Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Sites and Soil Sampling
2.2. Soil Enzyme Assays
2.2.1. Indicators of the Overall Soil Microbiological and Hydrolytic Activity
2.2.2. C- and P-Cycling Hydrolases
2.2.3. N-Transforming Enzymes
2.2.4. Soil Oxidase Activity
2.3. Microbial Biomass Carbon, Nitrogen and Phosphorus Assays
2.4. Analysis of Physico-Chemical Properties
2.5. Assessment of Root Biomass and Structure
2.6. Statistical Analyses
3. Results
3.1. Physico-Chemical Properties across the Soil Profiles
3.2. Vertical Distributions of the Soil Enzymatic Activities and Microbial Biomass Content
3.3. The Studied Variable as Affected by the Land-Use System
3.4. Root Biomass and Morphology
3.5. Relationship between the Studied Properties—Analysis of Correlation and PCA
4. Discussion
4.1. Land Use and Plant Cover as the Main Factors That Affect the Soil Microbial and Enzymatic Variables
4.2. Changes in the Soil Properties across the Soil Profiles
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Venkatesan, S.; Senthurpandian, V.K. Comparison of enzyme activity with depth under tea plantations and forested sites in south India. Geoderma 2006, 137, 212–216. [Google Scholar]
- Baldrian, P. Distribution of extracellular enzymes in soils: Spatial heterogeneity and determining factors at various scales. Soil Sci. Soc. Am. J. 2014, 78, 11–18. [Google Scholar] [CrossRef]
- Okur, N.; Altindişli, A.; Cengel, M.; Gocmez, S.; Kayikcioğlu, H.H. Microbial biomass and enzyme activity in vineyard soils under organic and conventional farming systems. Turk. J. Agric. For. 2009, 33, 413–423. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L. Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol. Biochem. 2010, 42, 391–404. [Google Scholar] [CrossRef]
- Wolińska, A.; Bennicelli, R. Dehydrogenase activity response to soil reoxidation process described as varied condition of water potential, air porosity and oxygen availability. Pol. J. Environ. Stud. 2010, 19, 651–657. [Google Scholar]
- Piotrowska-Długosz, A. Significance of the enzymes associated with soil C and N transformation. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer Nature: Singapore, 2020; pp. 339–437. [Google Scholar]
- Furtak, K.; Gałązka, A. Enzymatic activity as a popular parameter used to determine the quality of the soil environment. Pol. J. Agron. 2019, 37, 22–30. [Google Scholar]
- Piotrowska-Długosz, A.; Długosz, J.; Gryta, A.; Frac, M. Responses of N-cycling enzyme activities and functional diversity of soil microorganisms to soil depth, pedogenic processes and cultivated plants. Agronomy 2022, 12, 264. [Google Scholar] [CrossRef]
- Sun, R.; Li, W.; Hu, C.; Liu, B. Long-term urea fertilization alters the composition and increases the abundance of soil ureolytic bacterial communities in an upland soil. FEMS Microb. Ecol. 2019, 95, fiz044. [Google Scholar] [CrossRef]
- Nannipieri, P.; Giagnoni, L.; Landi, L.; Renella, G. Role of Phosphatase Enzymes in Soil. In Phosphorus in Action; Bünemann, E., Oberson, A., Frossard, A.E., Eds.; Soil Biology Book Series; Springer-Verlag: Berlin/Heidelberg, Germany, 2011; Volume 26, pp. 230–243. [Google Scholar]
- Orczewska, A.; Piotrowska, A.; Lemanowicz, J. Soil acid phosphomonoesterase activity and phosphorus forms in ancient and post-agricultural black alder [Alnus glutinosa (L.) Gaertn.] woodlands. Acta Soc. Bot. Pol. 2012, 81, 81–86. [Google Scholar] [CrossRef]
- Richardson, A.E.; Simpson, R.J. Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol. 2011, 156, 989–996. [Google Scholar] [CrossRef]
- Turner, B.L.; Lambers, H.; Condron, L.M.; Cramer, M.D.; Leake, J.R.; Richardson, A.E.; Smith, S.E. Soil microbial biomass and the fate of phosphorus during long-term ecosystem development. Plant Soil 2013, 367, 225–234. [Google Scholar] [CrossRef]
- Zimmermann, M.; Bird, M.I. Temperature sensitivity of tropical forest soil respiration increase along an altitudinal gradient with ongoing decomposition. Geoderma 2012, 187–188, 8–15. [Google Scholar] [CrossRef]
