Porous Minerals Improve Wheat Shoot Growth and Grain Yield through Affecting Soil Properties and Microbial Community in Coastal Saline Land
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Soil Sampling
2.2. Field Experiment Design
2.3. Sampling and Measurements
2.4. Soil Microbial Analysis
2.5. Statistical Analyses
3. Results
3.1. Porous Minerals Improved Shoot Growth and Grain Yield of Wheat Plants in Coastal Saline Soil
3.2. Porous Minerals Significantly Affected Rhizosphere and Nonrhizosphere Soil Properties
3.3. Porous Minerals Improved Soil Nutrients in the Coastal Saline Land
3.4. Porous Minerals Altered Soil Microbial Abundance and Community Composition
4. Discussion
4.1. The Resistance of Wheat Plants to Saline Stress Was Promoted by Porous Minerals
4.2. Application of Porous Minerals Ameliorated Soil Properties in Coastal Saline Land
4.3. Soil Nutrients Were Improved in Coastal Saline Land Amended with Porous Minerals
4.4. Porous-Mineral Amendments Shaped Rhizosphere Soil Microbial Communities under Salt Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Butcher, K.; Wick, A.F.; DeSutter, T.; Chatterjee, A.; Harmon, J. Soil salinity: A threat to global food security. Agron. J. 2016, 108, 2189–2200. [Google Scholar] [CrossRef]
- Xie, H.; Li, J.; Zhang, Y.; Xu, X.; Wang, L.; Ouyang, Z. Evaluation of coastal farming under salinization and optimized fertilization strategies in China. Sci. Total Environ. 2021, 797, 149038. [Google Scholar] [CrossRef] [PubMed]
- Garbowski, T.; Bar-Michalczyk, D.; Charazińska, S.; Grabowska-Polanowska, B.; Kowalczyk, A.; Lochyński, P. An overview of natural soil amendments in agriculture. Soil Till. Res. 2023, 225, 105462. [Google Scholar] [CrossRef]
- You, X.; Yin, S.; Suo, F.; Xu, Z.; Chu, D.; Kong, Q.; Zhang, C.; Li, Y.; Liu, L. Biochar and fertilizer improved the growth and quality of the ice plant (Mesembryanthemum crystallinum L.) shoots in a coastal soil of Yellow River Delta, China. Sci. Total Environ. 2021, 775, 144893. [Google Scholar] [CrossRef]
- RSun, R.; Zheng, H.; Yin, S.; Zhang, X.; You, X.; Wu, H.; Suo, F.; Han, K.; Cheng, Y.; Zhang, C.; et al. Comparative study of pyrochar and hydrochar on peanut seedling growth in a coastal salt-affected soil of Yellow River Delta, China. Sci. Total Environ. 2022, 833, 155183. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.; Feng, L.; Shah, G.M.; Wei, J. Biochar to reduce fertilizer use and soil salinity for crop production in the Yellow River Delta. J. Soil Sci. Plant Nut. 2022, 22, 1478–1489. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties of soil. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Walker, D.J.; Bernal, M.P. Plant mineral nutrition and growth in a saline mediterranean soil amended with organic wastes. Commun. Soil Sci. Plan. 2011, 35, 2495–2514. [Google Scholar] [CrossRef]
- Yu, M.; Tariq, S.M.; Yang, H. Engineering clay minerals to manage the functions of soils. Clay Miner. 2022, 57, 51–69. [Google Scholar] [CrossRef]
- Bernardi, A.C.d.C.; Polidoro, J.C.; Monte, M.B.d.M.; Pereira, E.I.; de Oliveira, C.R.; Ramesh, K. Enhancing nutrient use efficiency using zeolites minerals—A review. Adv. Chem. Eng. Sci. 2016, 6, 295. [Google Scholar] [CrossRef]
- Prabhu, P.P.; Prabhu, B. A review on removal of heavy metal ions from waste water using natural/modified bentonite. MATEC Web Conf. 2018, 144, 02021. [Google Scholar] [CrossRef]
