Assessment of Blue Water Migration and Efficiency in Water-Saving Irrigation Paddy Rice Fields Using the Water Flow Tracking Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experiment and Data
2.2. Blue Water Migration and Efficiency Performance Indicators
2.3. Fuzzy Comprehensive Evaluation
2.3.1. Index System
2.3.2. AHP Method
2.3.3. Fuzzy Comprehensive Evaluation Method
3. Results
3.1. Irrigation Water Traces in Paddy Rice Field
3.2. Irrigation Water Use Efficiency in Paddy Rice Field
3.3. The Evaluation Results of Irrigation Water Utility
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FSI | frequent and shallow irrigation |
WSI | wet and shallow irrigation |
RCI | rain-catching and controlled irrigation |
TB | turning green |
TI | tillering |
JB | jointing and booting |
HF | heading and flowing |
MI | milking stage |
YE | yellow ripening |
ET | evapotranspiration |
PRE | precipitation |
ETA | crop actual evapotranspiration |
IWU | irrigation water use |
DRA | amount of surface drainage |
LEA | amount of underground leakage |
TWI | total water inflow |
IET | irrigation water evapotranspiration |
IDR | irrigation water drainage |
IPC | irrigation water leakage |
IRE | irrigation water field residual |
GIE | gross irrigation efficiency |
NIE | net irrigation efficiency |
ECR | effective consumption ratio |
GWP | crop harvest yield per unit of irrigation water use |
NWP | net water productivity |
MWP | marginal water productivity |
References
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Grey water footprint reduction in irrigated crop production: Effect of nitrogen application rate, nitrogen form, tillage practice and irrigation strategy. Hydrol. Earth Syst. Sci. 2018, 22, 3245–3259. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Bao, Y.; Gao, Y.; Wu, N.; Cao, X. Ecological impact assessment of green virtual water flow in inter-provincial crop commutation within China. Sci. Total Environ. 2023, 903, 166648. [Google Scholar] [CrossRef]
- Hu, Y.K.; Moiwo, J.P.; Yang, Y.H.; Han, S.M.; Yang, Y.M. Agricultural water saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain. J. Hydrol. 2010, 393, 219–232. [Google Scholar] [CrossRef]
- Gao, J.; Zhuo, L.; Liu, Y.; Xie, P.; Wang, W.; Li, M.; Wu, P. Efficiency and sustainability of inter-provincial crop-related virtual water transfers in China. Adv. Water Resour. 2020, 138, 103560. [Google Scholar] [CrossRef]
- Zhao, X.; Zhou, Y.; Min, J.; Wang, S.; Shi, W.; Xing, G. Nitrogen runoff dominates water nitrogen pollution from rice-wheat rotation in the Taihu Lake region of China. Agric. Ecosyst. Environ. 2012, 156, 1–11. [Google Scholar] [CrossRef]
- Rosa, L.; Chiarelli, D.D.; Rulli, M.C.; Dell’Angelo, J.; D’Odorico, P. Global agricultural economic water scarcity. Sci. Adv. 2020, 6, 6031. [Google Scholar] [CrossRef]
- Wu, M.; Li, Y.; Xiao, J.; Guo, X.; Cao, X. Blue, green, and grey water footprints assessment for paddy irrigation-drainage system. J. Environ. Manag. 2022, 302, 114116. [Google Scholar] [CrossRef]
