Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.1.1. District Level Data (DLD)
2.1.2. Weather Data—Nasapower
2.2. TPE Determination
2.3. Crop Model Inference Strategy
2.3.1. Crop Model Description
2.3.2. Simulations Setup
2.3.3. Crop Model Calibration
2.3.4. Crop Model ExM Parameters Space
2.3.5. Crop Model ExM Parameter Calibration
2.3.6. Crop Model Evaluation and Parameter Stability over Time and Space
2.3.7. Crop Model Sensitivity Analysis
3. Results
3.1. Characterization of the Target Population of Environments (TPE) and Comparison with the Current Zonation System
3.1.1. A-Eastern 1 (AE1) TPE
3.1.2. A-Eastern 2 (AE2) TPE
3.1.3. The Arid TPE—A1
3.1.4. The Transitioning TPE—B
3.1.5. The Gujarat TPE—G
3.2. Crop Model Prediction Ability
3.3. Ranges of Crop Model Parameters and Weather Input Influence on Yield
3.4. Detailed Results about the Estimation ExM Parameters
3.5. Online Application for Results Visualisation
4. Discussion
4.1. Kharif Rain Increase and Transition of Pearl Millet Cultivation to Summer Season
4.2. The Essential Role of Socio-Economic Factors in Pearl Millet Cultivation
4.3. The Use of Crop Model for Pearl Millet Envirotyping and Its Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Jukanti, A.; Gowda, C.L.; Rai, K.; Manga, V.; Bhatt, R. Crops that feed the world 11. Pearl Millet (Pennisetum glaucum L.): An important source of food security, nutrition and health in the arid and semi-arid tropics. Food Secur. 2016, 8, 307–329. [Google Scholar] [CrossRef]
- Yadav, O.P.; Rai, K.N. Genetic Improvement of Pearl Millet in India. Agric. Res. 2013, 2, 275–292. [Google Scholar] [CrossRef]
- Yadav, O.; Rai, K.; Rajpurohit, B.; Hash, C.; Mahala, R.; Gupta, S.; Shetty, H.; Bishnoi, H.; Rathore, M.; Kumar, A.; et al. Twenty-Five Years of Pearl Millet Improvement in India; ICAR: New Delhi, India, 2012. [Google Scholar]
- Nedumaran, S.; Bantilan, M.; Gupta, S.; Irshad, A.; Davis, J. Potential Welfare Benefit of Millets Improvement Research at ICRISAT: Multi Country-Economic Surplus Model Approach; Socioeconomics Discussion Paper Series Number 15; ICRISAT: Hyderabad, India, 2014. [Google Scholar]
- Nagaraj, N.; Basavaraj, G.; Rao, P.P.; Bantilan, C.; Haldar, S. Sorghum and pearl millet economy of India: Future outlook and options. Econ. Political Wkly. 2013, 28, 74–81. [Google Scholar]
- Rao, C.R.; Raju, B.; Rao, A.; Reddy, D.Y.; Meghana, Y.; Swapna, N.; Chary, G.R. Yield vulnerability of sorghum and pearl millet to climate change in India. Indian J. Agric. Econ. 2019, 74, 350–362. [Google Scholar]
- Hammer, G.L.; McLean, G.; Chapman, S.; Zheng, B.; Doherty, A.; Harrison, M.T.; van Oosterom, E.; Jordan, D. Crop design for specific adaptation in variable dryland production environments. Crop Pasture Sci. 2014, 65, 614–626. [Google Scholar] [CrossRef]
- Harrison, M.T.; Tardieu, F.; Dong, Z.; Messina, C.D.; Hammer, G.L. Characterizing drought stress and trait influence on maize yield under current and future conditions. Glob. Change Biol. 2014, 20, 867–878. [Google Scholar] [CrossRef] [PubMed]
- Messina, C.D.; Cooper, M.; Reynolds, M.; Hammer, G.L. Crop science: A foundation for advancing predictive agriculture. Crop Sci. 2020, 60, 544–546. [Google Scholar] [CrossRef]
