; Sarwar, G.; Luqman, M.; Aziz, A.; Manzoor, M.Z.; Aftab, M. Biosolubilization of phosphate rock using organic amendments: An innovative approach for sustainable maize production in Aridisols—A review. Sarhad J. Agric. 2022, 38, 617–625. [Google Scholar] [CrossRef]
- Thuy Thu Doan, T.T.D.; Henry-Des-Tureaux, T.; Rumpel, C.; Janeau, J.L.; Jouquet, P. Impact of compost, vermicompost and biochar on soil fertility, maize yield and soil erosion in Northern Vietnam: A three year mesocosm experiment. Sci. Total Environ. 2015, 514, 147–154. [Google Scholar] [CrossRef]
- Kebede, T.; Berhe, D.T.; Zergaw, Y. Effects of biochar and compost application on soil properties and on the growth and yield of hot pepper (Capsicum annuum L.). Appl. Environ. Soil Sci. 2023, 1, 8546135. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, J.; Liu, X.; Chang, T.; Wang, Q.; Shaghaleh, H.; Hamoud, Y.A. Effects of biochar and vermicompost on microorganisms and enzymatic activities in greenhouse soil. Front. Environ. Sci. 2023, 10, 1060277. [Google Scholar] [CrossRef]
- Álvarez, J.M.; Pasian, C.; Lal, R.; López, R.; Díaz, M.J.; Fernández, M. Morpho-physiological plant quality when biochar and vermicompost are used as growing media replacement in urban horticulture. Urban For. Urban Green. 2018, 34, 175–180. [Google Scholar] [CrossRef]
- Alkharabsheh, H.M.; Seleiman, M.F.; Battaglia, M.L.; Shami, A.; Jalal, R.S.; Alhammad, B.A.; Almutairi, K.F.; Al-Saif, A.M. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A Review. Agronomy 2021, 11, 993. [Google Scholar] [CrossRef]
- Khajavi-Shojaei, S.; Moezzi, A.; Masir, M.N.; Taghavi, M. Synthesis modified biochar-based slow-release nitrogen fertilizer increases nitrogen use efficiency and corn (Zea mays L.) growth. Biomass Conver. Biorefin. 2023, 13, 593–601. [Google Scholar] [CrossRef]
- Jami, N.; Rahimi, A.; Naghizadeh, M.; Sedaghati, E. Investigating the use of different levels of mycorrhiza and vermicompost on quantitative and qualitative yield of saffron (Crocus sativus L.). Sci. Hortic. 2021, 262, 109027. [Google Scholar] [CrossRef]
- Rivelli, A.R.; Libutti, A. Effect of Biochar and Inorganic or Organic Fertilizer Co-Application on Soil Properties, Plant Growth and Nutrient Content in Swiss Chard. Agronomy 2022, 12, 2089. [Google Scholar] [CrossRef]
- Rabbee, H.E.; Methela, N.J.; Hossain, B.; Suhel, R.I. Growth and yield response of Broccoli to vermicompost and farmyard manure. J. Biosci. Agric. Res. 2020, 25, 2107–2113. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- Ebrahimi, M.; Souri, M.K.; Mousavi, A.; Sahebani, N. Biochar and vermicompost improve growth and physiological traits of eggplant (Solanum melongena L.) under deficit irrigation. Chem. Biol. Technol. Agric. 2021, 8, 19. [Google Scholar] [CrossRef]
