Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Soil Sampling and Measurements
2.3.1. Soil Sampling
2.3.2. Soil Salinity (ECe), pH, and SAR Measurements
2.3.3. Soil Aggregates Measurements
2.3.4. Entropy-Weighted TOPSIS Method
2.3.5. Crop Yield Measurements
2.4. Statistical Analysis
3. Results and Discussion
3.1. Impacts of Saline Water Irrigation on Soil Salinity, Alkalinity, and Sodicity in the Winter Wheat–Summer Maize Rotation System
3.1.1. Impacts of Saline Water Irrigation on Soil ECe in the Winter Wheat–Summer Maize Rotation System
3.1.2. Impacts of Saline Water Irrigation on Soil pH in the Winter Wheat–Summer Maize Rotation System
3.1.3. Impacts of Saline Water Irrigation on Soil SAR in the Winter Wheat–Summer Maize Rotation System
3.2. Impacts of Saline Water Irrigation on the Stability of Soil Aggregates in the Winter Wheat–Summer Maize Rotation System
3.3. Impacts of Saline Water Irrigation on the Crop Yields in the Winter Wheat–Summer Maize Rotation System
3.4. Comprehensive Evaluation of Soil Salinity, Alkalinity, Sodicity, Aggregate Stability, and Crop Yields
3.4.1. Correlation Analysis of ECiw, Soil ECe, pH, SAR, Aggregate Stability Indexes, and Crop Yields
3.4.2. Comprehensive Evaluation of Saline Water Irrigation on Soil Aggregate Stability
3.4.3. The Fitting Relationship Between the Soil Index Comprehensive Score (SICS), Annual Grain Yields, and ECiw in the Winter Wheat–Summer Maize Rotation System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, M.; Ma, Z.Q.; Liang, Q.; Zhang, Y.; Yang, Y.A.; Hou, H.P.; Wu, X.D.; Ge, J.Z. Spring Wheat-Summer Maize Annual Crop System Grain Yield and Nitrogen Utilization Response to Nitrogen Application Rate in the Thermal-Resource-Limited Region of the North China Plain. Agronomy 2023, 13, 155. [Google Scholar] [CrossRef]
- Li, Z.T.; Wen, X.M.; Hu, C.S.; Li, X.X.; Li, S.S.; Zhang, X.S.; Hu, B.Q. Regional simulation of nitrate leaching potential from winter wheat-summer maize rotation croplands on the North China Plain using the NLEAP-GIS model. Agric. Ecosyst. Environ. 2020, 294, 106861. [Google Scholar] [CrossRef]
- Wang, J.T.; Dong, X.L.; Zhang, X.L.; Zhang, X.J.; Tian, L.; Lou, B.Y.; Liu, X.J.; Sun, H.Y. Comparing water related indicators and comprehensively evaluating cropping systems and irrigation strategies in the North China Plain for sustainable production. Ecol. Indic. 2023, 147, 110014. [Google Scholar] [CrossRef]
- Li, L.; Li, H.T.; Liu, N.; Lu, Y.; Shao, L.W.; Chen, S.Y.; Zhang, X.Y. Water use characteristics and drought tolerant ability of different winter wheat cultivars assessed under whole growth circle and at seedling stage. Agric. Water Manag. 2024, 300, 108921. [Google Scholar] [CrossRef]
- He, K.K.; Yang, Y.G.; Yang, Y.M.; Chen, S.Y.; Hu, Q.L.; Liu, X.J.; Gao, F. HYDRUS Simulation of Sustainable Brackish Water Irrigation in a Winter Wheat-Summer Maize Rotation System in the North China Plain. Water 2017, 9, 536. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Luo, G.Z.; Wang, Z.; Liu, C.H.; Li, Y.S.; Jiang, X.Q. Study on sustainable utilization of groundwater resources in North China Plain. Resour. Sci. 2009, 31, 355–360. (In Chinese) [Google Scholar]