- Li, J.; Sun, X.; Li, S. Effects of garden waste compost and bentonite on muddy coastal saline soil. Sustainability 2020, 12, 3602. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, X.; Miao, Q.; Yu, B.; Xu, L.; Cui, Z. Combining mineral amendments improves wheat yield and soil properties in a coastal saline area. Agronomy 2019, 9, 48. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Wong, J.T.F.; Hashimoto, Y.; Huang, L.; Rinklebe, J.; Chang, S.X.; Bolan, N.; Wang, H.; Ok, Y.S. Response of microbial communities to biochar-amended soils: A critical review. Biochar 2019, 1, 3–22. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, S.; Liu, L.; Wu, L.; Ding, X. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil Till. Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Lambers, H.; Mougel, C.; Jaillard, B.; Hinsinger, P. Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant Soil 2009, 321, 83–115. [Google Scholar] [CrossRef]
- Xiong, Q.; Hu, J.; Wei, H.; Zhang, H.; Zhu, J. Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture 2021, 11, 234. [Google Scholar] [CrossRef]
- Zhang, L.; Su, X.; Meng, H.; Men, Y.; Liu, C.; Yan, X.; Song, X.; Sun, X.; Mao, L. Cotton stubble return and subsoiling alter soil microbial community, carbon and nitrogen in coastal saline cotton fields. Soil Till. Res. 2023, 226, 105585. [Google Scholar] [CrossRef]
- Yang, C.; Sun, J. Soil salinity drives the distribution patterns and ecological functions of fungi in saline-alkali land in the Yellow River Delta, China. Front. Microbiol. 2020, 11, 594284. [Google Scholar] [CrossRef]
- Zhang, L.; Mao, L.; Yan, X.; Liu, C.; Song, X.; Sun, X. Long-term cotton stubble return and subsoiling increases cotton yield through improving root growth and properties of coastal saline soil. Ind. Crop. Prod. 2022, 177, 114472. [Google Scholar] [CrossRef]
- Huang, M.; Zhang, Z.; Zhai, Y.; Lu, P.; Zhu, C. Effect of straw biochar on soil properties and wheat production under saline water irrigation. Agronomy 2019, 9, 457. [Google Scholar] [CrossRef]
- Kong, D.; Miao, C.; Borthwick, A.G.; Duan, Q.; Liu, H.; Sun, Q.; Ye, A.; Di, Z.; Gong, W. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J. Hydrol. 2015, 520, 157–167. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Tao, J.; Yao, R.; Li, W.; Xie, W.; Wang, X. Effects of the combined application of biochar and humic substances on the improvement of saline cropland in the Yellow River Delta of China. Land Degrad Dev. 2023, 34, 4793–4809. [Google Scholar] [CrossRef]
- Song, Y.; Ma, L.; Zhang, H.; Fu, R.; Liang, X.; Li, J.; Li, J.; Li, M.; Shan, Y.; Cheng, J.; et al. The diversity and structure of diazotrophic communities in the rhizosphere of coastal saline plants is mainly affected by soil physicochemical factors but not host plant species. Front. Mar. Sci. 2022, 9, 1100289. [Google Scholar] [CrossRef]
- Liu, L.; Pan, Y.; Shi, W. Effect of amendments on soil moisture, salinity, Cl− content, SAR, and K+/Na+ ratio. Appl. Ecol. Env. Res. 2022, 20, 1635–1655. [Google Scholar] [CrossRef]
- Ma, L.; Shan, J.; Yan, X. Nitrite behavior accounts for the nitrous oxide peaks following fertilization in a fluvo-aquic soil. Biol. Fert. Soils 2015, 51, 563–572. [Google Scholar] [CrossRef]
- Bremner, J.M. Determination of nitrogen in soil by the Kjeldahl method. J. Agric. Sci. 1960, 55, 11–33. [Google Scholar] [CrossRef]
- Walkley, A. A critical examination of a rapid method for determining organic carbon in soils—Effect of variations in digestion conditions and of inorganic soil constituents. Soil Sci. 1947, 63, 251–264. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomalRNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press, Inc.: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Liu, M.; Wang, C.; Wang, F.; Xie, Y. Maize (Zea mays) growth and nutrient uptake following integrated improvement of vermicompost and humic acid fertilizer on coastal saline soil. Appl. Soil Ecol. 2019, 142, 147–154. [Google Scholar] [CrossRef]
