Plot-Level Maize Early Stage Stand Counting and Spacing Detection Using Advanced Deep Learning Algorithms Based on UAV Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites and Design
2.2. UAV Image Acquisition
2.3. Image Processing and Labeling
2.4. Model Development
2.4.1. Detecting and Counting Maize Stands
2.4.2. Detecting the PSV
2.5. Evaluation of Model Performance
3. Results
3.1. Detecting and Counting Maize Stands from UAV-Based Imagery
3.2. Determining the Optimal NMS IoU Threshold
3.3. Detecting and Visualizing the PSV
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lemke, S.; Tao, X.; Kushner, G.J. Assuring the Food Safety of Crops Developed through Breeding. ACS Agric. Sci. Technol. 2022, 2, 1151–1165. [Google Scholar] [CrossRef]
- Hudson, A.I.; Odell, S.G.; Dubreuil, P.; Tixier, M.H.; Praud, S.; Runcie, D.E.; Ross-Ibarra, J. Analysis of genotype-by-environment interactions in a maize mapping population. G3 Genes Genomes Genet. 2022, 12, jkac013. [Google Scholar] [CrossRef] [PubMed]
- NLeon, D.; Jannink, J.L.; Edwards, J.W.; Kaeppler, S.M. Introduction to a special issue on genotype by environment interaction. Crop Sci. 2016, 56, 2081–2089. [Google Scholar] [CrossRef] [Green Version]
- Elias, A.A.; Robbins, K.R.; Doerge, R.W.; Tuinstra, M.R. Half a century of studying genotype × Environment interactions in plant breeding experiments. Crop Sci. 2016, 56, 2090–2105. [Google Scholar] [CrossRef]
- USDA, N.A.S.S. National Statistics for Corn Grain Yield Yearly. Available online: https://quickstats.nass.usda.gov/results/FFD23882-EACC-32EB-BDB6-7F4F4748BE6B?pivot=short_desc (accessed on 12 January 2021).
- Ckucharik, J.; Ramankutty, N. Trends and Variability in U.S. Corn Yields over the Twentieth Century. 2005. Available online: http://EarthInteractions.org (accessed on 12 January 2021).
- Teasdale, J.R.; Cavigelli, M.A. Meteorological fluctuations define long-Term crop yield patterns in conventional and organic production systems. Sci. Rep. 2017, 7, 688. [Google Scholar] [CrossRef] [Green Version]
- Assefa, Y.; Vara Prasad, P.V.; Carter, P.; Hinds, M.; Bhalla, G.; Schon, R.; Jeschke, M.; Paszkiewicz, S.; Ciampitti, I.A. Yield responses to planting density for US modern corn hybrids: A synthesis-analysis. Crop Sci. 2016, 56, 2802–2817. [Google Scholar] [CrossRef] [Green Version]
- Lauer, J.G.; Rankin, M. Corn response to within row plant spacing variation. Agron J. 2004, 96, 1464–1468. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.W. Genotype × environment interaction for plant density response in maize (Zea mays L.). Crop Sci. 2016, 56, 1493–1505. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, R. Stand Establishment Variability In Corn. Agronomy Department, Purdue University. Available online: https://www.agry.purdue.edu/cca/2006/PDF/Nielsen.pdf (accessed on 12 January 2021).