- Benedetti, I.; Branca, G.; Zucaro, R. Evaluating input use efficiency in agriculture through a stochastic frontier production: An application on a case study in Apulia (Italy). J. Clean. Prod. 2019, 236, 117609. [Google Scholar] [CrossRef]
- Pushpalatha, R.; Amma, S.S.; George, J.; Rajan, S.; Gangadharan, B. Development of optimal irrigation schedules and crop water production function for cassava: Study over three major growing areas in India. Irrig. Sci. 2020, 38, 251–261. [Google Scholar] [CrossRef]
- Kheir, A.M.; Alrajhi, A.A.; Ghoneim, A.M.; Ali, E.F.; Magrashi, A.; Zoghdan, M.G.; Abdelkhalik, S.A.M.; Fahm, A.E.; Elnashar, A. Modeling deficit irrigation based evapotranspiration optimizes wheat yield and water productivity in arid regions. Agric. Water Manag. 2021, 256, 107122. [Google Scholar] [CrossRef]
- Wang, J.X. Water management issues during establishing resource saving society. Manag. Water Res. 2012, 27, 447–454. [Google Scholar]
- Leng, G.; Leung, L.R.; Huang, M. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model. J. Adv. Model. Earth Syst. 2017, 9, 1665–1683. [Google Scholar] [CrossRef]
- Zou, Y.; Saddique, Q.; Ali, A.; Xu, J.; Khan, M.I.; Qing, M.; Siddique, K.H.M. Deficit irrigation improves maize yield and water use efficiency in a semi-arid environment. Agric. Water Manag. 2021, 243, 106483. [Google Scholar] [CrossRef]
- Qin, Y.; Mueller, N.D.; Siebert, S.; Jackson, R.B.; AghaKouchak, A.; Zimmerman, J.B.; Davis, S.J. Flexibility and intensity of global water use. Nat. Sustain. 2019, 2, 515–523. [Google Scholar] [CrossRef]
- Luo, L.; Song, J.X.; Liang, W. Evaluation of water use efficiency based on genetic projection pursuit model in Shaanxi Province. J. Water Resour. Water Eng. 2012, 23, 66–69. [Google Scholar]
- Cao, X.; Zeng, W.; Wu, M.; Guo, X.; Wang, W. Hybrid analytical framework for regional agricultural water resource utilization and efficiency evaluation. Agric. Water Manag. 2020, 231, 106027. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Assessment of climate change impact on rice yield and water footprint of large-scale and individual farming in Thailand. Sci. Total Environ. 2020, 726, 137864. [Google Scholar] [CrossRef]
- Atwill, R.L.; Krutz, L.J.; Bond, J.A.; Reddy, K.R.; Gore, J.; Walker, T.W.; Harrell, D.L. Water management strategies and their effects on rice grain yield and nitrogen use efficiency. J. Soil Water Conserv. 2018, 73, 257–264. [Google Scholar] [CrossRef]
- Belder, P.; Bouman, B.A.; Cabangon, R.; Guoan, L.; Quilang, E.J.; Yuanhua, L.; Tuong, T. Effect of water saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Cao, X.; Bao, Y.; Li, Y.; Li, J.; Wu, M. Unravelling the effects of crop blue, green and grey virtual water flows on regional agricultural water footprint and scarcity. Agric. Water Manag. 2023, 278, 108165. [Google Scholar] [CrossRef]
- Jaibumrung, K.; Nilsalab, P.; Gheewala, S.H.; Musikavong, C. Ecological footprint, water scarcity footprint, and benefit to cost ratio analysis towards sustainable rice production in Thailand. Sustain. Prod. Consum. 2023, 39, 79–92. [Google Scholar] [CrossRef]
