Improving Yield and Quality of ‘Balady’ Mandarin Trees by Using Shading Techniques and Reflective Materials in Response to Climate Change Under Flood Irrigation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Environmental and Experimental Factors
2.2. Plant Materials and Evaluated Treatments
2.3. Data Collection and Measurements
2.3.1. Microclimate of Orchards
2.3.2. Leaf and Fruit Surface Temperatures
2.3.3. Fruit Sunburn
2.3.4. Fruit Sunburn Severity
2.3.5. Yield and Its Component
2.3.6. Fruit Yield Increment
2.3.7. Yield Efficiency (YE)
2.3.8. Fruit Characteristics
2.4. Statistical Analysis
3. Results
3.1. Microclimate of Orchards
3.2. Leaf and Fruit Surface Temperatures
3.3. Fruit Sunburn and Severity
3.4. Yield and Its Components, Fruit Yield Increment in Relation to the Control and Yield Efficiency
3.5. Fruit Physical Properties
3.6. Fruit Chemical Properties
3.7. Chlorophyll Pigments, Total Carotenoids, and Color Parameters (L*, a*, and b*)
3.8. Economic and Agronomic Comparison of Shading Technologies vs. Kaolin Spraying for ‘Balady’ Mandarin in Egypt
- Initial Costs: Shading technologies incur significantly higher initial costs, ranging between EGP 126,000 and 189,000 per feddan, due to the installation of shade nets. However, their effectiveness in completely eliminating fruit sunburn and improving microclimatic conditions justifies the investment, particularly for large-scale operations. In contrast, kaolin spraying has a lower initial cost (EGP 2520 to 6300 per feddan annually) but requires repeated applications each season to achieve a significant reduction in sunburn (down to 3.28%).
- Operational Costs: Shading technologies, once installed, present low operational costs (EGP 2520 to 6300 per feddan annually) mainly related to maintenance. In contrast, kaolin requires a higher operational expense due to multiple applications per season, with each application costing EGP 2520 to 5040 per feddan.
- Impact on Yield and Quality: Shading nets, particularly the white shade net with a 50% shading rate, led to the highest yield (up to 136.67 kg/tree) and superior fruit quality, with the best results in terms of juice content and fruit weight. Kaolin spraying resulted in a lower yield (up to 121.67 kg/tree) and slightly reduced fruit quality compared to shading treatments.
- Long-Term Benefits: The long-term benefits of shading technologies include not only full sunburn protection but also consistent improvements in fruit yield and quality. Kaolin spraying, while flexible and adaptable, incurs higher long-term costs.
- Market and Environmental Considerations: Shading technologies reduce the need for chemical treatments and water usage, offering sustainability, while kaolin spraying remains environmentally friendly and accepted in organic farming but offers lower returns.
- Economic Return: Shading technologies provide higher long-term returns due to consistent impact on yield and quality. Kaolin, while cheaper initially, offers lower returns due to its recurring expenses (Table 12).
4. Discussion
4.1. Microclimate of Orchards
4.2. Leaf and Fruit Surface Temperatures
4.3. Fruit Sunburn and Severity
4.4. Yield and Its Components, Fruit Yield Increment in Relation to the Control and Yield Efficiency
4.5. Fruit Characteristics
4.6. Chlorophyll Pigments, Total Carotenoids, and Color Parameters
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- USDA. Agricultural Service Report Citrus: World Markets and Trade; USDA: Washington, DC, USA, 2023; pp. 1–4. [Google Scholar]