- Varela, S.; Dhodda, P.R.; Hsu, W.H.; Prasad, P.V.; Assefa, Y.; Peralta, N.R.; Griffin, T.; Sharda, A.; Ferguson, A.; Ciampitti, I.A. Early-season stand count determination in Corn via integration of imagery from unmanned aerial systems (UAS) and supervised learning techniques. Remote Sens. 2018, 10, 343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: A review. Precis. Agric. 2012, 13, 693–712. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, L.; Zhang, H.; Han, W.; Peng, X. Estimating above-ground biomass of maize using features derived from UAV-based RGB imagery. Remote Sens. 2019, 11, 1261. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhang, H.; Niu, Y.; Han, W. Mapping maize water stress based on UAV multispectral remote sensing. Remote Sens. 2019, 11, 605. [Google Scholar] [CrossRef] [Green Version]
- Sarić, R.; Nguyen, V.D.; Burge, T.; Berkowitz, O.; Trtílek, M.; Whelan, J.; Lewsey, M.G.; Čustović, E. Applications of hyperspectral imaging in plant phenotyping. Trends Plant Sci. 2022, 27, 301–315. [Google Scholar] [CrossRef]
- Feng, A.; Zhou, J.; Vories, E.; Sudduth, K.A. Evaluation of cotton emergence using uav-based narrow-band spectral imagery with customized image alignment and stitching algorithms. Remote Sens. 2020, 12, 1764. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Maleva, T.; Soloviev, V. Detecting Apples in Orchards Using YOLOv3 and YOLOv5 in General and Close-Up Images. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2020; pp. 233–243. [Google Scholar] [CrossRef]
- Ong, P.; Teo, K.S.; Sia, C.K. UAV-based weed detection in Chinese cabbage using deep learning. Smart Agric. Technol. 2023, 4, 100181. [Google Scholar] [CrossRef]
- Feng, A.; Zhou, J.; Vories, E.; Sudduth, K.A. Evaluation of cotton emergence using UAV-based imagery and deep learning. Comput. Electron. Agric. 2020, 177, 105711. [Google Scholar] [CrossRef]
- Lin, Z.; Guo, W. Cotton Stand Counting from Unmanned Aerial System Imagery Using MobileNet and CenterNet Deep Learning Models. Remote Sens. 2021, 13, 142822. [Google Scholar] [CrossRef]
- Ranđelović, P.; Đorđević, V.; Milić, S.; Balešević-Tubić, S.; Petrović, K.; Miladinović, J.; Đukić, V. Prediction of soybean plant density using a machine learning model and vegetation indices extracted from RGB images taken with a UAV. Agronomy 2020, 10, 1108. [Google Scholar] [CrossRef]
- Mhango, J.K.; Harris, E.W.; Green, R.; Monaghan, J.M. Mapping potato plant density variation using aerial imagery and deep learning techniques for precision agriculture. Remote Sens. 2021, 13, 2705. [Google Scholar] [CrossRef]
- Ge, Z.; Liu, S.; Wang, F.; Li, Z.; Sun, J. Yolox: Exceeding Yolo Series in 2021. arXiv 2021, arXiv:2107.08430. Available online: https://arxiv.org/abs/2107.08430 (accessed on 6 August 2021).
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. You Only Learn One Representation: Unified Network for Multiple Tasks. arXiv 2021, arXiv:2105.04206. Available online: http://arxiv.org/abs/2105.04206 (accessed on 10 May 2021).
- Gallo, I.; Rehman, A.U.; Dehkordi, R.H.; Landro, N.; La Grassa, R.; Boschetti, M. Deep Object Detection of Crop Weeds: Performance of YOLOv7 on a Real Case Dataset from UAV Images. Remote Sens. 2023, 15, 539. [Google Scholar] [CrossRef]
- Jiang, P.; Ergu, D.; Liu, F.; Cai, Y.; Ma, B. A Review of Yolo Algorithm Developments. In Procedia Computer Science; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1066–1073. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. YOLOv3: An Incremental Improvement. Available online: http://arxiv.org/abs/1804.02767 (accessed on 8 April 2018).
- Tzutalin, “LabelImg”. Tzutalin, D. LabelImg. Git Code. Available online: https://github.com/tzutalin/labelImg (accessed on 3 March 2019).
- Jocher, G. YOLOv5 by Ultralytics. Available online: https://github.com/ultralytics/yolov5 (accessed on 25 June 2020).