- Carrijo, D.R.; Akbar, N.; Reis, A.F.B.; Li, C.; Gaudin, A.C.M.; Parikh, S.J.; Linquist, B.A. Impacts of variable soil drying in alternate wetting and drying rice systems on yields, grain arsenic concentration and soil moisture dynamics. Field Crop. Res. 2018, 222, 101–110. [Google Scholar] [CrossRef]
- Wu, N.; Zhang, J.; Gao, X.; Wang, X.; Wu, M.; Cao, X. Distribution and drivers for blue water dependence in crop production in China, 1999–2018. Agric. Water Manag. 2023, 290, 108593. [Google Scholar] [CrossRef]
- Pardo, J.J.; Martínez-Romero, A.; L´ellis, B.C.; Tarjuelo, J.M.; Domínguez, A. Effect of the optimized regulated deficit irrigation methodology on water use in barley under semiarid conditions. Agric. Water Manag. 2020, 228, 105925. [Google Scholar] [CrossRef]
- Raeisi, L.G.; Morid, S.; Delavar, M.; Srinivasan, R. Effect and side-effect assessment of different agricultural water saving measures in an integrated framework. Agric. Water Manag. 2019, 223, 105685. [Google Scholar] [CrossRef]
- Chukalla, A.D.; Krol, M.S.; Hoekstra, A.Y. Marginal cost curves for water footprint reduction in irrigated agriculture: Guiding a cost-effective reduction of crop water consumption to a permit or benchmark level. Hydrol. Earth Syst. Sci. 2017, 21, 3507–3524. [Google Scholar] [CrossRef]
- Cao, X.; Wu, N.; Adamowski, J.; Wu, M. Assessing the contribution of China’s grain production during 2005–2020 from the perspective of the crop-water-land nexus. J. Hydrol. 2023, 626, 130376. [Google Scholar] [CrossRef]
- Huang, G.R.; Hoekstra, A.Y.; Krol, M.S.; Jägermeyr, J.; Galindo, A.; Yu, C.Q.; Wang, R.R. Water-saving agriculture can deliver deep water cuts for China. Resour. Conserv. Recycl. 2020, 154, 104578. [Google Scholar] [CrossRef]
- Dalin, C.; Wada, Y.; Kastner, T.; Puma, M.J. Groundwater depletion embedded in international food trade. Nature 2017, 543, 700–704. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water Footprint Assessment: Evolvement of a New Research Field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef]
- Falkenmark, M.; Rockström, J. The new blue and green water paradigm: Breaking new ground for water resources planning and management. J. Water Resour. Plann. Manag. 2006, 132, 129–132. [Google Scholar] [CrossRef]
- Zhai, Y.; Tan, X.; Ma, X.; An, M.; Zhao, Q.; Shen, X.; Hong, J. Water footprint analysis of wheat production. Ecol. Indic. 2019, 102, 95–102. [Google Scholar] [CrossRef]
- Wu, D.; Cui, Y.L.; Luo, Y.F. Irrigation efficiency and water-saving potential considering reuse of return flow. Agric. Water Manag. 2019, 221, 519–527. [Google Scholar] [CrossRef]
- Fatemeh, K.; Simnek, J. An application of the water footprint assessment to optimize production of crops irrigated with saline water: A scenario assessment with HYDRUS. Agric Water Manag. 2018, 208, 67–82. [Google Scholar]
- Cui, S.; Zhang, J.; Wang, X.; Wu, M.; Cao, X. Fuzzy composite risk assessment of water-energy-food-carbon nexus in the dispark pumped irrigation system. J. Hydrol. 2023, 624, 129879. [Google Scholar] [CrossRef]
- Shao, W.W.; Huang, H.; Wang, J.H.; Cao, L. Analysis on the development state and problems of the water resources in the basins of Yellow River, Huaihe River and Haihe River. J. China Inst. Water Resour. Hydropower Res. 2012, 10, 301–309. [Google Scholar]