- Sun, Q.; Miao, C.; Hanel, M.; Borthwick, A.G.L.; Duan, Q.; Ji, D.; Li, H. Global Heat Stress on Health, Wildfires, and Agricultural Crops under Different Levels of Climate Warming. Environ. Int. 2019, 128, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Jagadish, S.V.K.; Way, D.A.; Sharkey, T.D. Plant Heat Stress: Concepts Directing Future Research. Plant Cell Environ. 2021, 44, 1992–2005. [Google Scholar] [CrossRef] [PubMed]
- Zandalinas, S.I.; Fritschi, F.B.; Mittler, R. Global Warming, Climate Change, and Environmental Pollution: Recipe for a Multifactorial Stress Combination Disaster. Trends Plant Sci. 2021, 26, 588–599. [Google Scholar] [CrossRef]
- Rodriguez, J.; Anoruo, A.; Jifon, J.; Simpson, C. Physiological Effects of Exogenously Applied Reflectants and Anti-Transpirants on Leaf Temperature and Fruit Sunburn in Citrus. Plants 2019, 8, 549. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.S.; Kim, M.; Yun, S.K.; Kim, S.S.; Joa, J. A Simple Model for Predicting Sunburn on Satsuma Mandarin Fruit. Sci. Hortic. 2022, 292, 110658. [Google Scholar] [CrossRef]
- Tsai, M.S.; Lee, T.C.; Chang, P.T. Comparison of Paper Bags, Calcium Carbonate, and Shade Nets for Sunscald Protection in “Murcott” Tangor Fruit. HortTechnology 2013, 23, 659–667. [Google Scholar] [CrossRef]
- Lal, N.; Sahu, N. Management Strategies of Sun Burn in Fruit Crops—A Review. Int. J. Curr. Microbiol. Appl. Sci. 2017, 6, 1126–1138. [Google Scholar] [CrossRef]
- Gullo, G.; Dattola, A.; Vonella, V.; Zappia, R. Effects of Two Reflective Materials on Gas Exchange, Yield, and Fruit Quality of Sweet Orange Tree Citrus Sinensis (L.) Osb. Eur. J. Agron. 2020, 118, 126071. [Google Scholar] [CrossRef]
- Glenn, D.M. Particle Film Mechanisms of Action That Reduce the Effect of Environmental Stress in “Empire” Apple. J. Am. Soc. Hortic. Sci. 2009, 134, 314–321. [Google Scholar] [CrossRef]
- Glenn, D.M. The Mechanisms of Plant Stress Mitigation by Kaolin-Based Particle Films and Applications in Horticultural and Agricultural Crops. HortScience 2012, 47, 710–711. [Google Scholar] [CrossRef]
- Glenn, D.M. Effect of Highly Processed Calcined Kaolin Residues on Apple Water Use Efficiency. Sci. Hortic. 2016, 205, 127–132. [Google Scholar] [CrossRef]
- Gharaghani, A.; Mohammadi Javarzari, A.; Vahdati, K. Kaolin Particle Film Alleviates Adverse Effects of Light and Heat Stresses and Improves Nut and Kernel Quality in Persian Walnut. Sci. Hortic. 2018, 239, 35–40. [Google Scholar] [CrossRef]
- da Silva, P.S.O.; Oliveira, L.F.G.; Silva Gonzaga, M.I.; de Oliveira Alves Sena, E.; dos Santos Maciel, L.B.; Pinheiro Fiaes, M.; de Mattos, E.C.; Gutierrez Carnelossi, M.A. Effects of Calcium Particle Films and Natural Shading on Ecophysiological Parameters of Conilon Coffee. Sci. Hortic. 2019, 245, 171–177. [Google Scholar] [CrossRef]
- Valentini, G.; Pastore, C.; Allegro, G.; Muzzi, E.; Seghetti, L.; Filippetti, I. Application of Kaolin and Italian Natural Chabasite-Rich Zeolitite to Mitigate the Effect of Global Warming in Vitis Vinifera l. Cv. Sangiovese. Agronomy 2021, 11, 1035. [Google Scholar] [CrossRef]
- Bernardo, S.; Luzio, A.; Machado, N.; Ferreira, H.; Vives-Peris, V.; Malheiro, A.C.; Correia, C.; Gómez-Cadenas, A.; Moutinho-Pereira, J.; Dinis, L.T. Kaolin Application Modulates Grapevine Photochemistry and Defence Responses in Distinct Mediterranean-Type Climate Vineyards. Agronomy 2021, 11, 477. [Google Scholar] [CrossRef]
- Ennab, H. Effect of Irrigation Levels, Mulching and Kaolin on Yield and Fruit Quality of Washington Navel Orange Trees Grown in Clay Soil. Ann. Agric. Sci. Moshtohor 2023, 61, 177–186. [Google Scholar] [CrossRef]
- Ali, M.S.M.; Zayat, H.E. El Effect of Some Biological Stimulants and Kaolin Particles Sprays on Fruit Retention, Productivity and Fruit Quality of Washington Navel Orange Trees. Hortsci. J. Suez Canal Univ. 2019, 8, 69–78. [Google Scholar] [CrossRef]