- Bouras, H.; Mamassi, A.; Devkota, K.P.; Choukr-Allah, R.; Bouazzama, B. Integrated effect of saline water irrigation and phosphorus fertilization practices on wheat (Triticum aestivum) growth, productivity, nutrient content and soil proprieties under dryland farming. Plant Stress. 2023, 10, 100295. [Google Scholar] [CrossRef]
- Yan, Z.Z.; Zhang, X.Y.; Rashid, M.A.; Li, H.J.; Jing, H.C.; Hochman, Z. Assessment of the sustainability of different cropping systems under three irrigation strategies in the North China Plain under climate change. Agric. Syst. 2020, 178, 102745. [Google Scholar] [CrossRef]
- Javed, S.A.; Jaffar, M.T.; Shahzad, S.M.; Ashraf, M.; Piracha, M.A.; Mukhtar, A.; Rahman, S.U.; Almoallim, H.S.; Ansari, M.J.; Zhang, J.G. Optimization of nitrogen regulates the ionic homeostasis, potassium efficiency, and proline content to improve the growth, yield, and quality of maize under salinity stress. Environ. Exp. Bot. 2024, 226, 105836. [Google Scholar] [CrossRef]
- Yan, S.H.; Gao, Y.M.; Tian, M.J.; Tian, Y.Q.; Li, J.S. Comprehensive evaluation of effects of various carbon-rich amendments on tomato production under continuous saline water irrigation: Overall soil quality, plant nutrient uptake, crop yields and fruit quality. Agric. Water Manag. 2021, 255, 106995. [Google Scholar] [CrossRef]
- Ding, B.X.; Cao, H.X.; Zhang, J.H.; Bai, Y.G.; He, Z.J.; Guo, S.C.; Wang, B.; Jia, Z.L.; Liu, H.B. Biofertilizer application improved cotton growth, nitrogen use efficiency, and yield in saline water drip-irrigated cotton fields in Xinjiang, China. Ind. Crop. Prod. 2023, 205, 117553. [Google Scholar] [CrossRef]
- Min, W.; Guo, H.J.; Zhang, W.; Zhou, G.W.; Ma, L.J.; Ye, J.; Hou, Z.A. Irrigation water salinity and N fertilization: Effects on ammonia oxidizer abundance, enzyme activity and cotton growth in a drip irrigated cotton field. J. Integr. Agric. 2016, 15, 1121–1131. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, C.L.; Ning, S.R.; Cao, C.Y.; Li, K.J.; Dang, H.K.; Wu, Y.Q.; Zhang, J.P. Impacts of long-term saline water irrigation on soil properties and crop yields under maize-wheat crop rotation. Agric. Water Manag. 2023, 286, 108383. [Google Scholar] [CrossRef]
- Zhang, J.P.; Wang, H.; Feng, D.; Cao, C.Y.; Zheng, C.L.; Dang, H.K.; Li, K.J.; Gao, Y.; Sun, C.T. Evaluating the impacts of long-term saline water irrigation on soil salinity and cotton yield under plastic film mulching: A 15-year field study. Agric. Water Manag. 2024, 293, 108703. [Google Scholar] [CrossRef]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60. [Google Scholar] [CrossRef]
- Bi, Y.P.; Zheng, C.L.; Dang, H.K.; Cao, C.Y.; Li, K.J.; Ma, J.Y.; Wang, H.; Zhang, J.P. Effects of saltwater furrow irrigation on the stability of soil water-stable aggregates in cotton fields. J. Appl. Ecol. 2022, 33, 1055–1062. (In Chinese) [Google Scholar]
- Mosaffa, H.R.; Sepaskhah, A.R. Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods. Agric. Water Manag. 2019, 216, 444–456. [Google Scholar] [CrossRef]