- Xiong, J.; Liang, F.; Yang, X.; Du, T.; Pacenka, S.; Steenhuis, T.S.; Siddique, K.H. Water Footprint Assessment of Green and Traditional Cultivation of Crops in the Huang-Huai-Hai Farming Region. Agronomy 2022, 12, 2494. [Google Scholar] [CrossRef]
- Chapagain, A.K.; Hoekstra, A.Y. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol. Econ. 2011, 70, 749–758. [Google Scholar] [CrossRef]
- Li, Y.; Wu, M.; Adamowski, J.F.; Cao, X. Blue-green water migration and utilization efficiency under various irrigation-drainage measures applied to a paddy field. J. Hydrol. Reg. Stud. 2024, 51, 101641. [Google Scholar] [CrossRef]
- Sun, H.; Wang, S.; Hao, X. An improved analytic hierarchy process method for the evaluation of agricultural water management in irrigation districts of north China. Agric. Water Manag. 2016, 179, 324–337. [Google Scholar] [CrossRef]
- Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C.R.; Abbaspour, K.C. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran. Hydrol. Earth Syst. Sci. 2010, 14, 1417–1433. [Google Scholar] [CrossRef]
- Foster, T.; Mieno, T.; Brozovic, N. Satellite-based monitoring of irrigation water use: Assessing measurement errors and their implications for agricultural water management policy. Water Resour. Res. 2020, 56, e2020WR028378. [Google Scholar] [CrossRef]
- Rattalino Edreira, J.I.; Guilpart, N.; Sadras, V.; Cassman, K.G.; van Ittersum, M.K.; Schils, R.L.M.; Grassini, P. Water productivity of rainfed maize and wheat: A local to global perspective. Agric. For. Meteorol. 2018, 259, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wang, W.; Ji, X.; Wu, P.; Zhuo, L. Machine learning modeling of water footprint in crop production distinguishing water supply and irrigation method scenarios. J. Hydrol. 2023, 625, 130171. [Google Scholar] [CrossRef]
- Cheng, Q.; Li, L.; Liao, Q.; Fu, H.; Nie, J.; Luo, Y.; Wang, Z.; Yin, H.; Shu, C.; Chen, Z.; et al. Is scale production more advantageous than smallholders for Chinese rice production? Energy 2023, 283, 128753. [Google Scholar] [CrossRef]
- Li, L.; Li, F.; Dong, Y. Greenhouse gas emissions and global warming potential in double-cropping rice fields as influenced by two water-saving irrigation modes in south china. J. Soil Sci. Plant Nutr. 2020, 20, 2617–2630. [Google Scholar] [CrossRef]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef]
- Ma, W.; Wei, F.; Zhang, J.; Karthe, D.; Opp, C. Green water appropriation of the cropland ecosystem in China. Sci. Total Environ. 2022, 806, 150597. [Google Scholar] [CrossRef]
- Liang, H.; Zhou, G.P.; Gao, S.J.; Nie, J.; Xu, C.X.; Wu, J.; Liu, C.Z.; Lv, Y.H.; Huang, Y.B.; Geng, M.J.; et al. Exploring site-specific N application rate to reduce N footprint and increase crop production for green manure-rice rotation system in southern China. J. Environ. Manag. 2023, 347, 119033. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhuo, L.; Wang, W.; Wu, P. Resilience assessment of blue and green water resources for staple crop production in China. Agric. Water Manag. 2023, 288, 108485. [Google Scholar] [CrossRef]