- van Gestel, N.C.; Reischke, S.; Bååth, E. Temperature sensitivity of bacterial growth in a hot desert soil with large temperature fluctuations. Soil Biol. Biochem. 2013, 65, 180–185. [Google Scholar] [CrossRef]
- Meena, A.; Rao, K.S. Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region, India. Ecol. Process. 2021, 10, 16. [Google Scholar] [CrossRef]
- Liu, D.; Wang, Z.; Zhang, B.; Song, K.; Li, X.; Li, J.; Li, F.; Duan, H. Spatial distribution of soil organic carbon and analysis of related factors in croplands of the black soil region, Northeast China. Agric. Ecosyst. Environ. 2006, 113, 73–81. [Google Scholar] [CrossRef]
- Kompała-Bąba, A.; Bierza, W.; Sierka, E.; Błońska, A.; Besenyei, L.; Woźniak, G. The role of plants and soil properties in the enzyme activities of substrates on hard coal mine spoil heaps. Sci. Rep. 2021, 11, 5155. [Google Scholar] [CrossRef] [PubMed]
- Mganga, K.; Razavi, B.; Kuzyakov, J. Microbial and enzymes response to nutrient additions in soils of Mt. Kilimanjaro region depending on land use. Eur. J. Soil Biol. 2015, 69, 33–40. [Google Scholar] [CrossRef]
- Herold, N.; Schöning, I.; Berner, D.; Haslwimmer, H.; Kandeler, E.; Michalyik, B.; Schrumpf, M. Vertical gradient of potential enzymes activities in soil profiles of European beech, Norwaz spruce and Scots pine dominated forest sites. Pedobiol. J. Soil Ecol. 2014, 57, 181–189. [Google Scholar] [CrossRef]
- Stone, M.M.; De Forest, J.L.; Plante, A.F. Changes in extracellular enzyme activity and microbial community structure with soil depth at the Luquillo Critical Zone Observatory. Soil Biol. Biochem. 2014, 75, 237–247. [Google Scholar] [CrossRef]
- Maharjan, M.; Sanaullah, M.; Razavi, B.; Kuzyakov, Y. Effect of land use and management practices on microbial biomass and enzyme activities in subtropical top- and sub-soils. Appl. Soil Ecol. 2017, 113, 22–28. [Google Scholar] [CrossRef]
- GUS. Agriculture in 2017, Warsaw. 2018. Available online: http://stat.gov.pl/en/topics/agriculture-forestry/agriculture/agriculture-in-2017,4,14.html (accessed on 15 February 2019).
- Powierzchnia Winnic w Polsce. Available online: https//www.gov.pl/web/kowr/wykazy-rejestry (accessed on 3 December 2023).
- Struktura Winiarstwa w Polsce w 2022 Roku. Available online: https//www.enoloportal.pl/aktualności/struktura-powierzchni-upraw-winorosli-w-polskich-winnicach-2022/ (accessed on 3 December 2023).
- Santillan, D.; Garrote, L.; Iglesias, A.; Sotes, V. Climate change risks and adaptation: New indicators for Mediterranean viticulture. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 881–899. [Google Scholar]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and managing for healthy vineyard soils, intersections with the concept of terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Giagnoni, L.; Maienza, A.; Baronti, S.; Primo Vaccari, F.; Genesio, L.; Taiti, C.; Martellini, T.; Scodellini, R.; Cincinelli, A.; Costa, C.; et al. Long-term soil biological fertility, volatile organic compounds and chemical properties in a vineyard soil after biochar amendment. Geoderma 2019, 344, 127–136. [Google Scholar] [CrossRef]
- Ko, D.; Yoo, G.; Yun, S.T.; Jun, S.C.; Chung, H. Bacterial and fungal community composition across the soil depth profiles in a fallow field. J. Ecol. Environ. 2017, 41, 34. [Google Scholar] [CrossRef]
- Eilers, K.G.; Debenport, S.; Anderson, S.; Fierer, N. Digging deeper to find unique microbial communities: The strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50, 58–65. [Google Scholar] [CrossRef]
- Hsiao, C.J.; Sassenrath, G.F.; Zeglin, L.H.; Hettiarachchi, G.M.; Rice, C.W. Vertical changes of soil microbial properties in claypan soils. Soil Biol. Biochem. 2018, 121, 154–164. [Google Scholar] [CrossRef]