- Yuan, C.F.; Feng, S.Y.; Huo, Z.L.; Ji, Q.Y. Effects of deficit irrigation with saline water on soil water-salt distribution and water use efficiency of maize for seed production in arid Northwest China. Agric. Water Manag. 2019, 212, 424–432. [Google Scholar] [CrossRef]
- Yaganoglu, E.; Senol, N.D.; Yerli, C. Enhancing Soil Properties and Crop Growth in Varied-Texture Soils: Evaluating the Efficacy of Biochar in Mitigating Irrigation Water Salinity. Environ. Eng. Manag. J. 2023, 22, 1157–1172. [Google Scholar] [CrossRef]
- Tadayonnejad, M.; Mosaddeghi, M.R.; Dashtaki, S.G. Changing soil hydraulic properties and water repellency in a pomegranate orchard irrigated with saline water by applying polyacrylamide. Agric. Water Manag. 2017, 188, 12–20. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Y.; Hao, X.M.; Tong, L.; Li, S.; Kang, S.Z. Does biochar addition improve soil physicochemical properties, bacterial community and alfalfa growth for saline soils? Land. Degrad. Dev. 2023, 34, 3314–3328. [Google Scholar] [CrossRef]
- Wang, B.; Dou, W.J.; Chen, J.; Chen, J.W.; Lai, J.B. Spatio-temporal dynamic changes of soil saline-alkali properties, saline-alkali land zoning and efficient utilization in Yellow River Delta region. Mod. Geol. 2024, 38, 1–13. (In Chinese) [Google Scholar]
- Sun, W.T.; Ma, M. Response of soil physical degradation and fine root growth in long-term mulched apple orchards on the Loess Plateau. J. Plant Ecol. 2021, 45, 972–986. (In Chinese) [Google Scholar] [CrossRef]
- Yan, Z.X.; Zhang, W.Y.; Liu, X.W.; Wang, Q.S.; Liu, B.H.; Mei, X.R. Grain yield and water productivity of winter wheat controlled by irrigation regime and manure substitution in the North China Plain. Agric. Water Manag. 2024, 295, 108731. [Google Scholar] [CrossRef]
- Li, P.; Ren, L. Evaluating the saline water irrigation schemes using a distributed agro-hydrological model. J. Hydrol. 2021, 594, 125688. [Google Scholar] [CrossRef]
- Zhou, X.N.; Liu, S.Y.; Wang, Z.; Zhou, Z.C. Chemical characteristics and availability analysis of shallow groundwater in typical areas of North China Plain: A case study of Hengshui. Water Sci. Eng. Technol. 2008, 2, 56–59. (In Chinese) [Google Scholar]
- Ning, S.R.; Shi, J.C.; Zuo, Q.; Wang, S.; Ben-Gal, A. Generalization of the root length density distribution of cotton under film mulched drip irrigation. Field Crops Res. 2015, 177, 125–136. [Google Scholar] [CrossRef]
- Lu, R.K. Soil Agro-Chemistrical Analysis; China Agricultural Science and Technology Press: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Anes, B.; Bettencourt da Silva, R.J.N.; Martins, H.F.P.; Oliveira, C.S.; Camões, M.F. Compatibility of activity coefficients estimated experimentally and by Pitzer equations for the assessment of seawater pH. Accredit. Qual. Assur. 2016, 21, 1–7. [Google Scholar] [CrossRef]
- Robbins, C.W. Sodium adsorption ratio-exchangeable sodium percentage relationships in a high potassium saline-sodic. Soil Irrig. Sci. 1984, 5, 173–179. [Google Scholar] [CrossRef]