- Biswakarma, N.; Pooniya, V.; Zhiipao, R.R.; Kumar, D.; Shivay, Y.S.; Das, T.K.; Roy, D.; Das, B.; Choudhary, A.K.; Swarnalakshmi, K.; et al. Identification of a resource-efficient integrated crop management practice for the rice-wheat rotations in south Asian Indo-Gangetic Plains. Agric. Ecosyst. Environ. 2023, 357, 108675. [Google Scholar] [CrossRef]
Treatment | Water Regimes | Turing Green (TB) | Tillering (TI) | Jointing and Booting (JB) | Heading and Flowing (HF) | Milking Stage (MI) | Yellow Ripening (YE) |
---|---|---|---|---|---|---|---|
FSI | ULI/mm | 30 | 30 | 50 | 40 | 40 | 0 |
LLI/mm | 10 | 10–60% | 10 | 10 | 10 | 60–70% | |
ADR/mm | 40 | 100 | 150 | 200 | 200 | 0 | |
WSI | ULI/mm | 30 | 20 | 20 | 30 | 30 | 0 |
LLI/mm | 20 | 70–90% | 90% | 100% | 80% | 70–80% | |
ADR/mm | 40 | 60 | 100 | 100 | 80 | 0 | |
RCI | ULI/mm | 30 | 100 | 100 | 100 | 100 | 80 |
LLI/mm | 10 | 60–70% | 70–80% | 80% | 70% | Naturally dry | |
ADR/mm | 80 | 150 | 200 | 200 | 200 | 0 |
Target Level | Normative Level | Indicator Level | Unit | Calculation Methodology |
---|---|---|---|---|
Utilization efficiency of water resources in paddy fields | Effective use rate | Gross irrigation efficiency (GIE) | - | |
Net irrigation efficiency (NIE) | - | |||
Effective consumption ratio (ECR) | - | |||
Production ability | Gross water productivity (GIE) | kg·m−3 | ||
Net water productivity (GIE) | kg·m−3 | |||
Marginal water productivity (GIE) | kg·m−3 | |||
Water-saving and crop output | Water-saving amount (IWS) | mm | Using FSI as the benchmark, the difference between each model and it is the amount of water saved. | |
Irrigation times (IRT) | - | Number of irrigation times during the rice growing season. | ||
Harvest crop yield (HCY) | kg·ha−1 | Harvested yield at the end of the growing season | ||
Crop yield increase (CYI) | kg·ha−1 | Using rain-fed conditions as the benchmark, the difference between three irrigation modes and rain-fed conditions in terms of yield. |
Index | Effect | Grade Division | ||||
---|---|---|---|---|---|---|
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | ||
GIE | Positive | <0.550 | 0.550–0.600 | 0.600–0.650 | 0.650–0.700 | >0.700 |
NIE | Positive | <0.400 | 0.400–0.450 | 0.450–0.500 | 0.500–0.550 | >0.550 |
ECR | Positive | <0.600 | 0.600–0.700 | 0.700–0.800 | 0.800–0.900 | >0.900 |
GWP | Positive | <2.00 | 2.00–2.50 | 2.50–3.00 | 3.00–3.50 | >3.50 |
NWP | Positive | <5.00 | 5.00–7.00 | 7.00–9.00 | 9.00–11.00 | >11.00 |
MWP | Positive | <1.50 | 1.50–2.00 | 2.00–2.50 | 2.50–3.00 | >3.00 |
IWS | Positive | <200 | 200–300 | 300–400 | 400–500 | >500 |
IRT | Negative | >10.0 | 8.0–10.0 | 6.0–8.0 | 4.0–6.0 | <4.00 |
HCY | Positive | <7800 | 7800–8000 | 8000–8200 | 8200–8400 | >8400 |
CYI | Positive | <5000 | 5000–5500 | 5500–6000 | 6000–6500 | >6500 |
Intensity Level of Importance | Meaning |
---|---|
1 | Equivalent significance |
2 | Median value |
3 | Weak significance |
4 | Median value |
5 | Moderate significance |
6 | Median value |
7 | Strong significance |
8 | Median value |
9 | Extreme significance |
Treatment | 2015 (Normal Year) | 2016 (Wet Year) | 2018 (Dry Year) | AVE |