- GirijaVeni, V.; Reddy, K.S.; Sharma, K.L.; Shankar, K.S.; Rohit, J. Role of zeolites in improving nutrient and water storage capacity of soil and their impact on overall soil quality and crop performance. In Soil Science: Fundamentals to Recent Advances; Spring: Berlin/Heidelberg, Germany, 2021; pp. 449–467. [Google Scholar] [CrossRef]
- Ghorbani, M.; Amirahmadi, E.; Konvalina, P.; Moudrý, J.; Bárta, J.; Kopecký, M.; Teodorescu, R.I.; Bucur, R.D. Comparative influence of biochar and zeolite on soil hydrological indices and growth characteristics of corn (Zea mays L.). Water 2022, 14, 3506. [Google Scholar] [CrossRef]
- Al-Busaidi, A.; Yamamoto, T.; Inoue, M.; Eneji, A.E.; Mori, Y.; Irshad, M. Effects of zeolite on soil nutrients and growth of barley following irrigation with saline water. J. Plant Nutr. 2008, 31, 1159–1173. [Google Scholar] [CrossRef]
- Ren, X.; Wang, Q.; Awasthi, M.K.; Zhao, J.; Wang, J.; Liu, T.; Li, R.; Zhang, Z. Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission. Bioresour. Technol. 2019, 286, 121377. [Google Scholar] [CrossRef] [PubMed]
- JJiao, J.-L.; Yang, S.-W.; Xie, Y.; Jin, W.-D.; Yan, Y.-H.; Xu, B. Adsorption properties of ammonia nitrogen in aqueous solution by various materials. Environ. Sci. 2019, 40, 3633–3641. [Google Scholar] [CrossRef]
- Kome, G.K.; Enang, R.K.; Tabi, F.O.; Yerima, B.P.K. Influence of clay minerals on some soil fertility attributes: A review. Open J. Soil Sci. 2019, 9, 155–188. [Google Scholar] [CrossRef]
- Mukerabigwi, J.F.; Wang, Q.; Ma, X.; Liu, M.; Lei, S.; Wei, H.; Huang, X.; Cao, Y. Urea fertilizer coated with biodegradable polymers and diatomite for slow release and water retention. J. Coat. Technol. Res. 2015, 12, 1085–1094. [Google Scholar] [CrossRef]
- Golbashy, M.; Sabahi, H.; Allahdadi, I.; Nazokdast, H.; Hosseini, M. Synthesis of highly intercalated urea-clay nanocomposite via domestic montmorillonite as eco-friendly slow-release fertilizer. Arch. Agron. Soil Sci. 2016, 63, 84–95. [Google Scholar] [CrossRef]
- Hermida, L.; Agustian, J. Slow release urea fertilizer synthesized through recrystallization of urea incorporating natural bentonite using various binders. Environ. Technol. Innov. 2019, 13, 113–121. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agr. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Tripathi, S.; Kumari, S.; Chakraborty, A.; Gupta, A.; Chakrabarti, K.; Bandyapadhyay, B.K. Microbial biomass and its activities in salt-affected coastal soils. Biol. Fert. Soils 2005, 42, 273–277. [Google Scholar] [CrossRef]
- Rathore, A.P.; Chaudhary, D.R.; Jha, B. Seasonal patterns of microbial community structure and enzyme activities in coastal saline soils of perennial halophytes. Land Degrad. Develp. 2017, 28, 1779–1790. [Google Scholar] [CrossRef]
- Lauber, C.L.; Hamady, M.; Knight, R.; Fierer, N. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl. Environ. Microbiol. 2009, 75, 5111–5120. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Nan, H.Y.; Feng, K.Y. Effects of reduced chemical fertilizer with organic fertilizer application on soil microbial biomass, enzyme activity and cotton yield. Chin. J. Appl. Ecol. 2020, 31, 173–181. [Google Scholar] [CrossRef]
- Fan, K.; Cardona, C.; Li, Y.; Shi, Y.; Xiang, X.; Shen, C.; Wang, H.; Gilbert, J.A.; Chu, H. Rhizosphere-associated bacterial network structure and spatial distribution differ significantly from bulk soil in wheat crop fields. Soil Biol. Biochem. 2017, 113, 275–284. [Google Scholar] [CrossRef]