- Zhao, J.S.; Chen, S.; Hu, R.G.; Li, Y.Y. Aggregate stability and size distribution of red soils under different land uses integrally regulated by soil organic matter, and iron and aluminum oxides. Soil Tillage Res. 2017, 167, 73–79. [Google Scholar] [CrossRef]
- Perfect, E.; Kay, B.D. Fractal Theory Applied to Soil Aggregation. Soil Sci. Soc. Am. J. 1991, 55, 1552–1558. [Google Scholar] [CrossRef]
- Wang, E.H.; Zhao, Y.S.; Chen, X.W. Effect of pre-water content on the characteristics of black soil aggregates after mechanical compaction. Acta Pedol. Sin. 2009, 46, 241–247. (In Chinese) [Google Scholar]
- Wu, T.N.; Zhang, Y.T.; Wang, Y.W.; Wang, S.Q.; Lei, L.Y. Factors affecting the stability of soil aggregates of plinthosols in the middle reaches of the Yangtze River. CATENA 2023, 228, 107159. [Google Scholar] [CrossRef]
- Ju, J.J.; Shi, W.h.; Wang, Y. A risk assessment approach for road collapse along tunnels based on an improved entropy weight method and K-means cluster algorithm. Ain Shams Eng. J. 2024, 15, 102805. [Google Scholar] [CrossRef]
- Najm, O.F.; Mohamed, O.A.; Sami Hijah, E. Efficiency of self-compacting concrete made with variable sustainable cementitious materials: A TOPSIS algorithm approach. Mater. Today Proc. 2024; in press. [Google Scholar] [CrossRef]
- Ma, Z.L.; Liu, J.; Zhang, J.Z.; Yin, F.H.; Guo, L.; Wen, Y.; Song, L.B.; Zhu, Y.; Liang, Y.H.; Wang, Z.H. Ultra-wide film mulching with moderate irrigation water salinity enhances cotton growth under drip irrigation in Xinjiang, China. Field Crops Res. 2024, 315, 109485. [Google Scholar] [CrossRef]
- Feng, G.X.; Zhang, Z.Y.; Wan, C.Y.; Lu, P.R.; Bakour, A. Effects of saline water irrigation on soil salinity and yield of summer maize (Zea mays L.) in subsurface drainage system. Agric. Water Manag. 2017, 193, 205–213. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef]
- D’Odorico, P.; Bhattachan, A.; Davis, K.F.; Ravi, S.; Runyan, C.W. Global desertification: Drivers and feedbacks. Adv. Water Resour. 2013, 51, 326–344. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zheng, C.L.; Li, K.J.; Dang, H.K.; Cao, C.Y.; Ma, J.Y.; Wu, Y.Q.; Zhang, J.P. Effects of organic fertilizer application on soil organic matter and water-stable aggregates in saline water irrigated farmland. J. Soil Water Conserv. 2022, 36, 268–274. (In Chinese) [Google Scholar]
- She, D.L.; Sun, X.Q.; Gamareldawla, A.H.D.; Nazar, E.A.; Hu, W.; Edith, K.; Yu, S.E. Benefits of soil biochar amendments to tomato growth under saline water irrigation. Sci. Rep. 2018, 8, 14743. [Google Scholar] [CrossRef]
- Che, Z.; Wang, J.; Li, J.S. Effects of water quality, irrigation amount and nitrogen applied on soil salinity and cotton production under mulched drip irrigation in arid Northwest China. Agric. Water Manag. 2021, 247, 106738. [Google Scholar] [CrossRef]
- Al-Mayahi, A.; Menezes-Blackburn, D.; Al-Ismaily, S.; Al-Busaidi, H.; Al-Siyabi, A.; Al-Siyabi, B.; Al-Saidi, S.; Al-Harrasi, N. Elemental sulfur effects on salt leaching, plant growth, nutrient uptake, and microbial diversity in an arid saline Soil. J. Saudi Soc. Agric. Sci. 2024, 23, 227–235. [Google Scholar] [CrossRef]