- Chapman, S.; Cooper, M.; Butler, D.; Henzell, R. Genotype by environment interactions affecting grain sorghum. I. Characteristics that confound interpretation of hybrid yield. Aust. J. Agric. Res. 2000, 51, 197–208. [Google Scholar] [CrossRef]
- Chenu, K.; Deihimfard, R.; Chapman, S.C. Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt—Spatial and temporal trends. New Phytol. 2013, 198, 801–820. [Google Scholar] [CrossRef] [PubMed]
- Casadebaig, P.; Zheng, B.; Chapman, S.; Huth, N.; Faivre, R.; Chenu, K. Assessment of the potential impacts of wheat plant traits across environments by combining crop modeling and global sensitivity analysis. PLoS ONE 2016, 11, e0146385. [Google Scholar] [CrossRef]
- Hajjarpoor, A.; Kholová, J.; Pasupuleti, J.; Soltani, A.; Burridge, J.; Degala, S.B.; Gattu, S.; Murali, T.; Garin, V.; Radhakrishnan, T.; et al. Environmental characterization and yield gap analysis to tackle genotype-by-environment-by-management interactions and map region-specific agronomic and breeding targets in groundnut. Field Crops Res. 2021, 267, 108160. [Google Scholar] [CrossRef]
- Rahimi-Moghaddam, S.; Deihimfard, R.; Nazari, M.R.; Mohammadi-Ahmadmahmoudi, E.; Chenu, K. Understanding wheat growth and the seasonal climatic characteristics of major drought patterns occurring in cold dryland environments from Iran. Eur. J. Agron. 2023, 145, 126772. [Google Scholar] [CrossRef]
- Braun, H.J.; Rajaram, S.; Ginkel, M. CIMMYT’s approach to breeding for wide adaptation. In Adaptation in Plant Breeding; Springer: Heidelberg, Germany, 1997; pp. 197–205. [Google Scholar]
- Chauhan, Y.; Rachaputi, R.C. Defining agro-ecological regions for field crops in variable target production environments: A case study on mungbean in the northern grains region of Australia. Agric. For. Meteorol. 2014, 194, 207–217. [Google Scholar] [CrossRef]
- Ghosh, S. Agro-Climatic Zone Specific Research: Indian Perspective under NARP-ICAR; ICAR: New Delhi, India, 1991; pp. 1–539. [Google Scholar]
- Packwood, A.; Virk, D.; Witcombe, J. Trial testing sites in the All India Coordinated Projects—How well do they represent agro-ecological zones and farmers’ fields. In Seeds of Choice: Making the Most of New Varieties for Small Farmers; Intermediate Technology Publications: Lucknow, India, 1998; pp. 7–26. [Google Scholar]
- Gupta, S.; Rathore, A.; Yadav, O.; Rai, K.; Khairwal, I.; Rajpurohit, B.; Das, R.R. Identifying mega-environments and essential test locations for pearl millet cultivar selection in India. Crop Sci. 2013, 53, 2444–2453. [Google Scholar] [CrossRef]
- Kholovà, J.; Adam, M.; Diancoumba, M.; Hammer, G.; Hajjarpoor, A.; Chenu, K.; Jarolímek, J. Sorghum: General Crop-Modelling Tools Guiding Principles and Use of Crop Models in Support of Crop Improvement Programs in Developing Countries. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Heidelberg, Germany, 2020; pp. 189–207. [Google Scholar]
- Kholovà, J.; Hajjarpoor, A.; Garin, V.; Nelson, W.; Diacoumba, M.; Messina, C.D.; Hammer, G.L.; Xu, Y.; Urban, M.O.; Jarolimek, J. The role of crop growth models in crop improvement: Integrating phenomics, envirotyping and genomic prediction. In Advances in Plant Phenotyping for More Sustainable Crop Production; Burleigh Dodds Science Publishing: Cambridge, UK, 2022; pp. 263–282. [Google Scholar]