- Tascı, F.G.; Kuzucu, C.O. The effects of vermicompost and green manure use on yield and economic factors in broccoli. Horticulturae 2023, 9, 406. [Google Scholar] [CrossRef]
- Mahmud, M.; Abdullah, R.; Yaacob, J.S. Effect of vermicompost on growth, plant nutrient uptake and bioactivity of ex vitro pineapple (Ananas comosus var. MD2). Agronomy 2021, 10, 1333. [Google Scholar] [CrossRef]
- Derakhshani, Z.; Bhave, M.; Shah, R.M. Metabolic contribution to salinity stress response in grains of two barley cultivars with contrasting salt tolerance. Environ. Exp. Bot. 2020, 179, 104229. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Abuarab, M.E.; Fahmy, M.A.; Abdelaziz, S.M.; Abdel-Hakim, S.G.; Abdeldaym, E.A.; Tawfic, G.A. Impact of biostimulants based amino acids and irrigation frequency on agro-physiological characteristics and productivity of broccoli plants. Not. Bot. Horti Agrobot. Cluj-Napoca 2023, 51, 13454. [Google Scholar] [CrossRef]
- Abdeldaym, E.A.; Hassan, H.A.; El-Mogy, M.M.; Mohamed, M.S.; Abuarab, M.E.; Omar, H.S. Elevated concentrations of soil carbon dioxide with partial root-zone drying enhance drought tolerance and agro-physiological characteristics by regulating the expression of genes related to aquaporin and stress response in cucumber plants. BMC Plant Biol. 2024, 24, 917. [Google Scholar] [CrossRef]
- Helmy, H.S.; Abuarab, M.E.; Abdeldaym, E.A.; Abdelaziz, S.M.; Abdelbaset, M.M.; Dewedar, O.M.; Molina-Martinez, J.M.; El-Shafie, A.F.; Mokhtar, A. Field-grown lettuce production optimized through precision irrigation water management using soil moisture-based capacitance sensors and biodegradable soil mulching. Irrig. Sci. 2024, 9, 1–26. [Google Scholar] [CrossRef]
- Scaglia, B.; Nunes, R.R.; Rezende, M.O.O.; Tambone, F.; Adani, F. Investigating organic molecules responsible of auxin-like activity of humic acid fraction extracted from vermicompost. Sci. Total Environ. 2016, 562, 289–295. [Google Scholar] [CrossRef] [PubMed]
Physical properties | Silt | % | 12.5 |
Clay | 86.5 | ||
Sand | 1 | ||
Texture | Clay | ||
Chemical properties | pH | 7.99 | |
EC | dS/m | 2.9 | |
Ca++ | meq/L | 6.2 | |
Mg++ | 3.8 | ||
K+ | 2.3 | ||
Na+ | 9.435 | ||
HCO3 | 4.02 | ||
Cl− | 17.2 | ||
SO4 | 15.1 |
Chemical Characteristics | Unit | Biochar | Compost | Vermicompost |
---|---|---|---|---|
pH | - | 8.5 ± 0.0 | 7.6 ± 0.2 | 6.5 ± 0.1 |
EC | dS/m | 2.5 ± 0.3 | 3.2 ± 0.5 | 3.5 ± 0.3 |
OC* | % | 70.22 ± 0.1 | 27.62 ± 0.2 | 25.21 ± 1.4 |
Total nitrogen | % | 1.55 ± 0.3 | 1.47 ± 0.3 | 2.91 ± 0.2 |