- Ennab, H.A.; El-Sayed, S.A.; El-Enin, M.M.S.A. Effect of Kaolin Applications on Fruit Sunburn, Yield and Fruit Quality of Balady Mandarin (Citrus Reticulata, Blanco). Menoufia J. Plant Prod. 2017, 2, 129–138. [Google Scholar] [CrossRef]
- Ali, M.; Ezz, T.; Harhash, M.; El-Sayed, H.E.; El-demerdash, I. Sunscald Reduction, Increasing Yield and Fruit Quality of Murcott Mandarin Fruits Using Different Compounds as Nano Form. J. Adv. Agric. Res. 2023, 28, 404–412. [Google Scholar] [CrossRef]
- da Silva, P.S.O.; de Oliveira, L.F.G.; de Mattos, E.C.; dos Santos Maciel, L.B.; dos Santos, M.P.F.; de Oliveira Alves Sena, E.; Borges Barbosa, N.T.; Gutierrez Carnelossi, M.A.; Fagundes, J.L. Calcium Particle Films Promote Artificial Shading and Photoprotection in Leaves of American Grapevines (Vitis labrusca L.). Sci. Hortic. 2019, 252, 77–84. [Google Scholar] [CrossRef]
- Ramírez-Godoy, A.; Puentes-Peréz, G.; Restrepo-Díaz, H. Evaluation of the Effect of Foliar Application of Kaolin Clay and Calcium Carbonate on Populations of Diaphorina citri (Hemiptera: Liviidae) in Tahiti Lime. Crop Prot. 2018, 109, 62–71. [Google Scholar] [CrossRef]
- Denaxa, N.-K.; Tsafouros, A.; Ntanos, E.; Kosta, A.; Roussos, P.A. Mitigation of High Solar Irradiance and Heat Stress in Kiwifruit during Summer via the Use of Alleviating Products with Different Modes of Action—Part 2 Effects on Fruit Quality, Organoleptic, and Phytochemical Properties at Harvest and after Storage. Agriculture 2023, 13, 701. [Google Scholar] [CrossRef]
- Zaman, L.; Shafqat, W.; Sharief, N.; Raza, K.; ud Din, S.; Ahsan Qureshi, M.; Ahmad, S.; Jiskani, M.J. Effect of Foliar Spray of Calcium Carbonate and Zinc Sulphate on Fruit Quality of Kinnow Mandarin. J. Glob. Innov. Agric. Soc. Sci. 2020, 8, 5–9. [Google Scholar] [CrossRef]
- Kalcsits, L.; Musacchi, S.; Layne, D.R.; Schmidt, T.; Mupambi, G.; Serra, S.; Mendoza, M.; Asteggiano, L.; Jarolmasjed, S.; Sankaran, S.; et al. Above and Below-Ground Environmental Changes Associated with the Use of Photoselective Protective Netting to Reduce Sunburn in Apple. Agric. For. Meteorol. 2017, 237–238, 9–17. [Google Scholar] [CrossRef]
- Goodwin, I.; McClymont, L.; Turpin, S.; Darbyshire, R. Effectiveness of Netting in Decreasing Fruit Surface Temperature and Sunburn Damage of Red-Blushed Pear. N. Z. J. Crop Hortic. Sci. 2018, 46, 334–345. [Google Scholar] [CrossRef]
- Mupambi, G.; Musacchi, S.; Serra, S.; Kalcsits, L.A.; Layne, D.R.; Schmidt, T. Protective Netting Improves Leaf-Level Photosynthetic Light Use Efficiency in ‘Honeycrisp’ Apple under Heat Stress. HortScience 2018, 53, 1416–1422. [Google Scholar] [CrossRef]
- Reig, G.; Donahue, D.J.; Jentsch, P. The Efficacy of Four Sunburn Mitigation Strategies and Their Effects on Yield, Fruit Quality, and Economic Performance of Honeycrisp Cv. Apples under Eastern New York (USA) Climatic Conditions. Int. J. Fruit Sci. 2020, 20, 541–561. [Google Scholar] [CrossRef]
- Kale, S.J.; Nath, P.; Meena, V.S.; Singh, R.K. Semi-Permanent Shadenet House for Reducing the Sunburn in Pomegranates (Punica Granatum). Int. J. Chem. Stud. 2018, 6, 2053–2057. [Google Scholar]
- Narjesi, V.; Moghadam, J.F.; Ghasemi-Soloklui, A.A. Effects of Photo-Selective Shade Net Color and Shading Percentage on Reducing Sunburn and Increasing the Quantity and Quality of Pomegranate Fruit. Int. J. Hortic. Sci. Technol. 2023, 10, 25–38. [Google Scholar] [CrossRef]
- El-Naby, S.K.M.A.; Esmail, A.M.A.M.; Baiea, M.H.M.; Amin, O.A.E.F.; Mohamed, A.A.A. Mitigation of Heat Stress Effects by Using Shade Net on Washington Navel Orange Trees Grown in Al-Nubaria Region, Egypt. Acta Sci. Pol. Hortorum Cultus 2020, 19, 15–24. [Google Scholar] [CrossRef]