- Messina, C.; Hammer, G.; Dong, Z.; Podlich, D.; Cooper, M. Modelling crop improvement in a G× E× M framework via gene-trait-phenotype relationships. In Crop Physiology: Interfacing with Genetic Improvement and Agronomy; Elsevier: Amsterdam, The Netherlands, 2009; pp. 235–265. [Google Scholar]
- Tardieu, F.; Reymond, M.; Muller, B.; Granier, C.; Simonneau, T.; Sadok, W.; Welcker, C. Linking physiological and genetic analyses of the control of leaf growth under changing environmental conditions. Aust. J. Agric. Res. 2005, 56, 937–946. [Google Scholar] [CrossRef]
- Ronanki, S.; Pavlík, J.; Masner, J.; Jarolímek, J.; Stočes, M.; Subhash, D.; Talwar, H.S.; Tonapi, V.A.; Srikanth, M.; Baddam, R.; et al. An APSIM-powered framework for post-rainy sorghum-system design in India. Field Crops Res. 2022, 277, 108422. [Google Scholar] [CrossRef]
- Alam, M.M.; Hammer, G.L.; Van Oosterom, E.J.; Cruickshank, A.W.; Hunt, C.H.; Jordan, D.R. A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytol. 2014, 203, 155–167. [Google Scholar] [CrossRef]
- Alam, M.M.; van Oosterom, E.J.; Cruickshank, A.W.; Jordan, D.R.; Hammer, G.L. Predicting tillering of diverse sorghum germplasm across environments. Crop Sci. 2017, 57, 78–87. [Google Scholar] [CrossRef]
- Van Oosterom, E.; Carberry, P.; Hargreaves, J.; O’leary, G. Simulating growth, development, and yield of tillering pearl millet: II. Simulation of canopy development. Field Crops Res. 2001, 72, 67–91. [Google Scholar] [CrossRef]
- Sultan, B.; Roudier, P.; Quirion, P.; Alhassane, A.; Muller, B.; Dingkuhn, M.; Ciais, P.; Guimberteau, M.; Traore, S.; Baron, C. Assessing climate change impacts on sorghum and millet yields in the Sudanian and Sahelian savannas of West Africa. Environ. Res. Lett. 2013, 8, 014040. [Google Scholar] [CrossRef]
- Singh, P.; Boote, K.; Kadiyala, M.; Nedumaran, S.; Gupta, S.; Srinivas, K.; Bantilan, M. An assessment of yield gains under climate change due to genetic modification of pearl millet. Sci. Total Environ. 2017, 601, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Sparks, A. Nasapower: NASA-POWER Data from R. R Package Version 4.0.0; Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Laryea, K.B. Distribution of Soils in Production Systems in India; ICRISAT: Patancheru, India, 1998. [Google Scholar]
- Hajjarpoor, A.; Vadez, V.; Soltani, A.; Gaur, P.; Whitbread, A.; Babu, D.S.; Gumma, M.K.; Diancoumba, M.; Kholová, J. Characterization of the main chickpea cropping systems in India using a yield gap analysis approach. Field Crops Res. 2018, 223, 93–104. [Google Scholar] [CrossRef]
- Miguez, F. Apsimx: Inspect, Read, Edit and Run ‘APSIM’ “Next Generation” and ‘APSIM’ Classic, R Package Version 2.3.1; Foundation for Statistical Computing: Vienna, Austria, 2022.
- Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Society. Ser. C Appl. Stat. 1979, 28, 100–108. [Google Scholar] [CrossRef]
- Holzworth, D.P.; Huth, N.I.; deVoil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; van Oosterom, E.J.; Snow, V.; Murphy, C.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Van Oosterom, E.; Carberry, P.; O’leary, G. Simulating growth, development, and yield of tillering pearl millet: I. Leaf area profiles on main shoots and tillers. Field Crops Res. 2001, 72, 51–66. [Google Scholar] [CrossRef]
- Van Oosterom, E.; O’leary, G.; Carberry, P.; Craufurd, P. Simulating growth, development, and yield of tillering pearl millet. III. Biomass accumulation and partitioning. Field Crops Res. 2002, 79, 85–106. [Google Scholar] [CrossRef]