- Marinari, S.; Marabottini, R.; Falsone, G.; Vianello, G.; Antisari, L.V.; Agnelli, A.; Massaccesi, L.; Cocco, S.; Cardelli, V.; Serrani, D.; et al. Mineral weathering and lessivage affect microbial community and enzyme activity in mountain soils. Appl. Soil Ecol. 2021, 167, 104024. [Google Scholar] [CrossRef]
- Rumpel, C.; Kőgel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Schnecker, J.; Wild, B.; Takriti, M.; Alves, R.J.E.; Gentsch, N.; Gittel, A.; Hofer, A.; Klaus, K.; Knoltsch, A.; Lashchinskiy, N.; et al. Microbial community composition shapes enzyme patterns in topsoil and subsoil horizons along a latitudinal transect in Western Siberia. Soil Biol. Biochem. 2015, 83, 106–115. [Google Scholar] [CrossRef]
- Schinner, F.; von Mersi, W. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 1990, 22, 511–515. [Google Scholar] [CrossRef]
- Adam, G.; Duncan, H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 2001, 33, 943–951. [Google Scholar] [CrossRef]
- Tabatabai, M.A.; Bremner, J.M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1969, 1, 301–307. [Google Scholar] [CrossRef]
- Browman, M.G.; Tabatabai, M.A. Phosphodiesterase activity of soils. Soil Sci. Soc. Am. J. 1978, 42, 284–290. [Google Scholar] [CrossRef]
- Eivazi, F.; Tabatabai, M.A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 1988, 20, 601–606. [Google Scholar] [CrossRef]
- Šnajdar, J.; Valášková, V.; Merhautová, V.; Cajthaml, T.; Baldrian, P. Activity and spatial distribution of lignocellulose-degrading enzymes during forest soil colonization by saprotrophic basidiomycetes. Enzyme Microb. Technol. 2008, 43, 186–192. [Google Scholar] [CrossRef]
- Deng, S.; Popova, I. Carbohydrate hydrolases. In Methods of Soil Enzymology; Dick, R.P., Ed.; Soil Science Society of America: Madison, WI, USA, 2011; Volume 9, pp. 185–207. [Google Scholar]
- Kandeler, E.; Gerber, H. Short-term assay of soil urease activity using colorimetric determination of ammonia. Biol. Fertil. Soils 1988, 6, 68–72. [Google Scholar] [CrossRef]
- Kandeler, E. Enzymes Involved in Nitrogen Metabolism. In Methods in Soil Biology; Scinner, F., Öhlinger, R., Kandeler, E., Margesin, R., Eds.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 163–184. [Google Scholar]
- Ladd, J.N.; Butler, J.H.A. Short-term assays of soil proteolytic enzyme activities using proteins and peptide derivates as substrates. Soil Biol. Biochem. 1972, 4, 19–30. [Google Scholar] [CrossRef]
- Bach, C.E.; van Horn, D.J.; Warnock, D.D.; Weintraub, M.N. Measuring phenol oxidase and peroxidase activities with pyrogallol, L-DOPA, and ABTS: Effect of assay conditions and soil type. Soil Biol. Biochem. 2013, 76, 183–191. [Google Scholar] [CrossRef]
- Sinsabaugh, R.L.; Lauber, C.L.; Weintraub, M.N.; Ahmed, B.; Allison, S.D.; Crenshaw, C.; Contosta, A.R.; Cusack, D.; Frey, S.; Gallo, M.E.; et al. Stoichiometry of soil enzyme activity at global scale. Ecol. Lett. 2008, 11, 1252–1264. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinsen, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Brookes, P.C.; Landman, A.; Pruden, G.; Jenkinson, D.S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method for measuring microbial biomass in soil. Soil Biol. Biochem. 1985, 17, 837–842. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Mueller, T. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the kEN value. Soil Biol. Biochem. 1996, 28, 33–37. [Google Scholar] [CrossRef]
- Joergensen, R.G.; Olfs, H.W. The variability between different analytical procedures and laboratories for measuring soil microbial biomass C and biomass N by the fumigation extraction method. J. Plant Nutr. Soil Sci. 2011, 161, 51–58. [Google Scholar] [CrossRef]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties; Page, A.L., Ed.; American Society of Agronomy, Soil Science Society of America: Madison, WI, USA, 1982; pp. 403–430. [Google Scholar]
- Polish Norm PN-ISO 11277; Soil Quality—Determination of Particle Size Distribution in Mineral Soil Material—Method by Sieving and Sedimentation. Polish Committee for Standardization: Warsaw, Poland, 2005.