- Fan, K.; Weisenhorn, P.; Gilbert, J.A.; Chu, H. Wheat rhizosphere harbors a less complex and more stable microbial co-occurrence pattern than bulk soil. Soil Biol. Biochem. 2018, 125, 251–260. [Google Scholar] [CrossRef]
- Peiffer, J.A.; Spor, A.; Koren, O.; Jin, Z.; Tringe, S.G.; Dangl, J.L.; Buckler, E.S.; Ley, R.E. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6548–6553. [Google Scholar] [CrossRef] [PubMed]
- Baudoin, E.; Benizri, E.; Guckert, A. Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biol. Biochem. 2003, 35, 1183–1192. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Razavi, B.S. Rhizosphere size and shape: Temporal dynamics and spatial stationarity. Soil Biol. Biochem. 2019, 135, 343–360. [Google Scholar] [CrossRef]
- Mauck, B.S.; Roberts, J.A. Mineralogic control on abundance and diversity of surface-adherent microbial communities. Geomicrobiol. J. 2007, 24, 167–177. [Google Scholar] [CrossRef]
- Carson, J.K.; Rooney, D.; Gleeson, D.B.; Clipson, N. Altering the mineral composition of soil causes a shift in microbial community structure. FEMS Microbiol. Ecol. 2007, 61, 414–423. [Google Scholar] [CrossRef]
- Großkopf, T.; Soyer, O.S. Synthetic microbial communities. Curr. Opin. Microbiol. 2014, 18, 72–77. [Google Scholar] [CrossRef]
- Jilling, A.; Keiluweit, M.; Contosta, A.R.; Frey, S.; Schimel, J.; Schnecker, J.; Smith, R.G.; Tiemann, L.; Grandy, A.S. Minerals in the rhizosphere: Overlooked mediators of soil nitrogen availability to plants and microbes. Biogeochemistry 2018, 139, 103–122. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, X.; Chen, L.; Wang, Z.; Xia, Y.; Zhang, Y.; Wang, H.; Luo, X.; Xing, B. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant Cell Environ. 2018, 41, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhang, G.; Ding, H.; Ci, D.; Dai, L.; Zhang, Z. Influence of salt stress on the rhizosphere soil bacterial community structure and growth performance of groundnut (Arachis hypogaea L.). Int. Microbiol. 2020, 23, 453–465. [Google Scholar] [CrossRef] [PubMed]
Amendments 1 | pH | EC (µs cm−1) | Total N (mg kg−1) | Organic Matter (mg kg−1) |
---|---|---|---|---|
Control Soil | 8.0 | 632.0 | 92.0 | 12.2 |
Diatomite | 7.4 | 901.0 | 1.1 | 0.3 |
Montmorillonite | 8.3 | 322.5 | 38.1 | 1.9 |
Bentonite | 7.8 | 358.5 | 205.0 | 4.4 |
Zeolite | 7.6 | 340.5 | 40.3 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Song, Y.; Wang, J.; Shan, Y.; Mao, T.; Liang, X.; Zhang, H.; Fu, R.; Li, J.; Nie, W.; et al. Porous Minerals Improve Wheat Shoot Growth and Grain Yield through Affecting Soil Properties and Microbial Community in Coastal Saline Land. Agronomy 2023, 13, 2380. https://doi.org/10.3390/agronomy13092380
Ma L, Song Y, Wang J, Shan Y, Mao T, Liang X, Zhang H, Fu R, Li J, Nie W, et al. Porous Minerals Improve Wheat Shoot Growth and Grain Yield through Affecting Soil Properties and Microbial Community in Coastal Saline Land. Agronomy. 2023; 13(9):2380. https://doi.org/10.3390/agronomy13092380
Chicago/Turabian StyleMa, Lan, Yanjing Song, Jie Wang, Yan Shan, Tingting Mao, Xiaoyan Liang, Haiyang Zhang, Rao Fu, Junlin Li, Wenjing Nie, and et al. 2023. "Porous Minerals Improve Wheat Shoot Growth and Grain Yield through Affecting Soil Properties and Microbial Community in Coastal Saline Land" Agronomy 13, no. 9: 2380. https://doi.org/10.3390/agronomy13092380
APA StyleMa, L., Song, Y., Wang, J., Shan, Y., Mao, T., Liang, X., Zhang, H., Fu, R., Li, J., Nie, W., Li, M., Li, J., Yi, K., Wang, L., Wang, X., & Zhang, H. (2023). Porous Minerals Improve Wheat Shoot Growth and Grain Yield through Affecting Soil Properties and Microbial Community in Coastal Saline Land. Agronomy, 13(9), 2380. https://doi.org/10.3390/agronomy13092380