- Su, F.M.; Wu, J.H.; Wang, D.; Zhao, H.H.; Wang, Y.H.; He, X.D. Moisture movement, soil salt migration, and nitrogen transformation under different irrigation conditions: Field experimental research. Chemosphere 2022, 300, 134569. [Google Scholar] [CrossRef]
- Hong, S.B.; Piao, S.L.; Chen, A.P.; Liu, Y.W.; Liu, L.L.; Peng, S.S.; Sardans, J.; Sun, Y.; Peñuelas, J.; Zeng, H. Afforestation neutralizes soil pH. Nat. Commun. 2018, 9, 520. [Google Scholar] [CrossRef]
- Singh, G.; Mavi, M.S.; Choudhary, O.P.; Gupta, N.; Singh, Y. Rice straw biochar application to soil irrigated with saline water in a cotton-wheat system improves crop performance and soil functionality in north-west India. J. Environ. Manag. 2021, 295, 113277. [Google Scholar] [CrossRef]
- Suarez, D.L.; Wood, J.D.; Lesch, S.M. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agric. Water Manag. 2006, 86, 150–164. [Google Scholar] [CrossRef]
- Feng, D.; Sun, C.T.; Li, X.B.; Sun, X.A.; Wan, S.Q.; Li, C.X.; Ning, S.R. Reclamation of heavy coastal silt saline soil and optimal tomato production through a drip irrigation system with saline water. Plant Soil 2022, 484, 1–17. [Google Scholar] [CrossRef]
- Liu, S.H.; Wang, N.; Li, D.Z.; Tian, C.Y.; Zhang, K.; Hu, M.F.; Niu, H.S.; Zhao, Z.Y. Effects of halophyte Suaeda salsa continuous cropping on physical and chemical properties of saline soil under drip irrigation in arid regions. Agr. Ecosyst. Environ. 2024, 371, 109076. [Google Scholar] [CrossRef]
- Ran, C.; Gao, D.P.; Bai, T.Q.; Geng, Y.Q.; Shao, X.W.; Guo, L.Y. Straw return alleviates the negative effects of saline sodic stress on rice by improving soil chemistry and reducing the accumulation of sodium ions in rice leaves. Agr. Ecosyst. Environ. 2023, 342, 108253. [Google Scholar] [CrossRef]
- He, P.; Li, Y.; Jiang, M.J.; Liu, Y.H.; Du, W.; Zhang, J.Q.; Jing, H.C. Effects of continuous nitrogen addition for 14 years on carbon and nitrogen components and physical structure of soil in typical temperate steppe. Acta Ecol. Sin. 2021, 41, 1808–1823. (In Chinese) [Google Scholar]
- Ding, B.X.; Bai, Y.G.; Guo, S.C.; He, Z.J.; Wang, B.; Liu, H.B.; Zhai, J.R.; Cao, H.X. Effect of Irrigation Water Salinity on Soil Characteristics and Microbial Communities in Cotton Fields in Southern Xinjiang, China. Agronomy 2023, 13, 1679. [Google Scholar] [CrossRef]
- Haj-Amor, Z.; Hashemi, H.; Bouri, S. The consequences of saline irrigation treatments on soil physicochemical characteristics. Euro-Mediterr. J. Environ. Integrat. 2018, 3, 22. [Google Scholar] [CrossRef]
- Yan, S.H.; Zhang, T.B.; Zhang, B.B.; Liu, Z.Y.; Cheng, Y.; Feng, H. Cation composition of saline water affects soil structure by altering the formation of macropores and cracks in illite soils. Soil Tillage Res. 2024, 239, 106052. [Google Scholar] [CrossRef]
- Tunc, T.; Sahin, U. The changes in the physical and hydraulic properties of a loamy soil under irrigation with simpler-reclaimed wastewaters. Agric. Water Manag. 2015, 158, 213–224. [Google Scholar] [CrossRef]