- Egnér, H.; Riehm, H.; Domingo, W.R. Studies concerning the chemical analysis of soils as background for soil nutrient assessment II: Chemical extracting methods to determinate the phosphorous and potassium content of soil. Kungl. Lantbr. Ann. 1960, 26, 199–215. (In German) [Google Scholar]
- Bashour, I.I.; Sayegh, A.H. Methods of Analysis for Soils of Arid and Semi-Arid Regions; Food and Agriculture Organization of the United States: Rome, Italy, 2007; 128p. [Google Scholar]
- Raiesi, F.; Beheshti, A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran. Appl. Soil Ecol. 2014, 75, 63–70. [Google Scholar] [CrossRef]
- Xie, X.; Pu, L.; Wang, Q.; Zhu, M.; Xu, Y.; Zhang, M. Response of soil physico-chemical properties and enzyme activities to long-term reclamation of coastal saline soil, Eastern China. Sci. Total Environ. 2017, 607–608, 1419–1427. [Google Scholar] [CrossRef]
- Silva-Olaya, A.; Mora-Motta, D.A.; Cgerubin, M.R.; Grados, D.; Somenahally, A.; Ortiz-Morea, F.A. Soil enzyme responses to land use change in the tropical rainforest of the Colombian Amazon region. PLoS ONE 2021, 16, e0255669. [Google Scholar] [CrossRef]
- Frąc, M.; Pertile, G.; Panek, J.; Gryta, A.; Oszust, K.; Lipiec, J.; Usowicz, B. Mycobiome Composition and Diversity under the Long-Term Application of Spent Mushroom Substrate and Chicken Manure. Agronomy 2021, 11, 410. [Google Scholar] [CrossRef]
- Mącik, M.; Gryta, A.; Sas-Paszt, L.; Frąc, M. The status of soil microbiome as affected by the application of phosphorus biofertilizer: Fertilizer enriched with beneficial bacterial strains. Int. J. Mol. Sci. 2020, 21, 8003. [Google Scholar] [CrossRef]
- Xue, T.; Yang, F.; Li, R.; Li, Y.; Xu, G.; Zhang, L. The impact of Viticulture on Soil Characteristics and Microbial Communities in the Ningxia Region of Northwest China. Horticulture 2022, 8, 1097. [Google Scholar] [CrossRef]
- Miguel, D.L.; da Silva, E.R.; da Silva, C.F.; Pereira, M.G.; Leite, L.F.C. Soil microbiological properties and enzyme activity in agroforestry systems compared with monoculture, natural regeneration, and native caatinga. Biosci. J. 2020, 36, 1–16. [Google Scholar] [CrossRef]
- Weinder, S.; Karolak, M.; Karamać, M.; Kosińska, A.; Amarowicz, R. Phenolic compounds and properties of antioxidants in grapevine roots (Vitis vinifera L.) under drought stress followed by recovery. Acta Soc. Bot. Pol. 2009, 78, 97–103. [Google Scholar]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent developments in enzymatic antioxidant defence mechanism in plants with special reference to abiotic stress. Biology 2021, 10, 267. [Google Scholar] [CrossRef] [PubMed]
- Blagodatskaya, E.; Kuzyakov, Y. Active microorganisms in soil: Critical review of estimation criteria and approaches. Soil Biol. Biochem. 2013, 67, 192–211. [Google Scholar] [CrossRef]
- Liu, X.; Li, X.; Ma, W.; Guao, Q.; Ahu, X.; Xiang, F. Dominant plant identity determines soil extracellular enzyme activities of its entire community in a semi-arid grassland. Appl. Soil Ecol. 2021, 161, 103872. [Google Scholar] [CrossRef]
- Montecchia, M.; Correa, O.; Soria, M.; Frey, S.; García, A.; Garland, J. Multivariate approach to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina. Appl. Soil. Ecol. 2011, 47, 176–183. [Google Scholar] [CrossRef]