- Singh, P.; Singh, N.; Singh, K.K.; Singh, A. Diagnosing of disease using machine learning. In Machine Learning and the Internet of Medical Things in Healthcare; Elsevier: Amsterdam, The Netherlands, 2021; pp. 89–111. [Google Scholar] [CrossRef]
- Oh, S.; Chang, A.; Ashapure, A.; Jung, J.; Dube, N.; Maeda, M.; Gonzalez, D.; Landivar, J. Plant counting of cotton from UAS imagery using deep learning-based object detection framework. Remote Sens. 2020, 12, 2981. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Ali, M.A. Effect of Sample Size on the Size of the Coefficient of Determination in Simple Linear Regression. J. Inf. Optim. Sci. 1987, 8, 209–219. [Google Scholar] [CrossRef]
- Vong, C.N.; Conway, L.S.; Zhou, J.; Kitchen, N.R.; Sudduth, K.A. Early corn stand count of different cropping systems using UAV-imagery and deep learning. Comput. Electron. Agric. 2021, 186, 106214. [Google Scholar] [CrossRef]
- Wang, L.; Xiang, L.; Tang, L.; Jiang, H. A convolutional neural network-based method for corn stand counting in the field. Sensors 2021, 21, 507. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, W.; Yu, J.; He, L.; Chen, J.; He, Y. Complete and accurate holly fruits counting using YOLOX object detection. Comput. Electron. Agric. 2022, 198, 107062. [Google Scholar] [CrossRef]
- Song, J.; Zhao, Y.; Song, W.; Zhou, H.; Zhu, D.; Huang, Q.; Fan, Y.; Lu, C. Fisheye Image Detection of Trees Using Improved YOLOX for Tree Height Estimation. Sensors 2022, 22, 3636. [Google Scholar] [CrossRef]
- Zhong, J.; Li, M.; Qin, J.; Cui, Y.; Yang, K.; Zhang, H. Real-time marine animal detection using yolo-based deep learning networks in the coral reef ecosystem. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; International Society for Photogrammetry and Remote Sensing: Bethesda, MD, USA, 2022; pp. 301–306. [Google Scholar] [CrossRef]
- Wang, C.; Guo, X.; Zhao, C. Detection of corn plant population and row spacing using computer vision. In Proceedings of the 2011 2nd International Conference on Digital Manufacturing and Automation, ICDMA 2011, Zhangjiajie, China, 5–7 August 2011; pp. 405–408. [Google Scholar] [CrossRef]
- Tang, L.; Tian, L.F. Plant Identification In Mosaicked Crop Row Images For Automatic Emerged Corn Plant Spacing Measurement. Trans. ASABE 2008, 51, 2181–2191. [Google Scholar] [CrossRef]
- Seifert, E.; Seifert, S.; Vogt, H.; Drew, D.; Van Aardt, J.; Kunneke, A.; Seifert, T. Influence of drone altitude, image overlap, and optical sensor resolution on multi-view reconstruction of forest images. Remote Sens. 2019, 11, 1252. [Google Scholar] [CrossRef] [Green Version]
- Tong, K.; Wu, Y.; Zhou, F. Recent advances in small object detection based on deep learning: A review. Image Vis. Comput. 2020, 97, 103910. [Google Scholar] [CrossRef]