- Balfagón, D.; Sengupta, S.; Gómez-Cadenas, A.; Fritschi, F.B.; Azad, R.K.; Mittler, R.; Zandalinasc, S.I. Jasmonic Acid Is Required for Plant Acclimation to a Combination of High Light and Heat Stress. Plant Physiol. 2019, 181, 1668–1682. [Google Scholar] [CrossRef]
- American Society of Agronomy. Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; CABI: Wallingford, UK, 1982; ISBN 978-0-89118-204-7. [Google Scholar]
- Mohsen, F.; Ibrahim, M. Reducing Fruit Sunburn and Splitting in Murrcot Tangarine Fruits by Using Silicate Application. Arab Univ. J. Agric. Sci. 2021, 29, 437–445. [Google Scholar] [CrossRef]
- Mohamed Abd El-Naby, S.K.; Ahmed Mohamed, A.A.; Mohamed El-Naggar, Y.I. Effect of Melatonin, Ga3 and Naa on Vegetative Growth, Yield and Quality of ‘Canino’ Apricot Fruits. Acta Sci. Pol. Hortorum Cultus 2019, 18, 167–174. [Google Scholar] [CrossRef]
- Mangaraj, S.; Singh, K.K.; Varshney, A.C.; Reddy, B.S. Design and Development of a Fruit Grader. J. Food Sci. Technol. 2009, 46, 554–558. [Google Scholar]
- Sharifi, M.; Rafiee, S.; Keyhani, A.; Jafari, A.; Mobli, H.; Rajabipour, A.; Akram, A. Some Physical Properties of Orange (Var. Tompson). Int. Agrophys. 2007, 21, 391–397. [Google Scholar]
- AOAC (Association of Official Agriculture Chemists). Compendium of Microbiological Methods for the Analysis of Food and Agricultural Products; AOAC International: Rockville, MA, USA, 2000. [Google Scholar]
- Von Wettstein, D. Chlorophyll-Letale Und Der Submikroskopische Formwechsel Der Plastiden. Exp. Cell Res. 1957, 12, 427–506. [Google Scholar] [CrossRef]
- Lancaster, J.E.; Lister, C.E.; Reay, P.F.; Triggs, C.M. Influence of Pigment Composition on Skin Color in a Wide Range of Fruit and Vegetables. J. Am. Soc. Hortic. Sci. 1997, 122, 594–598. [Google Scholar] [CrossRef]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 1992, 27, 1254–1255. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 11th ed.; Iowa State University Digital Press: Ames, IO, USA, 1990; pp. 369–375. [Google Scholar]
- Duncan, D.B. Multiple Range and Multiple F Tests. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
- Abd El-Naby, S.K.M.; Abdelkhalek, A.; Baiea, M.H.M.; Amin, O.A. Impact of Spraying Some Chemical Substances on Protecting Valencia Orange Trees from Heat Stress Injuries. Plant Arch. 2020, 20, 2265–2270. [Google Scholar]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of Shading and Insect-Proof Screens on Crop Microclimate and Production: A Review of Recent Advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Ajmi, A.; Vázquez, S.; Morales, F.; Chaari, A.; El-Jendoubi, H.; Abadía, A.; Larbi, A. Prolonged Artificial Shade Affects Morphological, Anatomical, Biochemical and Ecophysiological Behavior of Young Olive Trees (Cv. Arbosana). Sci. Hortic. 2018, 241, 275–284. [Google Scholar] [CrossRef]
- Iglesias, I.; Alegre, S. The Effect of Anti-Hail Nets on Fruit Protection, Radiation, Temperature, Quality and Probability of Mondial Gala Apples. J. Appl. Hortic. 2006, 8, 91–100. [Google Scholar] [CrossRef]
- Tinyane, P.P.; Soundy, P.; Sivakumar, D. Growing ‘Hass’ Avocado Fruit under Different Coloured Shade Netting Improves the Marketable Yield and Affects Fruit Ripening. Sci. Hortic. 2018, 230, 43–49. [Google Scholar] [CrossRef]
- Lee, T.C.; Zhong, P.J.; Chang, P.T. The Effects of Preharvest Shading and Postharvest Storage Temperatures on the Quality of “Ponkan” (Citrus Reticulata Blanco) Mandarin Fruits. Sci. Hortic. 2015, 188, 57–65. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Kaolin Particle Film Applications Can Increase Photosynthesis and Water Use Efficiency of “ruby Red” Grapefruit Leaves. J. Am. Soc. Hortic. Sci. 2003, 128, 107–112. [Google Scholar] [CrossRef]
