Comparing the Grain Yields and Other Properties of Old and New Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Soil Properties, Climate Conditions, Agrotechnical Measures
2.2. Wheat Cultivars
- C—control, bare soil—black fallow
- S—winter wheat (Triticum aestivum L.) Srpanjka cultivar—old cultivar, very early growing cultivar with average yield of 10 t ha−1, very low habitus (64 cm), plant density 9,110,000 plants ha−1
- R—winter wheat (Triticum aestivum L.) Renata cultivar—old cultivar, medium early growing cultivar with average yield of 11 t ha−1, low habitus (65 cm), plant density 11,170,000 plants ha−1
- EN—winter wheat (Triticum aestivum L.) El Nino cultivar—new cultivar, early growing cultivar ty with average yield of 11 t ha−1, high habitus (73 cm), plant density 10,670,000 plants ha−1
- K—winter wheat (Triticum aestivum L.) Kraljica cultivar—new cultivar, medium early growing cultivar with average yield of 11 t ha−1, high habitus (75 cm), plant density 12,320,000 plants ha−1
2.3. Biomass Sampling
2.4. Harvest Index (HI), Residue-to-Product Ratio (RPR) and Root-to-Shoot Ratio (R:S)
2.5. Carbon and Nitrogen Balances
2.6. Laboratory Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Morphological Properties and NPP
3.2. Harvest Index (HI), Residue-to-Product Ratio (RPR) and Root-to-Shoot Ratio (R:S)
3.3. Biomass Carbon and Nitrogen
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IPCC (Intergovernmental Panel on Climate Change). Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018; pp. 1–631. [Google Scholar]
- IPCC (Intergovernmental Panel on Climate Change). Land Use, Land Use Change, and Forestry; Watson, R.W., Noble, I.A., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J., Eds.; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Bilandžija, D.; Zgorelec, Ž.; Kisić, I. Influence of Tillage Practices and Crop Type on Soil CO2 Emissions. Sustainability 2016, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; McConkey, B.G.; VandenBygaart, A.J.; Fan, J.; Iwaasa, A.; Schellenberg, M. Grazing improves C and N cycling in the Northern Great Plains: A meta-analysis. Sci. Rep. 2016, 6, 33190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassman, K.G.; Dobermann, A.; Walters, D.T. Agroecosystems, nitrogen-use efficiency, and nitrogen management. Ambio 2002, 31, 132–140. [Google Scholar] [CrossRef]
- Malhi, S.S.; Nyborg, M.; Goddard, T.; Puurveen, D. Long-Term Tillage, Straw Management, and Nitrogen Fertilization Effects on Organic Matter and Mineralizable Carbon and Nitrogen in a Black Chernozem Soil. Commun. Soil Sci. Plant Anal. 2012, 43, 2679–2690. [Google Scholar] [CrossRef]
- Bolinder, M.; Janzen, H.; Gregorich, E.; Angers, D.; VandenBygaart, A. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Fan, J.; McConkey, B.; Wang, H.; Janzen, H. Root distribution by depth for temperate agricultural crops. Field Crops Res. 2016, 189, 68–74. [Google Scholar] [CrossRef] [Green Version]
- Paustian, K.; Collins, H.P.; Paul, E.A. Management controls on soil carbon. In Soil Organic Matter in Temperate Agroecosystems; Long-Term Experiments in North, America; Paul, E.A., Paustian, K.H., Elliott, E.T., Cole, V.C., Eds.; CRC Press: Boca Raton, FL, USA, 1997; pp. 15–49. [Google Scholar]