---|---|---|---|---|
FSI | 425.3 a | 374.9 a | 412.9 a | 404.4 a |
WSI | 346.7 b | 335.6 b | 391.9 a | 358.1 b |
RCI | 135.3 c | 175.7 c | 214.3 c | 175.1 c |
Irrigation Method | 2015 (Normal Year) | 2016 (Wet Year) | 2018 (Dry Year) | ||||||
---|---|---|---|---|---|---|---|---|---|
HCY | RCY | CYI | HCY | RCY | CYI | HCY | RCY | CYI | |
FSI | 8803.4 | 2947.6 | 5855.8 | 8599.1 | 3262.6 | 5336.5 | 8287.4 | 1452.7 | 6834.6 |
WSI | 8631.1 | 5683.5 | 8488.2 | 5225.6 | 8343.6 | 6890.9 | |||
RCI | 7876.7 | 4929.1 | 8203.3 | 4940.7 | 7673.7 | 6221.0 |
Criteria Level | Weight | Sub-Criteria Level | Local Weight | Total Weight | Unit | |
---|---|---|---|---|---|---|
Effective use rate | 0.3041 | Gross irrigation efficiency | GIE | 0.3281 | 0.0998 | - |
Net irrigation efficiency | NIE | 0.4676 | 0.1422 | - | ||
Effective consumption ratio | ECR | 0.2043 | 0.0621 | - | ||
Production ability | 0.2498 | Gross water productivity | GWP | 0.4163 | 0.104 | m3/kg |
Net water productivity | NWP | 0.2744 | 0.0685 | kg/m3 | ||
Marginal water productivity | MWP | 0.3093 | 0.0773 | kg/m3 | ||
Water-saving and crop output | 0.4461 | Water-saving amount | WSA | 0.2082 | 0.0928 | mm |
Irrigation times | IRT | 0.2152 | 0.096 | - | ||
Harvest crop yield | HCY | 0.4776 | 0.213 | kg/ha | ||
Crop yield increase | CYI | 0.1907 | 0.0851 | kg/ha |
Treatment | Value | Grade |
---|---|---|
2015—WSI | 2.6133 | Ⅲ |
2015—RCI | 3.1590 | Ⅲ |
2015—FSI | 2.2796 | Ⅱ |
2016—WSI | 2.7072 | Ⅲ |
2016—RCI | 3.3173 | Ⅲ |
2016—FSI | 2.5869 | Ⅲ |
2018—WSI | 2.9771 | Ⅲ |
2018—RCI | 3.5331 | Ⅳ |
2018—FSI | 2.8510 | Ⅲ |
Year | Treatment | Ranking of Integrated Evaluations | NIE | Arrange | NWP (kg/m3) | Arrange |
---|---|---|---|---|---|---|
2015 | FSI | 3 | 0.426 | 2 | 4.855 | 3 |
WSI | 2 | 0.442 | 1 | 5.635 | 2 | |
RCI | 1 | 0.351 | 3 | 16.586 | 1 | |
2016 | FSI | 3 | 0.529 | 2 | 4.631 | 2 |
WSI | 2 | 0.546 | 1 | 4.338 | 3 | |
RCI | 1 | 0.469 | 3 | 9.945 | 1 | |
2018 | FSI | 3 | 0.483 | 1 | 4.154 | 3 |
WSI | 2 | 0.480 | 2 | 4.439 | 2 | |
RCI | 1 | 0.461 | 3 | 7.761 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, M.; Cui, S.; Qiu, L.; Zhang, P.; Cao, X. Assessment of Blue Water Migration and Efficiency in Water-Saving Irrigation Paddy Rice Fields Using the Water Flow Tracking Method. Agronomy 2024, 14, 166. https://doi.org/10.3390/agronomy14010166
Wu M, Cui S, Qiu L, Zhang P, Cao X. Assessment of Blue Water Migration and Efficiency in Water-Saving Irrigation Paddy Rice Fields Using the Water Flow Tracking Method. Agronomy. 2024; 14(1):166. https://doi.org/10.3390/agronomy14010166
Chicago/Turabian StyleWu, Mengyang, Simeng Cui, Liting Qiu, Pingping Zhang, and Xinchun Cao. 2024. "Assessment of Blue Water Migration and Efficiency in Water-Saving Irrigation Paddy Rice Fields Using the Water Flow Tracking Method" Agronomy 14, no. 1: 166. https://doi.org/10.3390/agronomy14010166
APA StyleWu, M., Cui, S., Qiu, L., Zhang, P., & Cao, X. (2024). Assessment of Blue Water Migration and Efficiency in Water-Saving Irrigation Paddy Rice Fields Using the Water Flow Tracking Method. Agronomy, 14(1), 166. https://doi.org/10.3390/agronomy14010166