- Melgarejo, P.; Martínez, J.J.; Hernández, F.; Martínez-Font, R.; Barrows, P.; Erez, A. Kaolin Treatment to Reduce Pomegranate Sunburn. Sci. Hortic. 2004, 100, 349–353. [Google Scholar] [CrossRef]
- Jifon, J.L.; Syvertsen, J.P. Erratum: Moderate Shade Can Increase Net Gas Exchange and Reduce Photoinhibition in Citrus Leaves (Tree Physiology 22 (1079–1092)). Tree Physiol. 2003, 23, 719. [Google Scholar] [CrossRef]
- El-Tanany, M.M.; Kheder, A.M.A.; Abdallah, H.R. Effect of Some Treatments on Reducing Sunburn in Balady Mandarin Fruit Trees (Citrus Reticulata, Blanco). Egypt. J. Hortic. 2019, 42, 795–806. [Google Scholar]
- Otero, A.; Goni, C.; Jifon, J.L.; Syvertsen, J.P. High Temperature Effects on Citrus Orange Leaf Gas Exchange, Flowering, Fruit Quality and Yield. Acta Hortic. 2011, 903, 1069–1074. [Google Scholar] [CrossRef]
- Ilić, Z.S.; Fallik, E. Light Quality Manipulation Improves Vegetable Quality at Harvest and Postharvest: A Review. Environ. Exp. Bot. 2017, 139, 79–90. [Google Scholar] [CrossRef]
- Shaban, A.E.A.; El-Banna, M.I.M.; Rashedy, A.A. Mitigation of Excessive Solar Radiation and Water Stress on ‘Keitt’ Mango Mangifera Indica Trees through Shading. Acta Sci. Pol. Hortorum Cultus 2021, 20, 77–88. [Google Scholar] [CrossRef]
- Cronjé, P.J.R.; Botes, J.; Prins, D.M.; Brown, R.; North, J.; Stander, O.P.J.; Hoffman, E.W.; Zacarıàs, L.; Barry, G.H. The Influence of 20% White Shade Nets on Fruit Quality of ‘Nadorcott’ Mandarin. Acta Hortic. 2020, 1268, 279–284. [Google Scholar] [CrossRef]
- Dovjik, I.; Nemera, D.B.; Cohen, S.; Shahak, Y.; Shlizerman, L.; Kamara, I.; Florentin, A.; Ratner, K.; McWilliam, S.C.; Puddephat, I.J.; et al. Top Photoselective Netting in Combination with Reduced Fertigation Results in Multi-Annual Yield Increase in Valencia Oranges (Citrus sinensis). Agronomy 2021, 11, 2034. [Google Scholar] [CrossRef]
- Mira-García, A.B.; Conejero, W.; Vera, J.; Ruiz-Sánchez, M.C. Effect of Water Stress and Shading on Lime Yield and Quality. Plants 2023, 12, 503. [Google Scholar] [CrossRef]
- Brown, R. Effect of Permanent Shade Netting on ‘Nadorcott’ Mandarin Tree Phenology and Productivity. Ph.D. Thesis, Stellenbosch University, Stellenbosch, South Africa, 2018. Available online: https://scholar.sun.ac.za (accessed on 28 April 2024).
- Wachsmann, Y.; Zur, N.; Shahak, Y.; Ratner, K.; Giler, Y.; Schlizerman, L.; Sadka, A.; Cohen, S.; Garbinshikof, V.; Giladi, B.; et al. Photoselective Anti-Hail Netting for Improved Citrus Productivity and Quality. Acta Hortic. 2014, 1015, 169–176. [Google Scholar] [CrossRef]
- Zaghloul, A.; Ennab, H.; El-Shemy, M. Influence of Kaolin Sprays on Fruit Quality and Storability of Balady Mandarin. Alex. Sci. Exch. J. An Int. Q. J. Sci. Agric. Environ. 2017, 38, 661–670. [Google Scholar] [CrossRef]
- Zhao, W.; Yang, W.; Ma, Z.; Zhang, X.; Cha, L.; Liu, S.; Zhang, Y. Effects of Time and Height of Shading on Yield and Quality of Pineapple. IOP Conf. Ser. Earth Environ. Sci. 2020, 512, 012101. [Google Scholar] [CrossRef]
- Mditshwa, A.; Magwaza, L.S.; Tesfay, S.Z. Shade Netting on Subtropical Fruit: Effect on Environmental Conditions, Tree Physiology and Fruit Quality. Sci. Hortic. 2019, 256, 108556. [Google Scholar] [CrossRef]
- Dinis, L.T.; Malheiro, A.C.; Luzio, A.; Fraga, H.; Ferreira, H.; Gonçalves, I.; Pinto, G.; Correia, C.M.; Moutinho-Pereira, J. Improvement of Grapevine Physiology and Yield under Summer Stress by Kaolin-Foliar Application: Water Relations, Photosynthesis and Oxidative Damage. Photosynthetica 2018, 56, 641–651. [Google Scholar] [CrossRef]
- Hamdy, A.E.; Abdel-Aziz, H.F.; El-khamissi, H.; AlJwaizea, N.I.; El-Yazied, A.A.; Selim, S.; Tawfik, M.M.; AlHarbi, K.; Ali, M.S.M.; Elkelish, A. Kaolin Improves Photosynthetic Pigments, and Antioxidant Content, and Decreases Sunburn of Mangoes: Field Study. Agronomy 2022, 12, 1535. [Google Scholar] [CrossRef]