- Grogan, P.; Matthews, R. A modelling analysis of the potential for soil carbon sequestration under short rotation coppice willow bioenergy plantations. Soil Use Manag. 2002, 18, 175–183. [Google Scholar] [CrossRef]
- Bolinder, M.A.; VandenBygaart, A.J.; Gregorich, E.G.; Angers, D.A.; Janzen, H.H. Modelling soil organic carbon stock change for estimating whole-farm greenhouse gas emissions. Can. J. Soil Sci. 2006, 86, 419–429. [Google Scholar] [CrossRef] [Green Version]
- Campbell, C.; Zentner, R.P.; Liang, B.-C.; Roloff, G.; Gregorich, E.C.; Blomert, B. Organic C accumulation in soil over 30 years in semiarid southwestern Saskatchewan—Effect of crop rotations and fertilizers. Can. J. Soil Sci. 2000, 80, 179–192. [Google Scholar] [CrossRef]
- Izaurralde, R.; McGill, W.; Robertson, J.; Juma, N.; Thurston, J. Carbon Balance of the Breton Classical Plots over Half a Century. Soil Sci. Soc. Am. J. 2001, 65, 431–441. [Google Scholar] [CrossRef]
- Scurlock, J.M.; Olson, R.J. Terrestrial net primary productivity—A brief history and a new worldwide database. Environ. Rev. 2002, 10, 91–109. [Google Scholar] [CrossRef]
- Bolinder, M.A. Contribution to the Understanding of Soil Organic C Dynamics for Eastern Canadian Agroecosystems. Ph.D. Thesis, Université Laval, Ste-Foy, QC, USA, 2004; 125p. [Google Scholar]
- Prince, S.D.; Haskett, J.; Steininger, M.; Strand, H.; Wright, R. Net primary production of U.S. Midwest croplands from agricultural harvest yield data. Ecol. Appl. 2001, 11, 1194–1205. [Google Scholar] [CrossRef]
- Gajić-Čapka, M.; Zaninović, K. Climate. In Climate Atlas of Croatia 1961–1990. 1971–2000; Zaninović, K., Ed.; Meteorological and Hydrological Service: Zagreb, Croatia, 2008; pp. 11–15. [Google Scholar]
- Bilandžija, D.; Martinčić, S. Agroclimatic conditions of the Osijek area during referent (1961–1990) and recent (1991–2018) climate periods. Hrvat. Meteorološki Časopis 2021, 54/55, 55–64. [Google Scholar] [CrossRef]
- Bilandžija, D.; Zgorelec, Ž.; Bilandžija, N.; Zdunić, Z.; Krička, T. Contribution of Winter Wheat and Barley Cultivars to Climate Change via Soil Respiration in Continental Croatia. Agronomy 2021, 11, 2127. [Google Scholar] [CrossRef]
- AIO (Agricultural Institute Osijek). Catalogue—Wheat, Barley Triticale; Peas Cultivars: Osijek, Croatia, 2021; p. 48. Available online: https://www.poljinos.hr/wp-content/uploads/2022/04/POLJINOS_KATALOG_JESEN_2021.pdf (accessed on 22 May 2023).
- Croatian Bureau of Statistics. 2018 Statistical Yearbook of the Republic of Croatia; Croatian Bureau of Statistics: Zagreb, Croatia, 2018; p. 582. [Google Scholar]
- Hay, R.K.M. Harvest index: A review of its use in plant breeding and crop physiology. Ann. Appl. Biol. 1995, 126, 197–216. [Google Scholar] [CrossRef]
- HRN ISO 10694 2004; Kakvoća tla—Određivanje Organskoga i Ukupnog Ugljika Suhim Spaljivanjem (Elementarna Analiza). (ISO 10694:1995). Croatian Standards Institute: Zagreb, Croatia, 2004.
- HRN ISO 13878:2004; Kakvoća tla—Određivanje Sadržaja Ukupnog Dušika Suhim Spaljivanjem (“Elementarna Analiza”). (ISO 13878:1998). Croatian Standards Institute: Zagreb, Croatia, 2004.