- Dick, R.P. A review: Long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosys. Environ. 1992, 40, 25–36. [Google Scholar] [CrossRef]
- Mc Carty, G.W.; Bremner, J.M. Regulation of assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium. Proc. Natl Acad. Sci. USA 1992, 89, 453–456. [Google Scholar] [CrossRef]
- Rice, C.W.; Tiedje, J.M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biol. Biochem. 1989, 21, 597–602. [Google Scholar] [CrossRef]
- Burket, J.Z.; Dick, R.P. Microbial and soil parameters in relation to N mineralization in soils of diverse genesis under differing management systems. Biol. Fertil. Soils 1998, 27, 430–438. [Google Scholar] [CrossRef]
- Adamczyk, B.; Sietiö, O.M.; Straková, P.; Prommer, J.; Wild, B.; Hagner, M.; Pihlatie, M.; Fritze, H.; Richter, A.; Heinonsalo, J. Plant roots increase both decomposition and stable organic matter formation in boreal forest soil. Nat. Commun. 2019, 10, 3982. [Google Scholar] [CrossRef] [PubMed]
- Ravenek, J.M.; Bessler, H.; Engels, C.; Scherer-Lorezen, M.; Gesssler, A.; Gockele, A.; De Luca, E.; Temperton, V.M.; Ebeling, A.; Roschner, C.; et al. Long-term study of root biomass in a biodiversity experiment reveals shifts in diversity effects over time. Oikos 2014, 123, 1528–1536. [Google Scholar] [CrossRef]
- Eisenhauer, N.; Lanoue, A.; Strecker, T.; Scheu, S.; Steinauer, K.; Thakur, M.P.; Mommer, L. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Sci. Rep. 2017, 7, 44641. [Google Scholar] [CrossRef] [PubMed]
- Martins, N.P.; Fuchslueger, L.; Fleischer, K.; Andersen, K.M.; Assis, R.L.; Baccaro, F.B.; Camargo, P.B.; Cordeiro, A.L.; Grandis, A.; Hartley, I.P.; et al. Fine roots stimulate nutrient release during early stages of leaf litter decomposition in a Central Amazon rainforest. Plant Soil 2021, 469, 287–303. [Google Scholar] [CrossRef]
- Aguilera, P.; Ortiz, N.; Becerra, N.; Turrini, A.; Gaínza-Cortés, F.; Silva-Flores, P.; Aguilar-Paredes, A.; Romero, J.K.; Jorquera-Fontena, E.; Mora, M.L.L.; et al. Application of Arbuscular Mycorrhizal Fungi in Vineyards: Water and Biotic Stress Under a Climate Change Scenario: New Challenge for Chilean Grapevine Crop. Front. Microbiol. 2022, 13, 826571. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Jin, K.; Luo, Y.; Du, L.; Tian, R.; Wang, S.; Shen, Y.; Zhang, J.; Li, N.; Shao, W.; et al. Responses of soil enzyme activity to long-term nitrogen enrichment and water addition in a typical steppe. Agronomy 2023, 13, 1920. [Google Scholar] [CrossRef]
- Hao, J.; Chai, Y.N.; Lopes, L.D.; Ordóñez, R.A.; Wright, E.; Archontoulis, S.; Schachtman, D.P. The effects of soil depth on the structure of microbial communities in agricultural soils in Iowa (United States). Appl. Environ. Microbiol. 2021, 87, e02673-20. [Google Scholar] [CrossRef]
- Liu, G.; Bai, Z.; Cui, G.; He, W.; Kongling, Z.; Ji, G.; Gong, H.; Li, D. Effects of Land Use on the Soil Microbial Community in the Songnen Grassland of Northeast China. Front. Microbiol. 2022, 13, 865184. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, G.; Robinson, D.; Yang, Z.; Guo, J.; Xie, J.; Fu, S.; Zhou, L.; Yang, Y. Large amounts of easily decomposable carbon stored in subtropical forest subsoil is associated with r-strategy-dominated soil microbes. Soil Biol. Biochem. 2016, 95, 233–242. [Google Scholar] [CrossRef]