Particle Size Distribution (%) | Textural Class | Field Capacity (%) | Wilting Point (%) | Available Water (%) | Bulk Density (g/cm3) | ||
---|---|---|---|---|---|---|---|
Sand | Silt | Clay | |||||
8.37 | 36.23 | 55.40 | Clay | 39.76 | 20.72 | 19.04 | 1.29 |
pH | EC (dS m−1) | O.M. (%) | Soluble Cations (meq/L) | Soluble Anions (meq/L) | Available Macro-Nutrients (mg kg−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Na+ | Ca2+ | Mg2+ | K+ | Cl− | HCO3− | SO42− | N | P | K | |||
8.13 | 1.47 | 1.67 | 7.6 | 4.06 | 3.93 | 0.16 | 10.07 | 3.50 | 2.18 | 56.65 | 25.8 | 332.5 |
Treatment Code | Description |
---|---|
Control | An open field without any treatment |
Kaolin 4% | Spraying kaolin at 4% three times |
CaCO3 3% | Spraying CaCO3 at 3% three times |
W50% | White shade net + 50% shading rate |
G50% | Green shade net + 50% shading rate |
G63% | Green shade net + 63% shading rate |
B50% | Black shade net + 50% shading rate |
B63% | Black shade net + 63% shading rate |
Treatments | Fruit Sunburn % | Severity % of Sunburned Fruit | ||||||
---|---|---|---|---|---|---|---|---|
Light % | Medium % | High % | ||||||
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 9.31 a | 8.17 a | 13.10 c | 12.68 c | 32.75 c | 32.40 c | 54.15 a | 54.94 a |
Kaolin 4% | 4.00 c | 3.28 c | 49.52 a | 53.83 a | 36.46 a | 36.27 a | 14.02 c | 9.89 c |
CaCO3 3% | 7.58 b | 7.05 b | 39.99 b | 41.66 b | 33.85 b | 33.34 b | 26.16 b | 25.00 b |
W50% | - | - | - | - | - | - | - | - |
G50% | - | - | - | - | - | - | - | - |
G63% | - | - | - | - | - | - | - | - |
B50% | - | - | - | - | - | - | - | - |
B63% | - | - | - | - | - | - | - | - |
Treatments | Yield Components | Fruit Yield Increment % | Yield Efficiency (kg/m2) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Number of Fruits/Tree | Yield (kg/Tree) | Yield (ton/ha.) | ||||||||
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 819.73 f | 868.89 f | 91.17 g | 97.50 h | 36.74 g | 39.31 h | 0.00 g | 0.00 h | 3.65 g | 3.90 h |
Kaolin 4% | 893.00 d | 924.67 e | 104.67 e | 112.50 f | 42.20 e | 45.36 f | 14.80 e | 15.39 f | 4.19 e | 4.50 f |
CaCO3 3% | 857.55 e | 850.49 g | 100.33 f | 103.00 g | 4.45 f | 41.52 g | 10.06 f | 5.64 g | 4.01 f | 4.12 g |
W50% | 1031.51 a | 1055.93 a | 131.00 a | 136.67 a | 52.82 a | 55.10 a | 43.70 a | 40.17 a | 5.24 a | 5.47 a |
G50% | 985.03 b | 1007.80 b | 124.00 b | 129.33 b | 49.99 b | 52.147 b | 36.02 b | 32.65 b | 4.96 b | 5.17 b |
G63% | 964.18 bc | 991.20 c | 119.33 c | 125.00 c | 48.12 c | 50.400 c | 30.90 c | 28.21 c | 4.77 c | 5.00 c |
B50% | 979.00 b | 979.48 c | 119.00 c | 122.00 d | 47.98 c | 49.19 d | 30.54 c | 25.13 d | 4.76 c | 4.88 d |
B63% | 952.01 c | 948.67 d | 112.33 d | 117.00 e | 45.29 d | 47.17 e | 23.23 d | 20.00 e | 4.49 d | 4.68 e |
Treatments | Fruit Weight (g) | Fruit Volume (cm3) | Fruit Density (g/cm3) | Juice Volume (mL) | ||||
---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 111.22 e | 112.22 e | 125.33 g | 131.11 h | 0.89 a | 0.86 b | 35.72 e | 36.67 e |
Kaolin 4% | 117.22 d | 121.67 d | 139.44 e | 141.11 f | 0.84 b | 0.86 b | 39.49 cd | 41.67 cd |
CaCO3 3% | 117.00 d | 121.11 d | 131.56 f | 135.56 g | 0.89 a | 0.89 a | 38.72 d | 40.00 d |
W50% | 127.00 a | 129.44 a | 171.67 a | 173.33 a | 0.74 d | 0.75 e | 46.52 a | 48.89 a |
G50% | 125.89 a | 128.33 a | 161.44 b | 164.44 b | 0.78 c | 0.78 d | 45.45 ab | 47.78 ab |
G63% | 123.78 b | 126.11 b | 160.44 b | 162.22 c | 0.77 c | 0.78 d | 44.71 b | 46.67 b |
B50% | 121.56 c | 124.56 c | 154.11 c | 156.67 d | 0.79 c | 0.80 c | 40.61 c | 42.78 c |
B63% | 118.00 d | 123.33 c | 141.67 d | 144.44 e | 0.83 b | 0.85 b | 39.64 cd | 41.67 cd |