Phosphorus | % | 6.99 ± 0.2 | 0.86 ± 0.1 | 0.88 ± 0.1 |
Potassium | % | 1.99 ± 0.02 | 0.80 ± 0.2 | 0.9 ± 0.0 |
Calcium | % | 0.66 ± 0.2 | 0.45 ± 0.2 | 2.55 ± 0.2 |
Magnesium | % | 0.40 ± 0.1 | 0.96 ± 0.1 | 2.11 ± 0.0 |
C:N | - | 45.2 ± 2.3 | 21.57 ± 2.5 | 14.5 ± 1.4 |
Treatments | Vermicompost | Biochar | Compost |
---|---|---|---|
Vemicompost 100% (T1) | 8 | - | - |
Vermicompost 75% + 25% biochar (T2) | 6 | 2 | - |
Vermicompost 50% + 50% biochar (T3) | 4 | 4 | - |
Compost 50% + biochar 50% (T4) | - | 4 | 4 |
Compost 75% + biochar 25% (T5) | - | 2 | 6 |
Compost 100% (control-T6) | - | - | 8 |
Treatment | Plant Height (cm) | Number of Branches | Number of Leaves | Leaf Area (cm2) | SPAD Value | Plant Height (cm) | Number of. Branch | Number of Leaves | Leaf Area (cm2) | SPAD Value |
---|---|---|---|---|---|---|---|---|---|---|
Season 1 | Season 2 | |||||||||
T1 | 63.33 ± 2.1 a | 2.11 ± 0.11 a | 118.2 ± 7.36 a | 78.41 ± 3.20 a | 59.01 ± 3.01 a | 70.96 ± 3.5 a | 1.96 ± 0.09 a | 119.4 ± 6.1 a | 79.77 ± 3.9 a | 56.95 ± 2.8 a |
T2 | 62.41 ± 3.1 a | 2.07 ± 0.13 a | 110.6 ± 4.99 b | 71.29 ± 2.9 b | 54.89 ± 2.96 ab | 62.59 ± 2.9 b | 2.11 ± 0.11 a | 113.7 ± 5.6 ab | 73.4 ± 3.70 b | 55.26 ± 3.1 ab |
T3 | 58.78 ± 2.9 b | 2.00 ± 0.10 a | 105.6 ± 5.23 b | 67.81 ± 3.39 c | 53.9 ± 2.65 bc | 61.63 ± 3.1 b | 2.00 ± 0.10 a | 111.6 ± 5.61 b | 68.17 ± 1.9 c | 53.89 ± 2.06 bc |
T4 | 56.04 ± 2.1 c | 1.56 ± 0.09 b | 104.11 ± 3.24 c | 66.31 ± 2.67 c | 53.1 ± 2.09 bc | 62.15 ± 3.1 b | 1.41 ± 0.08 b | 104.9 ± 4.92 c | 66.41 ± 4.1 c | 52.22 ± 2.66 c |
T5 | 52.70 ± 2.3 d | 1.52 ± 0.07 b | 100.11 ± 4.71 c | 63.8 ± 3.01 cd | 51.853.01 ± c | 57.70 ± 2.6 c | 1.44 ± 0.71 b | 102.1 ± 5.11 c | 64.90 ± 3.2 c | 52.20 ± 3.06 c |
T6 | 47.41 ± 3.4 e | 1.44 ± 0.076 b | 94.221 ± 501 d | 61.96 ± 0.9 d | 46.53 ± 2.99 d | 48.22 ± 2.1 d | 1.41 ± 0.08 b | 93.93 ± 4.7 d | 61.4 ± 3.07 d | 46.47 ± 1.99 d |
Treatment | N% | P% | K% | Ca% | N% | P% | K% | Ca% |
---|---|---|---|---|---|---|---|---|
Season 1 | Season 2 | |||||||
Leaves | ||||||||
T1 | 4.23 ± 0.21 b | 0.357 ± 0.017 a | 4.160 ± 0.21 b | 1.240 ± 0.062 ab | 4.367 ± 0.42 b | 0.346 ± 0.017 a | 4.358 ± 0.22 b | 1.270 ± 0.02 a |
T2 | 4.35 ± 0.22 a | 0.367 ± 0.018 a | 4.343 ± 0.19 a | 1.267 ± 0.49 a | 4.536 ± 0.76 a | 0.35 ± 0.017 a | 4.532 ± 0.78 a | 1.28 ± 0.063 a |
T3 | 4.08 ± 0.19 c | 0.350 ± 0.015 a | 4.047 ± 0.17 c | 1.23 ± 0.59 bc | 4.224 ± 0.63 c | 0.332 ± 0.026 a | 4.112 ± 0.93 c | 1.254 ± 0.048 a |
T4 | 3.88 ± 0.19 d | 0.313 ± 0.006 b | 3.52 ± 0.18 d | 1.183 ± 0.60 d | 4.031 ± 0.81 d | 0.30 ± 0.014 b | 3.623 ± 0.88 d | 1.176 ± 0.10 b |
T5 | 3.74 ± 0.21 e | 0.307 ± 0.008 b | 3.533 ± 0.18 d | 1.203 ± 0.56 cd | 3.586 ± 0.71 e | 0.293 ± 0.012 b | 3.659 ± 0.23 d | 1.193 ± 0.09 b |