- Kim, H.K.; Van Oosterom, E.; Dingkuhn, M.; Luquet, D.; Hammer, G. Regulation of tillering in sorghum: Environmental effects. Ann. Bot. 2010, 106, 57–67. [Google Scholar] [CrossRef]
- Kim, H.K.; Luquet, D.; van Oosterom, E.; Dingkuhn, M.; Hammer, G. Regulation of tillering in sorghum: Genotypic effects. Ann. Bot. 2010, 106, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Garin, V.; van Oosterom, E.; McLean, G.; Hammer, G.; Murugesan, T.; Kaliamoorthy, S.; Diancumba, M.; Hajjarpoor, A.; Kholovà, J. New algorithm for pearl millet modelling in APSIM allowing a mechanistic simulation of tillers. bioRxiv 2023. [Google Scholar] [CrossRef]
- Wallach, D.; Palosuo, T.; Thorburn, P.; Hochman, Z.; Gourdain, E.; Andrianasolo, F.; Asseng, S.; Basso, B.; Buis, S.; Crout, N.; et al. The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environ. Model. Softw. 2021, 145, 105206. [Google Scholar] [CrossRef]
- Wallach, D.; Makowski, D.; Jones, J.W.; Brun, F. Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Varella, H.; Guérif, M.; Buis, S.; Beaudoin, N. Soil properties estimation by inversion of a crop model and observations on crops improves the prediction of agro-environmental variables. Eur. J. Agron. 2010, 33, 139–147. [Google Scholar] [CrossRef]
- Therond, O.; Hengsdijk, H.; Casellas, E.; Wallach, D.; Adam, M.; Belhouchette, H.; Oomen, R.; Russell, G.; Ewert, F.; Bergez, J.E.; et al. Using a cropping system model at regional scale: Low-data approaches for crop management information and model calibration. Agric. Ecosyst. Environ. 2011, 142, 85–94. [Google Scholar] [CrossRef]
- Huang, J.; Gómez-Dans, J.L.; Huang, H.; Ma, H.; Wu, Q.; Lewis, P.E.; Liang, S.; Chen, Z.; Xue, J.H.; Wu, Y.; et al. Assimilation of remote sensing into crop growth models: Current status and perspectives. Agric. For. Meteorol. 2019, 276, 107609. [Google Scholar] [CrossRef]
- Koo, J.; Dimes, J. HC27 generic soil profile database; IFPRI: Washington, DC, USA, 2013. [Google Scholar]
- Burk, L.; Dalgliesh, N. Estimating Plant Available Water Capacity; Grains Research and Development Corporation: Barton, Australia, 2013. [Google Scholar]
- Rana, K.; Kumar, D.; Bana, R. Agronomic research on pearlmillet (Pennisetum glaucum L.). Indian J. Agron. 2012, 57, 45–51. [Google Scholar]
- Bidinger, F.; Sharma, M.; Yadav, O. Performance of landraces and hybrids of pearl millet [Pennisetum glaucum (L.) R. Br.] under good management in the arid zone. Indian J. Genet. Plant Breed. 2008, 68, 145–148. [Google Scholar]
- Asare-Marfo, D.; Birol, E.; Roy, D. Investigating Farmers’ Choice of Pearl Millet Varieties in India to Inform Targeted Biofortification Interventions: Modalities of Multi-stakeholder Data Collection; University of Cambridge, Environmental Economy and Policy Research Group: Cambridge, UK, 2010. [Google Scholar]
- Munasib, A.; Roy, D.; Birol, E. Networks and low adoption of hybrid technology: The case of pearl millet in Rajasthan, India. Gates Open Res 2019, 3, 1133. [Google Scholar]
- Rao, N.; Rao, K.; Gupta, S.; Mazvimavi, K.; Charyulu, D.; Nagaraj, N.; Singh, R.; Singh, S.; Singh, S. Impact of ICRISAT Pearl Millet Hybrid Parents Research Consortium (PMHPRC) on the Livelihoods of Farmers in India; Research Report; International Crops Research Institute for the Semi-Arid Tropics ICRISAT: Patancheru, India, 2018. [Google Scholar]