Treatments | Fruit Length (cm) | Fruit Diameter (cm) | Fruit Shape (L/D Ratio) | Peel Thickness (mm) | Peel Firmness (g/cm2) | |||||
---|---|---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 5.22 f | 5.24 g | 6.58 f | 6.68 e | 0.79 a | 0.79 a | 2.39 g | 2.50 f | 782.58 h | 790.00 h |
Kaolin 4% | 5.33 e | 5.39 e | 7.19 d | 7.23 d | 0.74 e | 0.75 c | 2.51 f | 2.63 e | 832.47 f | 841.11 f |
CaCO3 3% | 5.33 e | 5.34 f | 7.15 e | 7.23 d | 0.75 de | 0.74 c | 2.50 f | 2.61 e | 815.48 g | 823.33 g |
W50% | 5.85 a | 5.90 a | 7.64 a | 7.72 a | 0.77 b | 0.77 b | 2.77 e | 2.88 d | 848.78 e | 857.78 e |
G50% | 5.70 b | 5.72 b | 7.57 b | 7.69 a | 0.75 c | 0.74 c | 2.97 d | 3.11 c | 865.33 d | 875.00 d |
G63% | 5.53 c | 5.55 c | 7.55 b | 7.62 b | 0.73 f | 0.73 d | 3.02 c | 3.14 c | 892.45 c | 902.78 c |
B50% | 5.50 d | 5.54 cd | 7.36 c | 7.45 c | 0.75 d | 0.74 c | 3.18 b | 3.27 b | 910.22 b | 918.89 b |
B63% | 5.48 d | 5.51 d | 7.20 d | 7.27 d | 0.76 b | 0.76 b | 3.25 a | 3.36 a | 944.33 a | 950.00 a |
Treatments | Pulp Weight (%) | Peel Weight (%) | Fruit Rag Weight (%) | Juice Weight (%) | ||||
---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 67.83 de | 69.27 c | 32.17 ab | 30.73 b | 36.06 a | 36.01 ab | 31.77 c | 33.26 e |
Kaolin 4% | 70.05 b | 70.47 bc | 29.95 d | 29.53 bc | 36.36 a | 36.87 a | 33.69 b | 33.60 e |
CaCO3 3% | 66.86 e | 67.03 d | 33.14 a | 32.97 a | 33.90 b | 33.66 d | 32.96 bc | 33.37 e |
W50% | 71.13 a | 72.42 a | 28.87 e | 27.58 d | 34.53 ab | 34.43 cd | 36.61 a | 37.99 a |
G50% | 69.07 bc | 70.58 bc | 30.93 cd | 29.42 bc | 34.60 ab | 33.54 d | 34.47 b | 37.04 b |
G63% | 69.34 bc | 70.99 ab | 30.66 cd | 29.01 cd | 35.05 ab | 35.05 bc | 34.29 b | 35.94 c |
B50% | 68.77 cd | 71.02 ab | 31.23 bc | 28.98 cd | 34.47 ab | 35.30 bc | 34.30 b | 35.72 c |
B63% | 69.59 bc | 70.34 bc | 30.41 cd | 29.66 bc | 35.21 ab | 35.36 bc | 34.38 b | 34.98 d |
Treatments | SSC % | Total Acidity % | SSC/Acid Ratio | Vitamin C (mg/100 mL Fresh Juice) | pH Juice | |||||
---|---|---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 8.43 h | 8.47 e | 1.069 a | 1.088 a | 7.89 h | 7.78 g | 45.87 g | 46.93 d | 3.53 d | 3.63 c |
Kaolin 4% | 9.35 f | 9.35 d | 0.879 c | 0.960 b | 10.63 f | 9.73 f | 46.93 ef | 47.87 d | 3.63 bc | 3.73 bc |
CaCO3 3% | 8.52 g | 8.60 e | 0.955 b | 0.896 c | 8.92 g | 9.60 f | 46.33 fg | 46.93 d | 3.57 cd | 3.70 bc |
W50% | 11.18 a | 11.28 a | 0.745 f | 0.753 f | 15.00 a | 14.98 a | 56.73 a | 57.60 a | 3.77 a | 3.87 a |
G50% | 10.48 b | 10.69 b | 0.746 f | 0.761 f | 14.05 b | 14.05 b | 55.93 b | 57.33 a | 3.70 ab | 3.80 ab |
G63% | 10.30 c | 10.53 b | 0.818 e | 0.821 e | 12.60 c | 12.82 c | 53.53 c | 54.13 b | 3.67 b | 3.77 ab |
B50% | 9.77 d | 10.00 c | 0.829 de | 0.832 de | 11.79 d | 12.02 d | 49.53 d | 50.13 c | 3.67 b | 3.77 ab |
B63% | 9.59 e | 9.64 cd | 0.838 d | 0.843 de | 11.44 e | 11.44 e | 47.07 e | 48.00 d | 3.63 bc | 3.77 ab |
Treatments | Chlorophyll A (mg/100 g Fresh Fruit Peel) | Chlorophyll B (mg/100 g Fresh Fruit Peel) | Total Chlorophyll (mg/100 g Fresh Fruit Peel) | Total Carotenoids (mg/100 g Fresh Fruit Peel) | ||||
---|---|---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 2.90 a | 2.80 a | 3.63 a | 3.56 a | 6.53 a | 6.37 a | 21.10 g | 20.44 f |
Kaolin 4% | 2.48 b | 2.34 c | 2.11 c | 2.06 c | 4.59 c | 4.40 c | 21.68 f | 21.11 e |
CaCO3 3% | 2.50 b | 2.49 b | 2.84 b | 2.69 b | 5.33 b | 5.18 b | 21.38 fg | 20.89 e |
W50% | 1.08 e | 0.99 g | 1.32 e | 1.19 f | 2.40 g | 2.17 h | 28.53 a | 27.12 a |
G50% | 1.15 e | 1.02 g | 1.40 e | 1.32 f | 2.54 g | 2.34 g | 25.97 b | 25.45 b |
G63% | 1.31 e | 1.18 f | 1.63 d | 1.56 e | 2.94 f | 2.75 f | 23.85 c | 23.38 c |
B50% | 1.70 d | 1.61 e | 2.09 c | 1.89 d | 3.79 e | 3.50 e | 22.68 d | 21.99 d |