- Dove, N.C.; Arogyaswamy, K.; Billings, S.A.; Botthoff, J.K.; Carey, C.J.; Cisco, C.; De Forest, J.L.; Fairbanks, D.; Fierer, N.; Gallery, R.E.; et al. Continental-scale patterns of extracellular enzyme activity in the subsoil: An overlooked reservoir of microbial activity. Environ. Res. Lett. 2020, 15, 1040a1. [Google Scholar] [CrossRef]
- Eloy Alves, R.J.; Callejas, I.A.; Marschmann, G.L.; Mooshammer, M.; Singh, H.W.; Whitney, B.; Torn, M.S.; Brodie, E.L. Kinetic properties of microbial exoenzymes vary with soil depth but have similar temperature sensitivities through the soil profile. Front. Microbiol. 2021, 12, 735282. [Google Scholar] [CrossRef] [PubMed]
- Kempen, B.; Brus, D.J.; Stoorvogel, J.J. Three-dimensional mapping of soil organic matter content using soil type–specific depth functions. Geoderma 2011, 162, 107–123. [Google Scholar] [CrossRef]
- Długosz, J.; Piotrowska-Długosz, A. Changes in carbon-degrading enzyme activities and microbial biomass content—The effect of soil depth and soil-forming processes. Appl. Soil Ecol. 2022, 180, 104629. [Google Scholar] [CrossRef]
Profile Number | Agriculture Land Use | Cultivated Plant | Age (Years) | Location | Latitude | Longitude |
---|---|---|---|---|---|---|
1 | Arable land (cereals) | Winter wheat | 1 | * Samostrzel | 53°8′54.2″ N | 17°25′54.7″ E |
2 | Winter wheat | 1 | Samostrzel | 53°9′1.4″ N | 17°26′1.1″ E | |
3 | Vineyard | Grapevine | 8 | * Śmielin | 53°8′53.2″ N | 17°29′14.3″ E |
4 | Vineyard | Grapevine | 8 | Śmielin | 53°8′50.9″ N | 17°29′13.0″ E |
Profile | Horizon | Depth (cm) | Texture | CaCO3 (%) | Bulk Density (g kg−1) |
---|---|---|---|---|---|
1. Cutanic Luvisol | Ap (I) | 0–30 | L | 0.0 | 1.64 |
E1 (II) | 30–55 | SL | 0.0 | 1.62 | |
E2 (III) | 55–82 | SL | 0.0 | 1.72 | |
Bt (IV) | 82–144 | SiL | 0.0 | 1.77 | |
BC (V) | 144–150 | L | 0.0 | 1.83 | |
2. Haplic Luvisol (Cutanic) | Ap (I) | 0–32 | SL | 0.0 | 1.55 |
E (II) | 32–46 | L | 0.0 | 1.63 | |
EB (III) | 46–58 | L | 0.0 | 1.71 | |
Bt (IV) | 58–135 | L | 0.0 | 1.73 | |
Ck (V) | 135–150 | L | 6.9 | 1.73 | |
3. Cutanic Luvisol | A (I) | 0–19 | L | 0.0 | 1.83 |
AB (II) | 19–34 | L | 0.0 | 1.85 | |
Bt (III) | 34–64 | L | 0.0 | 1.87 | |
Ck1 (IV) | 64–100 | L | 11.2 | 1.90 | |
Ck2 (V) | 100–150 | L | 11.7 | 1.85 | |
4. Haplic Luvisol (Cutanic) | A (I) | 0–27 | L | 0.0 | 1.71 |
AE (II) | 27–41 | FSL | 0.0 | 1.78 | |
E (III) | 41–56 | SL | 0.0 | 1.78 | |
Bt (IV) | 56–90 | L | 0.0 | 1.81 | |
C (V) | 90–150 | L | 0.0 | 1.86 |
Horizon | TOC | TN | ||
---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
g kg−1 | ||||
I | 10.1 ± 0.10 A b | 12.43 ± 0.99 A a | 1.32 ± 0.02 A a | 1.35 ± 0.07 A a |
II | 2.69 ± 0.17 B b | 6.11 ± 1.05 B a | 0.47 ± 0.02 B b | 0.72 ± 0.13 B a |
III | 1.96 ± 0.11 D a | 1.59 ± 0.13 D b | 0.38 ± 0.01 B a | 0.25 ± 0.04 C b |
IV | 1.56 ± 0.04 D b | 2.28 ± 0.12 C a | 0.35 ± 0.01 B a | 0.33 ± 0.05 C a |
V | 2.09 ± 0.15 C a | 2.37 ± 0.67 C a | 0.27 ± 0.02 B a | 0.24 ± 0.01 C a |
Horizon | DOC | DNt | ||
---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
mg kg−1 | ||||
I | 97.1 ± 1.0 A a | 93.3 ± 2.6 A a | 24.9 ± 1.4 A a | 17.0 ± 0.3 A b |
II | 55.4 ± 1.3 B b | 67.0 ± 5.8 B a | 18.0 ± 1.7 B a | 14.0 ± 1.0 B b |
III | 50.3 ± 3.1 B a | 51.5 ± 5.0 C a | 14.7 ± 3.1 C a | 10.8 ± 1.3 C b |
IV | 53.7 ± 1.1 B a | 58.4 ± 2.4 C a | 14.5 ± 0.8 C a | 11.7 ± 0.4 C b |