- Zhao, B.; Zhang, J.; Yang, C.; Zhou, G.; Ding, Y.; Shi, Y.; Zhang, D.; Xie, J.; Liao, Q. Rapeseed seedling stand counting and seeding performance evaluation at two early growth stages based on unmanned aerial vehicle imagery. Front Plant Sci. 2018, 9, 1362. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common objects in context. In Lecture Notes in Computer Science (including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Elsevier: Amsterdam, The Netherlands, 2014; Volume 8693, pp. 740–755. [Google Scholar] [CrossRef] [Green Version]
- Lin, Z.; Guo, W. Sorghum Panicle Detection and Counting Using Unmanned Aerial System Images and Deep Learning. Front Plant Sci. 2020, 11, 534853. [Google Scholar] [CrossRef]
- Shorten, C.; Khoshgoftaar, T.M. A survey on Image Data Augmentation for Deep Learning. J. Big Data 2019, 6, 60. [Google Scholar] [CrossRef] [Green Version]
Model | Parameter | Values |
---|---|---|
YOLOv5 | Learning rate | 1 × 10−3 |
Momentum | 0.98 | |
Learning decay | 1 × 10−2 | |
YOLOX | Learning rate | 0.01 × BatchSize/64 |
Momentum | 0.9 | |
Learning decay | 5 × 10−4 | |
YOLOR | Learning rate | 2.61 × 10−3 |
Momentum | 0.949 | |
Learning decay | 5 × 10−4 |
Model | Training Epoch | Average Precision | Coefficient of Determination (R2) | Mean Absolute Error (MAE) |
---|---|---|---|---|
YOLOv5 | 500 | 0.917 | 0.621 | 6.208 |
1000 | 0.931 | 0.708 | 5.688 | |
1500 | 0.921 | 0.724 | 5.333 | |
YOLOX | 500 | 0.898 | 0.805 | 3.542 |
1000 | 0.889 | 0.773 | 3.792 | |
1500 | 0.882 | 0.710 | 4.354 | |
YOLOR | 500 | 0.920 | 0.790 | 4.583 |
1000 | 0.904 | 0.767 | 4.958 | |
1500 | 0.902 | 0.838 | 4.104 |
Model | Training Epoch | NMS IoU Threshold | AP |
---|---|---|---|
YOLOv5 | 500 | 0.1 | 0.921 |
0.2 | 0.924 | ||
0.3 | 0.923 | ||
0.4 | 0.920 | ||
0.5 | 0.917 | ||
1000 | 0.1 | 0.934 | |
0.2 | 0.934 | ||
0.3 | 0.933 | ||
0.4 | 0.931 | ||
0.5 | 0.931 | ||
1500 | 0.1 | 0.922 | |
0.2 | 0.929 | ||
0.3 | 0.929 | ||
0.4 | 0.926 | ||
0.5 | 0.921 | ||
YOLOX | 500 | 0.1 | 0.897 |
0.2 | 0.898 | ||
0.3 | 0.898 | ||
0.4 | 0.898 | ||
0.5 | 0.898 | ||
1000 | 0.1 | 0.806 | |
0.2 | 0.892 | ||
0.3 | 0.891 | ||
0.4 | 0.891 | ||
0.5 | 0.891 | ||
1500 | 0.1 | 0.800 | |
0.2 | 0.799 | ||
0.3 | 0.799 | ||
0.4 | 0.878 | ||
0.5 | 0.882 | ||
YOLOR | 500 | 0.1 | 0.927 |
0.2 | 0.931 | ||
0.3 | 0.932 | ||
0.4 | 0.930 | ||
0.5 | 0.920 | ||
1000 | 0.1 | 0.931 | |
0.2 | 0.935 | ||
0.3 | 0.936 | ||
0.4 | 0.937 | ||
0.5 | 0.904 | ||
1500 | 0.1 | 0.927 | |
0.2 | 0.931 | ||
0.3 | 0.933 | ||
0.4 | 0.932 | ||
0.5 | 0.902 |
Model | NMS IoU | Misplacement | Perfect, Skips, NES, or Big Gaps | ||||
---|---|---|---|---|---|---|---|
AP | Pearson’s Correlation | MAE | AP | Pearson’s Correlation | MAE | ||
YOLOv5-1000 | 0.1 | 0.851 | 0.162 | 15.5 | 0.955 | 0.978 | 2.711 |
0.2 | 0.851 | 0.503 | 12.4 | 0.958 | 0.986 | 1.605 | |
0.3 | 0.85 | 0.358 | 10.6 | 0.957 | 0.990 | 1.316 | |
0.4 | 0.846 | 0.470 | 8.1 | 0.957 | 0.986 | 1.184 | |
0.5 | 0.84 | 0.319 | 4.9 | 0.956 | 0.964 | 5.895 | |
0.6 | 0.84 | 0.379 | 12.2 | 0.957 | 0.932 | 12.421 | |
0.7 | 0.836 | 0.441 | 23.4 | 0.957 | 0.888 | 19.447 | |