- Unkovich, M.J.; Baldock, J.; Forbes, M. Australian Crop Yields and Harvest Indices (Microsoft Access Database); CSIRO Land and Water: Adelaide, Australia, 2006. [Google Scholar]
- Siddique, K.H.M.; Belford, R.K.; Tennant, D. Root: Shoot ratio of old and modern, tall and semidwarf wheat in a Meditertanean environment. Plant Soil 1990, 121, 89–98. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, S.; Sun, H.; Wang, Y.; Shao, L. Root size, distribution and soil water depletion as affected by cultivars and environmental factors. Field Crops Res. 2009, 114, 75–83. [Google Scholar] [CrossRef]
- Zhou, Y.; He, Z.H.; Sui, X.X.; Xia, X.C.; Zhang, X.K.; Zhang, G.S. Genetic Improvement of Grain Yield and Associated Traits in the Northern China Winter Wheat Region from 1960 to 2000. Crop. Sci. 2007, 47, 245–253. [Google Scholar] [CrossRef]
- Evans, L.T. Crop Evolution, Adaptation and Yield; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Hubbart, S.; Peng, S.; Horton, P.; Chen, Y.; Murchie, E.H. Trends in leaf photosynthesis in historical rice varieties develped in the Philippines since 1966. J. Exp. Bot. 2007, 58, 3429–3438. [Google Scholar] [CrossRef] [Green Version]
- Janzen, H.; Beauchemin, K.; Bruinsma, Y.; Campbell, C.; Desjardins, R.; Ellert, B.; Smith, E. The fate of nitrogen in agroecosystems: An illustration using Canadian estimates. Nutr. Cycl. Agroecosyst. 2003, 67, 85–102. [Google Scholar] [CrossRef]
- Thiagarajan, A.; Fan, J.; McConkey, B.G.; Janzen, H.H.; Campbell, C.A. Dry matter partitioning and residue N content for 11 major field crops in Canada adjusted for rooting depth and yield. Can. J. Soil Sci. 2018, 98, 574–579. [Google Scholar] [CrossRef] [Green Version]
- Laurenroth, W.K. Methods of estimating belowground net primary production. In Methods in Ecosystem Ecology; Sala, O.E., Jackson, R.B., Mooney, H.A., Howarth, R.W., Eds.; Springer: New York, NY, USA, 2000; pp. 58–71. [Google Scholar]
- Balesdent, J.; Balabane, M. Major contribution of roots to soil carbon storage inferred from maize cultivated soils. Soil Biol. Biochem. 1996, 28, 1261–1263. [Google Scholar] [CrossRef]
- Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; et al. Using simple environmental variables to estimate below-ground productivity in grasslands. Glob. Ecol. Biogeogr. 2002, 11, 79–86. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Domanski, G. Carbon input by plants into the soil. Rev. J. Plant Nutr. Soil Sci. 2000, 163, 421–431. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Hübner, R.; Dechow, R.; Maier, H.; Spörlein, P.; Geuß, U.; Hangen, E.; Reischl, A.; Schilling, B.; von Lützow, M.; et al. Estimation of past and recent carbon input by crops into agricultural soils of southeast Germany. Eur. J. Agron. 2014, 61, 10–23. [Google Scholar] [CrossRef]
- Kumudini, S. Trials and tribulations: A review of the role of assimilate supply in soybean genetic yield improvement. Field Crop. Res. 2002, 75, 211–222. [Google Scholar] [CrossRef]
- Johnson, J.M.F.; Allmaras, R.R.; Reicosky, D.C. Estimating source carbon from crop residues, roots and rhizodeposits using the grain-yield database. Agron. J. 2006, 98, 622–636. [Google Scholar] [CrossRef] [Green Version]
- Wilhelm, W.W.; Johnson, J.M.F.; Hatfield, J.L.; Voorhees, W.B.; Linden, D.R. Crop and soil productivity response to corn residue removal: A literature review. Agron. J. 2004, 96, 1–17. [Google Scholar] [CrossRef]
- Lee, C.; Grove, J. Straw Yields from Six Small Grain Varieties 2003–2004 and 2004–2005 Growing Seasons; University of Kentucky: Lexington, KY, USA, 2006; Available online: http://www.uky.edu/Ag/GrainCrops/Research/Research_pdf/SmallGrains_StrawYields2005.pdf (accessed on 20 May 2023).