V | 39.3 ± 1.6 C b | 46.8 ± 2.8 D a | 11.3 ± 0.3 C a | 9.4 ± 0.8 C b |
Horizon | pH—CaCl2 | Clay | Silt | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
% | ||||||
I | 6.51 ± 0.10 B a | 6.63 ± 0.10 B a | 8.5 ± 0.2 C b | 10.5 ± 0.6 C a | 35.5 ± 0.8 B a | 46.6 ± 0.4 A a |
II | 6.37 ± 0.15 B a | 6.53 ± 0.18 B a | 14.4 ± 2.9 B a | 9.0 ± 2.5 C b | 35.6 ± 1.5 B b | 47.5 ± 0.7 A a |
III | 6.49 ± 0.16 B a | 6.75 ± 0.12 B a | 16.6 ± 1.0 A a | 13.0 ± 4.0 B a | 36.6 ± 1.2 B a | 33.1 ± 3.3 B a |
IV | 6.76 ± 0.26 B a | 6.84 ± 0.22 B a | 17.3 ± 0.6 A a | 19 0 ± 2.3 A a | 36.9 ± 1.0 B b | 44.8 ± 1.5 A a |
V | 7.09 ± 0.19 A a | 7.09 ± 0.19 A a | 13.3 ± 0.8 B a | 13.3 ± 0.8 B a | 43.5 ± 0.5 A a | 43.5 ± 0.5 A a |
Horizon | N-NO3 | N-NH4 | Pavail | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
mg kg−1 | ||||||
I | 23.47 ± 6.12 A a | 1.24 ± 0.16 B b | 2.08 ± 0.15 A a | 0.92 ± 0.3 B b | 81.9 ± 6.6 A b | 163.9 ± 9.9 A a |
II | 15.15 ± 3.27 B a | 1.49 ± 0.04 B b | 0.32 ± 0.07 B b | 1.31 ± 0.32 A a | 36.9 ± 0.1 C b | 159.1 ± 3.3 A a |
III | 16.25 ± 3.26 B a | 0.81 ± 0.02 C b | 0.14 ± 0.01 C b | 0.83 ± 0.20 B a | 39.3 ± 6.5 C b | 109.1 ± 2.0 B a |
IV | 4.67 ± 1.55 C a | 2.14 ± 0.60 A b | 0,14 ± 0.01 C b | 0.70 ± 0.05 B a | 50.4 ± 4.6 B b | 76.4 ± 2.1 C a |
V | 1.60 ± 0.26 D a | 0.68 ± 0.24 C b | 0.14 ± 0.01 C a | 0.17 ± 0.04 C a | 14.5 ± 1.0 D a | 59.4 ± 1.5 D a |
Horizon | UR | NR | PRO | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
mg N–NH4+ kg−1 h−1 | mg N–NO2− kg−1 24 h−1 | mg TYR kg−1 h−1 | ||||
I | 5.90 ± 0.69 A b | 55.5 ± 7.77 A a | 5.79 ± 0.03 A a | 1.69 ± 0.08 A b | 46.0 ± 8.14 A b | 117.5 ± 16.9 A a |
II | 2.39 ± 0.58 C b | 22.6 ± 2.81 B a | 0.04 ± 0.00 B b | 0.66 ± 0.28 B a | 16.9 ± 3.70 B b | 50.9 ± 14.7 B a |
III | 3.12 ± 0.06 B b | 6.43 ± 1.50 B a | 0.02 ± 0.00 B a | 0.41 ± 0.15 C a | 18.4 ± 0.26 B b | 37.3 ± 11.5 C a |
IV | 0.42 ± 0.01 D b | 5.57 ± 0.46 B a | 0.02 ± 0.00 B a | 0.03 ± 0.00 D a | 12.9 ± 0.88 C b | 19.8 ± 7.13 D a |
V | 0.38 ± 0.04 D b | 2.45 ± 0.39 C a | 0.02 ± 0.00 B a | 0.02 ± 0.00 D a | 4.43 ± 0.23 D b | 15.3 ± 5.91 D a |
Horizon | βGlu | αGlu | INV | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
μM pNP g−1 h−1 | mg glucose g−1 h−1 | |||||
I | 1.29 ± 0.13 A b | 3.09 ± 0.37 A a | 1.39 ± 0.03 A b | 2.71 ± 0.04 A a | 0.36 ± 0.04 A b | 0.52 ± 0.07 A a |
II | 0.13 ± 0.00 B b | 0.51 ± 0.04 B b | 1.43 ± 0.01 A b | 2.91 ± 0.20 A a | 0.07 ± 0.01 B b | 0.19 ± 0.02 B a |
III | 0.13 ± 0.01 B b | 0.43 ± 0.01 B a | 1.45 ± 0.03 A b | 2.29 ± 0.24 B a | 0.04 ± 0.00 C b | 0.07 ± 0.00 C a |
IV | 0.08 ± 0.00 C b | 0.34 ± 0.01 C a | 1.41 ± 0.03 A b | 2.43 ± 0.22 B a | 0.02 ± 0.00 D b | 0.04 ± 0.00 D a |
V | 0.03 ± 0.00 D b | 0.31 ± 0.02 C a | 1.42 ± 0.04 A b | 2.41 ± 0.18 B a | 0.01 ± 0.00 D b | 0.02 ± 0.00 E a |
Horizon | AcP | AlP | PDE | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
mM pNP kg−1 h−1 | ||||||
I | 6.33 ± 0.36 A a | 6.67 ± 1.25 A a | 1.38 ± 0.12 A b | 6.85 ± 0.72 A a | 0.53 ± 0.10 A b | 2.85 ± 0.32 A a |
II | 2.00 ± 0.31 B b | 2.69 ± 0.49 B a | 0.49 ± 0.06 B b | 3.78 ± 0.39 B a | 0.13 ± 0.03 B b | 1.22 ± 0.25 B a |
III | 2.37 ± 0.14 B a | 0.88 ± 0.05 C b | 0.49 ± 0.04 B b | 1.62 ± 0.10 C a | 0.15 ± 0.01 B b | 0.32 ± 0.04 C a |
IV | 2.13 ± 0.06 B a | 0.91 ± 0.03 C b | 0.42 ± 0.03 B b | 1.34 ± 0.08 C a | 0.09 ± 0.00 C b | 0.18 ± 0.02 D a |