0.8 | 0.817 | 0.440 | 42.6 | 0.953 | 0.781 | 34.316 | |
0.9 | 0.708 | 0.570 | 95.0 | 0.868 | 0.624 | 88.105 | |
YOLOX-500 | 0.1 | 0.716 | 0.569 | 13.1 | 0.902 | 0.969 | 2.868 |
0.2 | 0.799 | 0.920 | 10.9 | 0.902 | 0.967 | 2.053 | |
0.3 | 0.799 | 0.853 | 10.2 | 0.902 | 0.975 | 1.789 | |
0.4 | 0.798 | 0.791 | 8.7 | 0.902 | 0.976 | 1.553 | |
0.5 | 0.798 | 0.833 | 7.0 | 0.902 | 0.973 | 1.579 | |
0.6 | 0.798 | 0.615 | 4.9 | 0.902 | 0.968 | 1.763 | |
0.7 | 0.798 | 0.610 | 5.0 | 0.902 | 0.965 | 1.947 | |
0.8 | 0.796 | 0.615 | 12.2 | 0.902 | 0.952 | 4.000 | |
0.9 | 0.776 | 0.723 | 43.8 | 0.893 | 0.824 | 25.053 | |
YOLOR-1000 | 0.1 | 0.856 | 0.182 | 14.5 | 0.955 | 0.983 | 2.632 |
0.2 | 0.857 | 0.395 | 12.4 | 0.958 | 0.979 | 2.000 | |
0.3 | 0.861 | 0.688 | 10.2 | 0.959 | 0.979 | 1.763 | |
0.4 | 0.858 | 0.692 | 8.9 | 0.961 | 0.979 | 1.579 | |
0.5 | 0.853 | 0.707 | 3.9 | 0.959 | 0.959 | 5.289 | |
0.6 | 0.848 | 0.529 | 7.7 | 0.959 | 0.945 | 9.974 | |
0.7 | 0.842 | 0.596 | 14.2 | 0.959 | 0.932 | 13.158 | |
0.8 | 0.834 | 0.663 | 24.5 | 0.957 | 0.926 | 19.974 | |
0.9 | 0.774 | 0.323 | 68.5 | 0.924 | 0.848 | 59.184 |
Model | Training Epoch | NMS IoU Threshold (Misplacement/Other Four) | Coefficient of Determination (R2) | Mean Absolute Error (MAE) |
---|---|---|---|---|
YOLOv5 | 1000 | 0.5/0.4 | 0.936 | 1.958 |
YOLOX | 500 | 0.6/0.4 | 0.918 | 2.417 |
YOLOR | 1000 | 0.5/0.4 | 0.946 | 2.063 |
Model | Training Epoch | Precision | Recall | F1 |
---|---|---|---|---|
YOLOv5 | 200 | 0.861 | 0.921 | 0.890 |
500 | 0.862 | 0.89 | 0.876 | |
800 | 0.886 | 0.862 | 0.876 | |
1000 | 0.845 | 0.834 | 0.840 | |
YOLOX | 200 | 0.941 | 0.854 | 0.896 |
500 | 0.903 | 0.825 | 0.862 | |
800 | 0.831 | 0.864 | 0.847 | |
1000 | 0.899 | 0.856 | 0.877 | |
YOLOR | 200 | 0.785 | 0.877 | 0.829 |
500 | 0.876 | 0.867 | 0.872 | |
800 | 0.879 | 0.876 | 0.878 | |
1000 | 0.875 | 0.852 | 0.863 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Zhou, J.; Costa, M.; Kaeppler, S.M.; Zhang, Z. Plot-Level Maize Early Stage Stand Counting and Spacing Detection Using Advanced Deep Learning Algorithms Based on UAV Imagery. Agronomy 2023, 13, 1728. https://doi.org/10.3390/agronomy13071728
Wang B, Zhou J, Costa M, Kaeppler SM, Zhang Z. Plot-Level Maize Early Stage Stand Counting and Spacing Detection Using Advanced Deep Learning Algorithms Based on UAV Imagery. Agronomy. 2023; 13(7):1728. https://doi.org/10.3390/agronomy13071728
Chicago/Turabian StyleWang, Biwen, Jing Zhou, Martin Costa, Shawn M. Kaeppler, and Zhou Zhang. 2023. "Plot-Level Maize Early Stage Stand Counting and Spacing Detection Using Advanced Deep Learning Algorithms Based on UAV Imagery" Agronomy 13, no. 7: 1728. https://doi.org/10.3390/agronomy13071728
APA StyleWang, B., Zhou, J., Costa, M., Kaeppler, S. M., & Zhang, Z. (2023). Plot-Level Maize Early Stage Stand Counting and Spacing Detection Using Advanced Deep Learning Algorithms Based on UAV Imagery. Agronomy, 13(7), 1728. https://doi.org/10.3390/agronomy13071728