- Patterson, P.E.; Makus, L.; Momont, P.; Robertson, L. The Availability, Alternative Uses and Value of Straw in Idaho; Final Report of the Project BDK251; Idaho Wheat Commission, College of Agriculture, University of Idaho: Moscow, ID, USA, 1995. [Google Scholar]
- Linden, D.; Clapp, C.; Dowdy, R. Long-term corn grain and stover yields as a function of tillage and residue removal in east central Minnesota. Soil Tillage Res. 2000, 56, 167–174. [Google Scholar] [CrossRef]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L.L. Current and Potential U.S. Corn Stover Supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Ericsson, K.; Nilsson, L.J. Assessment of the potential biomass supply in Europe using a resource focussed approach. Biomass Bioenergy 2006, 30, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Kadam, K.L.; McMillan, J.D. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Koopmans, A.; Koppejan, J. Agricultural and Forest Residues—Generation, Utilization and Availability. In Proceedings of the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur, Malaysia, 6–10 January 1997. [Google Scholar]
- Koukios, E.G. Agriculture As a Source of Biomass in Western Europe; Report for Biomass for Greenhouse Gas Emission Reduction (BRED) Project; Bioresource Technology Unit, National Technical University of Athens: Athens, Greece, 1998. [Google Scholar]
- Nelson, R.G. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States—Rainfall and wind-induced soil erosion methodology. Biomass-Bioenergy 2002, 22, 349–363. [Google Scholar] [CrossRef]
- Petersen, C.T.; Jørgensen, U.; Svendsen, H.; Hansen, S.; Jensen, H.E.; Nielsen, N.E. Parameter assessment for simulation of biomass production and nitrogen uptake in winter rape. Eur. J. Agron. 1995, 4, 77–89. [Google Scholar] [CrossRef]
- Kaltschmitt, M.; Hartmann, H. Energie aus Biomasse: Grundlagen. Techniken und Verfahren; Springer: Berlin, Germany, 2000; ISBN 3-540-64853-4. [Google Scholar]
- O’Toole, J.C.; Bland, W.L. Genotypic Variation in Crop Plant Root Systems. Adv. Agron. 1987, 41, 91–145. [Google Scholar] [CrossRef]
- Molina, J.A.E.; Clapp, C.E.; Linden, D.R.; Allmaras, R.R.; Layese, M.F.; Dowdy, R.H.; Cheng, H.H. Modeling the incorporation of corn (Zea mays L.) carbon from roots and rhizodeposition into soil organic matter. Soil Biol. Biochem. 2001, 33, 83–92. [Google Scholar] [CrossRef]
- Campbell, C.A.; Zentner, R.P.; Selles, F.; Biederbeck, V.O.; McConkey, B.G.; Lemke, R.; Gan, Y.T. Cropping frequency effects on yield of grain, straw, plant N, N balance and annual production of spring wheat in the semiarid prairie. Can. J. Plant Sci. 2004, 84, 487–501. [Google Scholar] [CrossRef]