- Chu, L.L.; Kang, Y.H.; Wan, S.Q. Effect of different water application intensity and irrigation amount treatments of microirrigation on soil-leaching coastal saline soils of North China. J. Integr. Agric. 2016, 15, 2123–2131. [Google Scholar] [CrossRef]
- Guo, Q.E.; Wang, Y.Q.; Nan, L.L.; Li, B.G.; Cao, S.Y. Effects of solute types and degree of mineralization on salt ions in soil release solution. Trans. Chin. Soc. Agric. Eng. 2019, 35, 105–111. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, Q.J. Effect on both soil infiltration characteristics and ion mobility features by mineralization degree of infiltration water. Trans. Chin. Soc. Agric. Mach. 2010, 41, 64–69+75. [Google Scholar] [CrossRef]
- Bi, M.F.; Zhang, S.P.; Xu, Q.X.; Hou, S.Z.; Han, M.W.; Yu, X.R. Coupling and synergistic relationships between soil aggregate stability and nutrient stoichiometric characteristics under different microtopographies on karst rocky desertification slopes. Catena 2024, 243, 108142. [Google Scholar] [CrossRef]
- Sun, X.Y.; Xing, Y.J.; Yan, G.Y.; Liu, G.C.; Wang, X.C.; Wang, Q.G. Dynamics of glomalin-related soil protein and soil aggregates during secondary succession in the temperate forest. Catena 2024, 234, 107602. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, C.Z.; Wang, J.; Meng, Q.F.; Du, W.L. Soil aggregates stability and storage of soil organic carbon respond to cropping systems on Black Soils of Northeast China. Sci. Rep. 2020, 10, 265. [Google Scholar] [CrossRef]
- Amirahmadi, E.; Ghorbani, M.; Moudrý, J. Effects of Zeolite on Aggregation, Nutrient Availability, and Growth Characteristics of Corn (Zea mays L.) in Cadmium-Contaminated Soils. Water Air Soil Pollut. 2022, 233, 436. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, S.W.; Xue, S.Q.; Hu, Y.S.; Wang, X.D. Long-term tillage and cropping systems affect soil organic carbon components and mineralization in aggregates in semiarid regions. Soil Tillage Res. 2023, 231, 105742. [Google Scholar] [CrossRef]
- Chen, Q.; Yuriy, S.K.; Chen, S.; Li, H.; Song, C.Y.; Wang, Y.C.; Zhang, X.Y. Seasonal changes of soil structure under different tillage methods. Chin. J. Soil Sci. 2015, 46, 184–191. (In Chinese) [Google Scholar]
- Zhai, L.C.; Wang, Z.B.; Song, S.J.; Zhang, L.H.; Zhang, Z.B.; Jia, X.L. Tillage practices affects the grain filling of inferior kernel of summer maize by regulating soil water content and photosynthetic capacity. Agric. Water Manag. 2021, 245, 106600. [Google Scholar] [CrossRef]
- Shi, X.R.; Li, C.; Li, P.; Zong, Y.Z.; Zhang, D.S.; Gao, Z.Q.; Hao, X.Y.; Wang, J.; Lam, S.K. Deep plowing increases soil water storage and wheat yield in a semiarid region of Loess Plateau in China: A simulation study. Field Crops Res. 2024, 308, 109299. [Google Scholar] [CrossRef]
- Bach, E.M.; Hofmockel, K.S. A time for every season: Soil aggregate turnover stimulates decomposition and reduces carbon loss in grasslands managed for bioenergy. Glob. Chang. Biol. Bioenergy 2016, 8, 588–599. [Google Scholar] [CrossRef]