- Jin, Q.; Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change 2017, 7, 587–594. [Google Scholar] [CrossRef]
- Katzenberger, A.; Schewe, J.; Pongratz, J.; Levermann, A. Robust increase of Indian monsoon rainfall and its variability under future warming in CMIP6 models. Earth Syst. Dyn. 2021, 12, 367–386. [Google Scholar] [CrossRef]
- Praveen, B.; Talukdar, S.; Mahato, S.; Mondal, J.; Sharma, P.; Islam, A.R.M.; Rahman, A. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 2020, 10, 10342. [Google Scholar] [CrossRef]
- Yadav, O.P.; Gupta, S.; Govindaraj, M.; Sharma, R.; Varshney, R.K.; Srivastava, R.K.; Rathore, A.; Mahala, R.S. Genetic gains in pearl millet in India: Insights into historic breeding strategies and future perspective. Front. Plant Sci. 2021, 12, 396. [Google Scholar] [CrossRef]
- Blaise, D.; Kranthi, K. Cotton production in India. Cotton Prod. 2019, 193–215. [Google Scholar]
- Hellin, J.; Erenstein, O. Maize-poultry value chains in India: Implications for research and development. J. New Seeds 2009, 10, 245–263. [Google Scholar] [CrossRef]
- Basavaraj, G.; Rao, P.P.; Bhagavatula, S.; Ahmed, W. Availability and utilization of pearl millet in India. SAT Ejournal 2010, 8, 1–6. [Google Scholar]
- Singh, S.; Sharma, R.; Pushpavathi, B.; Gupta, S.K.; Durgarani, C.V.; Raj, C. Inheritance and allelic relationship among gene (s) for blast resistance in pearl millet [Pennisetum glaucum (L.) R. Br.]. Plant Breed. 2018, 137, 573–584. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F. Improving regional winter wheat yield estimation through assimilation of phenology and leaf area index from remote sensing data. Eur. J. Agron. 2018, 101, 163–173. [Google Scholar] [CrossRef]
- De Wit, A.; Duveiller, G.; Defourny, P. Estimating regional winter wheat yield with WOFOST through the assimilation of green area index retrieved from MODIS observations. Agric. For. Meteorol. 2012, 164, 39–52. [Google Scholar] [CrossRef]
- Carberry, P.; Hochman, Z.; Hunt, J.; Dalgliesh, N.; McCown, R.; Whish, J.; Robertson, M.; Foale, M.; Poulton, P.; Van Rees, H. Re-inventing model-based decision support with Australian dryland farmers. 3. Relevance of APSIM to commercial crops. Crop Pasture Sci. 2009, 60, 1044–1056. [Google Scholar] [CrossRef]
Category | Data Type | Unit | DLD | Weather | Crop Model | PCA |
---|---|---|---|---|---|---|
Agronomy | Area | 1000 ha | X | |||
(area) | Area trend | 1000 ha/year | X | |||
Area share | % | X | X | |||
Area share trend | %/year | X | X | |||
Agronomy | Production | 1000 tons | X | |||
(production) | Production increase | 1000 tons/year | X | |||
Production share | % | X | X | |||
Production share trend | %/year | X | X | |||
Agronomy | Yield | kg/ha | X | X | X | |
(yield) | Yield trend | kg/ha/year | X | X | ||
Environment | Total rain Kharif | mm | X | X | ||
(rain) | Rain variance over year | mm | X | X | ||
Rain trend | mm/year | X | X | |||
Environment | Min. temperature | °C | X | X | ||
(temperature) | Min. temperature trend | °C/year | X | X | ||
Max. temperature | °C | X | X | |||
Max. temperature trend | °C/year | X | X | |||
Soil | Majority soil type | X | X | |||
Soil water content | Wat. mm/Soil cm | X | X | |||
Soil depth | cm | X | X | |||
Management | Irrigation PM area kh. | % | X | X | X | |