- Parton, W.; Silver, W.L.; Burke, I.C.; Grassens, L.; Harmon, M.E.; Currie, W.S.; King, J.Y.; Adair, E.C.; Brandt, L.A.; Hart, S.C.; et al. Global-Scale Similarities in Nitrogen Release Patterns During Long-Term Decomposition. Science 2007, 315, 361–364. [Google Scholar] [CrossRef]
- Gentile, R.; Vanlauwe, B.; Six, J. Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol. Appl. 2011, 21, 695–703. [Google Scholar] [CrossRef]
- Sprunger, C.D.; Culman, S.W.; Palm, C.A.; Thuita, M.; Vanlauwe, B. Long-term application of low C:N residues enhances maize yield and soil nutrient pools across Kenya. Nutr. Cycl. Agroecosyst. 2019, 114, 261–276. [Google Scholar] [CrossRef]
- Córdova, S.C.; Olk, D.C.; Dietzel, R.N.; Mueller, K.E.; Archontoulis, S.V.; Castellano, M.J. Plant litter quality affects the accumulation rate, composition, and stability of mineral associated soil organic matter. Soil Biol. Biochem. 2018, 125, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Gentile, R.; Vanlauwe, B.; Chivenge, P.; Six, J. Trade-offs between the short- and long-term effects of residue quality on soil C and N dynamics. Plant Soil 2011, 338, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Cotrufo, M.F.; Wallenstein, D.M.; Boot, C.M.; Denef, K.; Paul, E. The Microbial Efficiency Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? Gob. Chang. Biol. 2013, 19, 988–995. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietzel, R.; Liebman, M.; Ewing, R.; Helmers, M.; Horton, R.; Jarchow, M.; Archontoulis, S. How efficiently do corn- and soybean-based cropping systems use water? A systems modeling analysis. Glob. Chang. Biol. 2016, 22, 666–681. [Google Scholar] [CrossRef] [PubMed]
Cultivar | Stem Number (LSD = 213.92) | Stem Height (cm) (LSD = 4.1513) | Ear Length (cm) (LSD = 0.4429) |
---|---|---|---|
p = 0.0071 | p = 0.0068 | p = 0.0019 | |
Srpanjka | 729.1 B | 64.6 C | 6.9 B |
Renata | 893.3 AB | 67.2 BC | 6.4 C |
El Nino | 853.9 AB | 73.2 A | 7.6 A |
Kraljica | 945.0 A | 70.6 AB | 6.9 B |
Cultivar | Ygr (t/ha) (LSD = 3.1712) | Yres (t/ha) (LSD = 3.605) | Yr (t/ha) (LSD = 0.9815) | Ytotal (t/ha) (LSD = 7.3219) |
---|---|---|---|---|
p = 0.2324 | p = 0.0451 | p = 0.0325 | p = 0.0459 | |
Srpanjka | 6.8 A | 6.1 B | 1.5 B | 14.4 B |
Renata | 7.8 A | 8.6 AB | 2.1 AB | 18.5 AB |
El Nino | 9.4 A | 9.1 AB | 2.2 AB | 20.7 AB |
Kraljica | 9.4 A | 11.7 A | 2.6 A | 23.6 A |
Cultivar | HI (LSD = 0.0556) | RPR (LSD = 0.2498) | R:S (LSD = 0.0276) |
---|---|---|---|
p = 0.0498 | p = 0.0383 | p = 0.8254 | |
Srpanjka | 0.53 A | 0.91 B | 0.12 A |
Renata | 0.48 AB | 1.11 AB | 0.12 A |
El Nino | 0.51 A | 0.98 B | 0.12 A |
Kraljica | 0.45 B | 1.25 A | 0.12 A |
Cgr | Cres | Cr | Ctotal | |||||
---|---|---|---|---|---|---|---|---|
Cultivar | (%) (LSD = 0.50) | (t/ha) (LSD = 1.45) | (%) (LSD = 1.30) | (t/ha) (LSD = 1.55) | (%) (LSD = 1.90) | (t/ha) (LSD = 0.40) | (%) (LSD = 1.0084) | (t/ha) (LSD = 3.2046) |