- Fang, X.; Liu, Z.; Li, J.; Lai, J.B.; Gong, H.R.; Sun, Z.G.; Ouyang, Z.; Dou, W.J.; Fa, K. Non-Synergistic Changes in Migration Processes between Soil Salt and Water in the Salt Patch of the Coastal Saline Soil. Agronomy 2023, 13, 2403. [Google Scholar] [CrossRef]
- Guo, X.W.; Xiang, G.Q.; Zhang, F.Z.; Jiang, S.; Min, W. Effects of biochar and straw returning on soil microbial community characteristics and functional differences in cotton field with saline water drip irrigation. Environ. Sci. 2024, 45, 3571–3583. (In Chinese) [Google Scholar]
- Gao, Y.; Shao, G.; Cui, J.; Lu, J.; Tian, L.; Song, E.; Zeng, Z. Effects of Drought Hardening and Saline Water Irrigation on the Growth, Yield, and Quality of Tomato. Agronomy 2023, 13, 2351. [Google Scholar] [CrossRef]
- Wang, Q.M.; Huo, Z.L.; Zhang, L.D.; Wang, J.H.; Zhao, Y. Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agric. Water Manag. 2016, 163, 125–138. [Google Scholar] [CrossRef]
- Cheng, M.H.; Wang, H.D.; Fan, J.L.; Wang, X.K.; Sun, X.; Yang, L.; Zhang, S.H.; Xiang, Y.Z.; Zhang, F.C. Crop yield and water productivity under salty water irrigation: A global meta-analysis. Agric. Water Manag. 2021, 256, 107105. [Google Scholar] [CrossRef]
- Phogat, V.; Mallants, D.; Cox, J.W.; Šimůnek, J.; Oliver, D.P.; Pitt, T.; Petrie, P.R. Impact of long-term recycled water irrigation on crop yield and soil chemical properties. Agric. Water Manag. 2020, 237, 106167. [Google Scholar] [CrossRef]
- Wang, H.; Feng, D.; Zhang, A.Q.; Zheng, C.L.; Li, K.J.; Ning, S.R.; Zhang, J.P.; Sun, C.T. Effects of saline water mulched drip irrigation on cotton yield and soil quality in the North China Plain. Agric. Water Manag. 2022, 262, 107405. [Google Scholar] [CrossRef]
- Li, H.; Lin, Q.; Xu, S.H. Effect of Infiltration of Saline Water/Brackish Water on Soil Permeability and Transport of Salt Cations in the Soil. Acta Pedol. Sin. 2020, 57, 656–666. [Google Scholar] [CrossRef]
- Minhas, P.S.; Qadir, M.; Yadav, R.K. Groundwater irrigation induced soil sodification and response options. Agric. Water Manag. 2019, 215, 74–85. [Google Scholar] [CrossRef]
- Kumar, P.; Choudhary, M.; Halder, T.; Prakash, N.R.; Singh, V.; Vineeth, T.V.; Sheoran, S.; Ravikiran, K.T.; Longmei, N.; Rakshit, S.; et al. Salinity stress tolerance and omics approaches: Revisiting the progress and achievements in major cereal crops. Heredity 2022, 128, 497–518. [Google Scholar] [CrossRef]
- Jiang, J.; Huo, Z.L.; Feng, S.Y.; Zhang, C.B. Effect of irrigation amount and water salinity on water consumption and water productivity of spring wheat in Northwest China. Field Crop. Res. 2012, 137, 78–88. [Google Scholar] [CrossRef]
- Dong, X.L.; Wang, J.T.; Zhang, X.J.; Dang, H.K.; Singh, B.P.; Liu, X.J.; Sun, H.Y. Long-term saline water irrigation decreased soil organic carbon and inorganic carbon contents. Agric. Water Manag. 2022, 270, 107760. [Google Scholar] [CrossRef]
- Xie, W.J.; Chen, Q.F.; Wu, L.F.; Yang, H.J.; Xu, J.K.; Zhang, Y.P. Coastal saline soil aggregate formation and salt distribution are affected by straw and nitrogen application: A 4-year field study. Soil Tillage Res. 2020, 198, 104535. [Google Scholar] [CrossRef]