T6 | 3.30 ± 0.18 f | 0.260 ± 0.012 c | 3.51 ± 0.13 d | 1.127 ± 0.42 e | 3.422 ± 0.75 f | 0.246 ± 0.016 c | 3.354 ± 0.27 e | 1.112 ± 0.024 c |
Fruits | ||||||||
T1 | 2.433 ± 0.12 b | 0.287 ± 0.014 a | 2.467 ± 0.23 a | 0.012 ± 0.001 a | 2.49 ± 0.13 b | 0.281 ± 0.014 a | 2.5 ± 0.15 a | 0.014 ± 0.0007 a |
T2 | 2.72 ± 0.054 a | 0.260 ± 0.019 b | 2.373 ± 012 b | 0.010 ± 0.0005 b | 2.76 ± 0.14 a | 0.281 ± 0.013 a | 2.44 ± 0.11 b | 0.011 ± 0.0005 b |
T3 | 2.05 ± 0.10 d | 0.24 ± 0.09 c | 2.30 ± 0.18 c | 0.009 ± 0.0004 c | 2.09 ± 0.104 c | 0.252 ± 0.009 b | 2.36 ± 0.09 c | 0.015 ± 0.0008 a |
T4 | 2.12 ± 0.11 cd | 0.25 ± 0.097 bc | 2.190 ± 0.51 d | 0.0076 ± 0.0004 cd | 2.14 ± 0.11 c | 0.244 ± 0.008 bc | 2.24 ± 0.14 de | 0.009 ± 0.0004 cd |
T5 | 2.191 ± 0.09 c | 0.237 ± 0.08 c | 2.22 ± 0.044 d | 0.009 ± 0.00044 c | 2.16 ± 0.076 c | 0.231 ± 0.011 c | 2.27 ± 0.31 d | 0.010 ± 0.0004 cb |
T6 | 1.95 ± 0.14 d | 0.213 ± 0.101 d | 2.137 ± 0.52 e | 0.007 ± 0.00034 d | 1.83 ± 0.098 d | 0.23 ± 0.012 c | 2.17 ± 0.12 e | 0.008 ± 0.00039 d |
Treatment | Fresh Fruit Weight | Flesh Thickness | Fruit Length | Fruit Diameter | Dry Fruit Weight | Fresh Fruit Weight | Flesh Thickness | Fruit Length | Fruit Diameter | Dry Fruit Weight |
---|---|---|---|---|---|---|---|---|---|---|
(g) | (mm) | (cm) | (cm) | (g) | (g) | (mm) | (cm) | cm | (g) | |
Season 1 | Season 2 | |||||||||
T1 | 175.35 ± 9.01 a | 5.92 ± 0.30 a | 8.96 ± 0.45 a | 6.49 ± 0.23 a | 22.42 ± 1.12 a | 174.9 ± 9.05 a | 5.99 ± 0.30 a | 8.86 ± 0.44 a | 6.47 ± 0.32 a | 22.24 ± 1.12 a |
T2 | 168.94 ± 8.44 b | 5.48 ± 0.27 b | 8.57 ± 0.85 b | 6.44 ± 0.41 a | 21.60 ± 1.08 a | 168.6 ± 8.43 b | 5.54 ± 0.28 b | 8.62 ± 0.43 b | 6.52 ± 0.35 a | 21.68 ± 1.04 a |
T3 | 165.74 ± 8.23 c | 5.50 ± 0.28 b | 8.02 ± 0.41 c | 6.46 ± 0.33 a | 21.52 ± 1.07 a | 164.9 ± 7.98 c | 5.53 ± 0.21 b | 8.02 ± 0.37 c | 6.53 ± 0.24 a | 21.76 ± 1.09 a |
T4 | 159.88 ± 8.01 d | 5.03 ± 0.25 c | 7.50 ± 0.52 d | 6.10 ± 0.31 b | 19.67 ± 0.98 b | 160.3 ± 8.21 d | 5.03 ± 0.22 c | 7.55 ± 0.23 d | 6.07 ± 0.31 b | 19.39 ± 0.96 b |
T5 | 150.31 ± 7.51 e | 4.54 ± 0.43 d | 6.49 ± 0.32 e | 5.51 ± 0.27 bc | 18.87 ± 0.85 b | 152.1 ± 7.605 e | 4.43 ± 0.19 d | 6.45 ± 0.11 e | 5.50 ± 0.27 c | 17.52 ± 0.86 c |
T6 | 142.84 ± 7.14 f | 4.00 ± 0.19 e | 6.51 ± 0.42 e | 5.07 ± 0.43 c | 15.88 ± 0.78 c | 144.44 ± 7.22 f | 4.04 ± 0.32 e | 6.37 ± 0.24 e | 5.09 ± 0.20 d | 16.10 ± 0.79 d |
Treatment | TPC | β-carot. | AsA | TA | Proline | T.S.S | TPC | β-carot. | AsA | TA | Proline | T.S.S |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(mg/gGAE D.M) | (mg/Kg) | (mg/100) | (%) | (µmol/g FW) | (%) | (mg/gGAE D.M) | (mg/Kg) | (mg/100 g f.w) | (%) | (µmol/g FW) | (%) | |