B63% | 2.03 c | 1.87 d | 2.22 c | 2.16 c | 4.24 d | 4.03 d | 22.31 e | 21.82 d |
Treatments | L* | a* | b* | |||
---|---|---|---|---|---|---|
2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | 2022–2023 | 2023–2024 | |
Control | 56.30 e | 57.22 d | 8.78 e | 9.19 e | 49.35 c | 50.82 d |
Kaolin 4% | 56.82 cde | 57.92 cd | 14.81 c | 15.75 c | 52.84 b | 53.57 c |
CaCO3 3% | 56.55 de | 57.74 cd | 11.67 d | 12.80 d | 52.63 b | 53.47 c |
W50% | 59.66 a | 60.68 a | 18.91 a | 19.75 a | 57.63 a | 58.98 a |
G50% | 58.65 ab | 59.36 b | 18.50 a | 19.03 a | 56.54 a | 57.11 ab |
G63% | 58.32 ab | 59.14 b | 17.76 ab | 18.44 ab | 55.94 a | 56.76 b |
B50% | 58.13 bc | 59.07 b | 16.33 bc | 17.14 bc | 55.83 a | 56.36 b |
B63% | 57.87 bcd | 58.64 bc | 15.61 c | 16.51 c | 53.58 b | 54.33 c |
Aspect | Shading Technologies (Cost per Feddan, Agronomic Results) | Kaolin Spraying (Cost per Feddan, Agronomic Results) |
Initial Costs | High (e.g., EGP 126,000–189,000 per feddan)—No fruit sunburn under shade net treatments | Low (e.g., EGP 2520–6300 per feddan annually)—Reduces sunburn to 3.28% |
Operational Costs | Low (e.g., EGP 2520–6300 per feddan annually) | High (e.g., EGP 2520–5040 per application per feddan, 3–5 applications per season) |
Impact on Yield and Quality | Highest yield under white shade net 50% (up to 136.67 kg/tree) with superior fruit quality (highest juice content) | Improves yield (up to 121.67 kg/tree), though lower than shading treatments, and enhances fruit quality |
Long-Term Benefits | High, with consistent fruit quality over time and total sunburn elimination | Flexible, with recurring costs each season, reduces sunburn but is less effective than shading |
Market and Environmental Considerations | Sustainable, reduces water/chemical use, high initial investment, highest fruit yield and quality | Environmentally friendly, well-accepted in organic farming, reduces sunburn and improves quality |
Economic Return | Highest long-term returns, especially for large-scale operations due to consistent yield and quality | Lower initial costs but higher recurring expenses; effective but less impactful than shading on yield |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Zawily, H.M.A.; Abo El-Enin, M.M.S.; Elmenofy, H.M.; Hassan, I.F.; Manolikaki, I.; Koubouris, G.; Alam-Eldein, S.M. Improving Yield and Quality of ‘Balady’ Mandarin Trees by Using Shading Techniques and Reflective Materials in Response to Climate Change Under Flood Irrigation Conditions. Agronomy 2024, 14, 2456. https://doi.org/10.3390/agronomy14112456
El-Zawily HMA, Abo El-Enin MMS, Elmenofy HM, Hassan IF, Manolikaki I, Koubouris G, Alam-Eldein SM. Improving Yield and Quality of ‘Balady’ Mandarin Trees by Using Shading Techniques and Reflective Materials in Response to Climate Change Under Flood Irrigation Conditions. Agronomy. 2024; 14(11):2456. https://doi.org/10.3390/agronomy14112456
Chicago/Turabian StyleEl-Zawily, Hesham M. A., Mohammed M. S. Abo El-Enin, Hayam M. Elmenofy, Islam F. Hassan, Ioanna Manolikaki, Georgios Koubouris, and Shamel M. Alam-Eldein. 2024. "Improving Yield and Quality of ‘Balady’ Mandarin Trees by Using Shading Techniques and Reflective Materials in Response to Climate Change Under Flood Irrigation Conditions" Agronomy 14, no. 11: 2456. https://doi.org/10.3390/agronomy14112456
APA StyleEl-Zawily, H. M. A., Abo El-Enin, M. M. S., Elmenofy, H. M., Hassan, I. F., Manolikaki, I., Koubouris, G., & Alam-Eldein, S. M. (2024). Improving Yield and Quality of ‘Balady’ Mandarin Trees by Using Shading Techniques and Reflective Materials in Response to Climate Change Under Flood Irrigation Conditions. Agronomy, 14(11), 2456. https://doi.org/10.3390/agronomy14112456