- Najafi-Ghiri, M.; Mirsoleimani, A.; Boostani, H.R.; Amin, H. Influence of Wood Vinegar and Potassium Application on Soil Properties and Ca/K Ratio in Citrus Rootstocks. J. Soil Sci. Plant Nut. 2022, 22, 334–344. [Google Scholar] [CrossRef]
- Soni, P.G.; Basak, N.; Rai, A.K.; Sundha, P.; Narjary, B.; Kumar, P.; Yadav, G.; Kumar, S.; Yadav, R.K. Deficit saline water irrigation under reduced tillage and residue mulch improves soil health in sorghum-wheat cropping system in semi-arid region. Sci. Rep. 2021, 11, 1880. [Google Scholar] [CrossRef] [PubMed]
- Pan, P.P.; Miao, J.X.; Wen, J.Y.; Wang, X.X.; Li, L.S.; Zhang, Z.H. Spatial-temporal pattern analysis of virtual water content of main crops in Hebei Province. J. Hebei Norm. Univ. 2024, 48, 325–337. (In Chinese) [Google Scholar]
- Liu, Z.M.; Li, L.; Li, H.T.; Liu, N.; Wang, H.X.; Shao, L.W. Changes and influencing factors of summer maize crop coefficient in North China Plain in 40 years. Chin. J. Eco-Agric. 2023, 31, 1355–1367. (In Chinese) [Google Scholar]
- Rhoades, J.D.; Kandiah, A.; Mashali, A.M. The Use of Saline Waters for Crop Production—FAO Irrigation and Drainage Paper; FAO UN: Rome, Italy, 1992; pp. 23–43. (In Chinese) [Google Scholar]
Year | Growth Season | Irrigation Stage | Irrigation Amount (m3 per ha) |
---|---|---|---|
2022–2023 | Winter wheat | Jointing stage | 600 |
Flowering stage | 600 | ||
Summer maize | After sowing | 600 |
Indexes | Crop | Treatments | ||||
---|---|---|---|---|---|---|
CK | T1 | T2 | T3 | T4 | ||
SAR (mmol·L−1)1/2 | wheat | 1.41 ± 0.10 d | 2.44 ± 0.44 d | 4.22 ± 0.36 c | 6.09 ± 1.12 b | 8.07 ± 0.51 a |
maize | 0.77 ± 0.07 b | 1.20 ± 0.33 b | 2.29 ± 0.33 b | 3.51 ± 0.34 a,b | 5.21 ± 2.29 a | |
Grain Yields (kg·ha−1) | wheat | 6671.39 ± 397.07 a | 5953.84 ± 766.37 a | 4454.59 ± 120.43 b | 3029.36 ± 678.90 c | 1764.56 ± 326.07 c |
maize | 10,913.91 ± 629.67 a | 9977.41 ± 198.96 a | 7531.46 ± 946.09 b | 6882.95 ± 354.24 b | 5271.73 ± 127.05 c | |
wheat | 0.90 ± 0.06 a | 0.82 ± 0.09 a | 0.67 ± 0.16 a | 0.25 ± 0.22 b | 0.07 ± 0.12 b | |
maize | 0.83 ± 0.22 a | 0.75 ± 0.30 a,b | 0.65 ± 0.19 a,b | 0.30 ± 0.09 b,c | 0.08 ± 0.13 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Zhang, A.; Zhu, C.; Dang, H.; Zheng, C.; Zhang, J.; Cao, C. Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System. Agronomy 2024, 14, 2564. https://doi.org/10.3390/agronomy14112564
Yuan H, Zhang A, Zhu C, Dang H, Zheng C, Zhang J, Cao C. Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System. Agronomy. 2024; 14(11):2564. https://doi.org/10.3390/agronomy14112564
Chicago/Turabian StyleYuan, Huimin, Anqi Zhang, Changkuan Zhu, Hongkai Dang, Chunlian Zheng, Junpeng Zhang, and Caiyun Cao. 2024. "Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System" Agronomy 14, no. 11: 2564. https://doi.org/10.3390/agronomy14112564
APA StyleYuan, H., Zhang, A., Zhu, C., Dang, H., Zheng, C., Zhang, J., & Cao, C. (2024). Saline Water Irrigation Changed the Stability of Soil Aggregates and Crop Yields in a Winter Wheat–Summer Maize Rotation System. Agronomy, 14(11), 2564. https://doi.org/10.3390/agronomy14112564