V | 0.79 ± 0.02 C a | 0.78 ± 0.06 C a | 0.22 ± 0.02 C b | 0.51 ± 0.03 D a | 0.04 ± 0.01 D b | 0.06 ± 0.01 E a |
Horizon | MBC | MBN | MBP | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
mg kg−1 | ||||||
I | 114.1 ± 1.0 A b | 217.1 ± 14.7 A a | 22.8 ± 0.5 A b | 44.9 ± 3.3 A a | 10.6 ± 0.1 A b | 18.7 ± 1.5 A a |
II | 75.0 ± 8.1 B b | 111.2 ± 5.1 B a | 15.3 ± 1.5 B b | 22.3 ± 1.2 B a | 7.6 ± 0.3 B b | 12.3 ± 0.2 B a |
III | 51.7 ± 6.1 C b | 70.6 ± 3.1 C a | 11.8 ± 1.2 B a | 13.5 ± 1.0 C a | 5.1 ± 0.5 B a | 6.1 ± 0.1 C a |
IV | 31.1 ± 2.3 D b | 45.4 ± 3.1 D a | 6.9 ± 0.4 C b | 8.3 ± 0.8 D a | 2.7 ± 0.2 C b | 4.2 ± 0.1 D a |
V | 14.3 ± 2.0 E b | 30.5 ± 6.6 E a | 3.1 ± 0.4 C a | 5.1 ± 0.9 D b | 2.0 ± 0.1 C a | 2.9 ± 0.4 D a |
Horizon | TOC/TN | MBC/MBN | ||
---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
I | 7.63 ± 0.06 A b | 9.15 ± 0.24 B a | 4.81 ± 0.08 A a | 4.85 ± 0.05 B a |
II | 5.93 ± 0.65 B b | 8.49 ± 0.10 C a | 4.89 ± 0.09 A a | 5.00 ± 0.10 B a |
III | 5.23 ± 0.38 B b | 6.76 ± 0.61 D a | 4.36 ± 0.08 A b | 5.28 ± 0.15 A a |
IV | 4.45 ± 0.01 C b | 8.04 ± 1.58 C a | 4.49 ± 0.09 A b | 5.52 ± 0.16 A a |
V | 7.98 ± 0.94 A b | 10.5 ±3.19 A a | 4.63 ± 0.03 A b | 5.73 ± 0.28 A a |
Horizon | MBC/TOC | MBN/TN | ||
---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
I | 1.13 ± 0.01 C b | 1.76 ± 0.06 C a | 1.80 ± 0.03 B b | 3.32 ± 0.11 B a |
II | 2.94 ± 0.48 A a | 1.93 ± 0.36 C b | 3.26 ± 0.15 A a | 3.33 ± 0.66 B a |
III | 2.77 ± 0.46 A b | 4.69 ± 0.59 A a | 3.10 ± 0.26 A b | 6.54 ± 1.47 A a |
IV | 2.01 ± 0.17 B a | 2.06 ± 0.25 C a | 1.98 ± 0.14 B b | 2.63 ± 0.19 C a |
V | 0.67 ± 0.05 D b | 2.81 ± 0.35 B a | 1.20 ± 0.22 C b | 2.08 ± 0.31 D a |
Horizon | Roots Biomass | Root Length | Root Length ^ Ø < 0.5 mm | |||
---|---|---|---|---|---|---|
Winter Wheat | Grapevine | Winter Wheat | Grapevine | Winter Wheat | Grapevine | |
g dm−3 | mm dm−3 | |||||
I | 2.72 ± 0.32 A b | 22.4 ± 4.90 A a | 2908 ± 251 A a | 1940 ± 29 A b | 2220 ± 276 A a | 730 ± 85 A b |
II | 0.52 ± 0.04 B b | 24.5 ± 6.85 A a | 1335 ± 233 C a | 791 ± 104 B b | 1162 ± 218 C a | 320 ± 61 B b |
III | 0.64 ± 0.07 B b | 7.72 ± 1.67 B a | 1579 ± 343 B a | 432 ± 60 C b | 1390 ± 327 B a | 121 ± 27 C b |
IV | 0.62 ± 0.18 B b | 4.99 ± 0.29 C a | 1263 ± 164 C a | 290 ±11 E b | 1154 ± 160 C a | 72 ± 2 E b |
V | 0.22 ± 0.08 Cb | 6.63 ± 0.52 B a | 212 ± 91 D b | 402 ± 6 D a | 200 ± 87 D a | 102 ± 3 D b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowska-Długosz, A.; Długosz, J.; Kalisz, B.; Gąsiorek, M. Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth. Agronomy 2024, 14, 83. https://doi.org/10.3390/agronomy14010083
Piotrowska-Długosz A, Długosz J, Kalisz B, Gąsiorek M. Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth. Agronomy. 2024; 14(1):83. https://doi.org/10.3390/agronomy14010083
Chicago/Turabian StylePiotrowska-Długosz, Anna, Jacek Długosz, Barbara Kalisz, and Michał Gąsiorek. 2024. "Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth" Agronomy 14, no. 1: 83. https://doi.org/10.3390/agronomy14010083
APA StylePiotrowska-Długosz, A., Długosz, J., Kalisz, B., & Gąsiorek, M. (2024). Soil Microbial and Enzymatic Properties in Luvisols as Affected by Different Types of Agricultural Land-Use Systems and Soil Depth. Agronomy, 14(1), 83. https://doi.org/10.3390/agronomy14010083