p < 0.0001 | p = 0.1639 | p = 0.0136 | p = 0.0426 | p = 0.0203 | p = 0.1974 | p = 0.0105 | p = 0.0468 | |
Srpanjka | 43.1 C | 2.9 A | 42.8 B | 2.6 B | 40.8 AB | 0.6 A | 42.4 C | 6.1 B |
Renata | 46.6 A | 3.6 A | 45.0 A | 3.9 AB | 39.4 B | 0.8 A | 44.0 AB | 8.3 AB |
El Nino | 45.3 B | 4.3 A | 44.6 A | 4.1 AB | 42.4 A | 0.9 A | 44.1 A | 9.3 AB |
Kraljica | 46.4 A | 4.3 A | 43.2 B | 5.0 A | 39.4 B | 1.0 A | 43.1 BC | 10.4 A |
Ngr | Nres | Nr | Ntotal | |||||
---|---|---|---|---|---|---|---|---|
Cultivar | % (LSD = 0.0111) | (t/ha) (LSD = 0.0003) | % (LSD = 0.0232) | (t/ha) (LSD = 0.02) | % (LSD = 0.1211) | (t/ha) (LSD = 0.0006) | % (LSD = 0.0213) | (t/ha) (LSD = 0.0917) |
p < 0.0001 | p = 0.0351 | p < 0.0001 | p = 0.0174 | p = 0.0460 | p = 0.2777 | p < 0.0001 | p = 0.2079 | |
Srpanjka | 2.1 D | 0.0007 B | 0.6 A | 0.0391 B | 0.7 AB | 0.0013 A | 1.0 B | 0.1917 A |
Renata | 2.3 A | 0.0010 AB | 0.6 A | 0.0536 AB | 0.7 A | 0.0018 A | 1.1 A | 0.2436 A |
El Nino | 2.2 C | 0.0008 B | 0.5 C | 0.0436 AB | 0.6 AB | 0.0016 A | 0.9 D | 0.2613 A |
Kraljica | 2.2 B | 0.0012 A | 0.5 B | 0.0621 A | 0.661 B | 0.0017 A | 1.0 C | 0.2825 A |
Cultivar | C:N gr (LSD = 0.2946) | C:N res (LSD = 3.9947) | C:N r (LSD = 11.724) | C:N Total (LSD = 1.2975) |
---|---|---|---|---|
p = 0.0020 | p < 0.0001 | p = 0.0468 | p < 0.0001 | |
Srpanjka | 20.5:1 C | 67.0:1 D | 63.3:1 AB | 41.9:1 C |
Renata | 20.6:1 BC | 72.5:1 C | 53.8:1 B | 41.6:1 C |
El Nino | 20.9:1 AB | 92.9:1 A | 68.5:1 A | 47.2:1 A |
Kraljica | 21.2:1 A | 81.4:1 B | 64.4:1 AB | 44.6:1 B |
Cultivar | CBp (t/ha) LSD (0.9195) | NBp (t/ha) LSD (0.0495) |
---|---|---|
p = 0.0394 | p = 0.0147 | |
Srpanjka | 0.31 B | −0.0942 A |
Renata | 1.08 AB | −0.1062 AB |
El Nino | 0.70 B | −0.1472 B |
Kraljica | 1.71 A | −0.1269 AB |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilandžija, D.; Zgorelec, Ž.; Galić, M.; Grubor, M.; Krička, T.; Zdunić, Z.; Bilandžija, N. Comparing the Grain Yields and Other Properties of Old and New Wheat Cultivars. Agronomy 2023, 13, 2090. https://doi.org/10.3390/agronomy13082090
Bilandžija D, Zgorelec Ž, Galić M, Grubor M, Krička T, Zdunić Z, Bilandžija N. Comparing the Grain Yields and Other Properties of Old and New Wheat Cultivars. Agronomy. 2023; 13(8):2090. https://doi.org/10.3390/agronomy13082090
Chicago/Turabian StyleBilandžija, Darija, Željka Zgorelec, Marija Galić, Mateja Grubor, Tajana Krička, Zvonimir Zdunić, and Nikola Bilandžija. 2023. "Comparing the Grain Yields and Other Properties of Old and New Wheat Cultivars" Agronomy 13, no. 8: 2090. https://doi.org/10.3390/agronomy13082090
APA StyleBilandžija, D., Zgorelec, Ž., Galić, M., Grubor, M., Krička, T., Zdunić, Z., & Bilandžija, N. (2023). Comparing the Grain Yields and Other Properties of Old and New Wheat Cultivars. Agronomy, 13(8), 2090. https://doi.org/10.3390/agronomy13082090