Season 1 | Season 2 | |||||||||||
T1 | 14.19 ± 0.71 a | 73.27 ± 4.02 a | 140.52 ± 7.02 a | 0.380 ± 0.201 a | 0.188 ± 0.009 a | 8.06 ± 0.40 a | 14.43 ± 0.80 a | 73.47 ± 4.01 a | 140.86 ± 7.1 a | 0.381 ± 0.019 a | 0.191 ± 0.01 a | 8.08 ± 0.404 a |
T2 | 13.87 ± 0.69 b | 68.49 ± 4.34 b | 141.47 ± 7.10 a | 0.360 ± 0.018 a | 0.176 ± 0.008 b | 7.90 ± 0.39 a | 14.13 ± 0.72 b | 68.59 ± 3.34 b | 141.52 ± 7.1 a | 0.362 ± 0.018 a | 0.179 ± 0.009 b | 7.82 ± 0.3091 a |
T3 | 12.91 ± 0.55 c | 67.29 ± 2.99 c | 137.98 ± 6.89 b | 0.259 ± 0.012 b | 0.173 ± 0.0086 c | 7.49 ± 0.37 b | 13.05 ± 0.70 c | 67.45 ± 3.93 c | 138.57 ± 6.9 b | 0.261 ± 0.013 b | 0.165 ± 0.0082 d | 7.57 ± 0.379 b |
T4 | 13.10 ± 0.50 c | 63.97 ± 3.12 d | 134.68 ± 6.87 c | 0.153 ± 0.008 c | 0.166 ± 0.007 d | 7.43 ± 0.38 b | 13.01 ± 0.65 c | 63.87 ± 2.98 d | 134.62 ± 6.76 c | 0.152 ± 0.007 c | 0.168 ± 0.0084 c | 7.34 ± 0.367 b |
T5 | 12.31 ± 0.62 d | 63.53 ± 3.75 d | 135.13 ± 5.99 c | 0.147 ± 0.007 c | 0.166 ± 0.005 d | 7.19 ± 0.39 bc | 12.21 ± 0.61 d | 63.58 ± 2.88 d | 135.03 ± 6.80 c | 0.145 ± 0.0072 c | 0.168 ± 0.011 c | 6.99 ± 0.349 c |
T6 | 11.65 ± 0.56 e | 62.52 ± 2.34 e | 130.99 ± 4.98 d | 0.130 ± 0.0065 d | 0.162 ± 0.004 e | 6.92 ± 0.29 c | 11.85 ± 0.59 e | 62.34 ± 2.87 e | 131.23 ± 5.96 d | 0.131 ± 0.0066 c | 0.165 ± 0.0012 d | 6.89 ± 0.344 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
EL-Mogy, M.M.; Adly, M.A.; Shahein, M.M.; Hassan, H.A.; Mahmoud, S.O.; Abdeldaym, E.A. Integration of Biochar with Vermicompost and Compost Improves Agro-Physiological Properties and Nutritional Quality of Greenhouse Sweet Pepper. Agronomy 2024, 14, 2603. https://doi.org/10.3390/agronomy14112603
EL-Mogy MM, Adly MA, Shahein MM, Hassan HA, Mahmoud SO, Abdeldaym EA. Integration of Biochar with Vermicompost and Compost Improves Agro-Physiological Properties and Nutritional Quality of Greenhouse Sweet Pepper. Agronomy. 2024; 14(11):2603. https://doi.org/10.3390/agronomy14112603
Chicago/Turabian StyleEL-Mogy, Mohamed M., Mohamed A. Adly, Mohamed M. Shahein, Hassan A. Hassan, Sayed O. Mahmoud, and Emad A. Abdeldaym. 2024. "Integration of Biochar with Vermicompost and Compost Improves Agro-Physiological Properties and Nutritional Quality of Greenhouse Sweet Pepper" Agronomy 14, no. 11: 2603. https://doi.org/10.3390/agronomy14112603
APA StyleEL-Mogy, M. M., Adly, M. A., Shahein, M. M., Hassan, H. A., Mahmoud, S. O., & Abdeldaym, E. A. (2024). Integration of Biochar with Vermicompost and Compost Improves Agro-Physiological Properties and Nutritional Quality of Greenhouse Sweet Pepper. Agronomy, 14(11), 2603. https://doi.org/10.3390/agronomy14112603