Irrigation trend | %/year | X | X | |||
Fertiliser all crops kh. | kg/ha | X | X | X | ||
Fertiliser trend | kg/ha/year | X | X | |||
Improved variety | % cult. area | X | X | X | ||
Sowing date | day | X | X | |||
Sowing density | plant/cm2 | X | X | |||
Price | Price | INR/100 kg | X | X | ||
Price trend | INR/100 kg/year | X | X |
Parameter | Option 1 | Option 2 | Option 3 |
---|---|---|---|
Soil water content [mm/cm] | 0.6 | 0.9 | 1.3 |
Soil depth [cm] | 60 | 120 | 180 |
Sowing date | 16–30 June | 1–15 July | 16–30 July |
Sowing density [pl./m2] | 12 | 18 | 24 |
Variety | Landrace | HHB 67-2 | 9444 |
Fertilisation [kg N/ha] | 0/0 | 30/30 | 50/50 |
Irrigation | no | limited | full |
Model | Reference | Updated dynamic tiller |
Variable | A1 | AE | AE1 | AE2 | B+ | B | G | |
---|---|---|---|---|---|---|---|---|
N districts | 9 | 30 | 18 | 12 | 23 | 16 | 7 | |
Area | Average area [Mha] | 2.93 (0.52) | 2.83 (0.22) | 2.09 (0.22) | 0.74 (0.10) | 1.85 (0.56) | 1.41 (0.41) | 0.44 (0.17) |
Relative area between TPEs [%] | 38.4 (3.6) | 37.6 (4.5) | 27.6 (2.5) | 10 (2.4) | 24.1 (6) | 18.4 (4.4) | 5.7 (1.9) | |
Share area w.r.t. other crops [%] | 53.4 (5.6) | 57.5 (1.8) | 58 (1.9) | 56.1 (2.7) | 20.9 (5.8) | 21.7 (5.6) | 18.6 (6.7) | |
Trend [Kha/y] | −3 (2.6) | 0.4 (2.2) | 0.3 (2.6) | 0.7 (1.3) | −4.1 (3) | −4 (3.5) | −4.5 (1.2) | |
Trend share other crops [%/year] | −1 (0.4) | 0 (0.6) | 0 (0.6) | 0.1 (0.5) | −1.1 (0.8) | −0.9 (0.7) | −1.4 (0.8) | |
Production | Average production [Mtons] | 1.38 (0.94) | 4.14 (1.16) | 2.76 (0.87) | 1.37 (0.44) | 1.55 (0.40) | 1.08 (0.29) | 0.46 (0.19) |
Relative prod between TPEs [%] | 17.7 (8.4) | 58.7 (7.7) | 38.6 (5) | 20.1 (5.8) | 23.6 (10) | 16.8 (8) | 6.8 (2.8) | |
Share prod w.r.t. other crops [%] | 53 (9.9) | 61.7 (2.8) | 68.5 (3.4) | 51.1 (3.8) | 18.9 (6) | 18.2 (5.1) | 20.7 (8.9) | |
Trend [Kton/y] | 3.9 (4.5) | 5.1 (4.8) | 5.1 (5.5) | 5.2 (3.8) | −1.8 (3.2) | −2 (2.5) | −1.3 (4.5) | |
Trend share other crops [%/year] | −0.9 (0.8) | 0.1 (0.6) | 0.1 (0.6) | 0.2 (0.6) | −1.2 (0.9) | −1 (0.8) | −1.6 (0.8) | |
Yield | Average yield [kg/ha] | 499.3 (385.1) | 1571.6 (556.4) | 1397.6 (512.3) | 1859.9 (505.5) | 913.1 (481.3) | 788.4 (333.5) | 1208.7 (628.6) |
Trend [kg/ha/year] | 20 (8.5) | 51 (18.5) | 46 (14.3) | 58 (21.6) | 26 (26) | 14 (19.8) | 51 (19.7) | |
Weather | Average total rain [mm] | 249.9 | 439.2 | 395.8 | 504.3 | 497.7 | 476.7 | 545.6 |
Variance rain over seasons [mm] | 13,361 | 17,413 | 17,548.3 | 17,210.1 | 25,993.4 | 17,918.3 | 44,450.5 | |
Trend total rain [mm/year] | 12.2 (4.4) | 9.4 (3.4) | 11 (2.8) | 7 (2.8) | 5 (5.6) | 2 (2.4) | 12 (4.6) | |
Average temperature [°C] | 32.7 (0.9) | 31.7 (1.4) | 31.8 (1.5) | 31.6 (1.4) | 27.7 (0.4) | 26.7 (0.3) | 29.9 (0.6) | |
Trend temperature [°C/year] | −0.1 (0) | −0.1 (0) | −0.1 (0) | −0.1 (0) | 0 (0) | 0 (0) | 0 (0) | |
Soil | Pssament [%] | 100 | 4 | 7 | 0 | 0 | 0 | 0 |
Inceptisol [%] | 0 | 79 | 87 | 67 | 5 | 7 | 0 | |
Ustalf/Ustoll [%] | 0 | 0 | 0 | 0 | 20 | 0 | 67 | |
Vertisol [%] | 0 | 17 | 7 | 33 | 60 | 86 | 0 | |
Orthid [%] | 0 | 0 | 0 | 0 | 10 | 0 | 33 | |
Udupts/Udalf [%] | 0 | 0 | 0 | 0 | 5 | 7 | 0 | |
Crop model PAWC [mm/cm] | 0.68 (0.1) | 0.97 (0.1) | 0.89 (0.1) | 1.08 (0.1) | 0.86 (0.1) | 0.85 (0.1) | 0.88 (0.2) | |
Crop model soil depth [cm] | 73.7 (2.8) | 82.9 (2.8) | 82.4 (3.3) | 83.7 (1.6) | 77.3 (5.0) | 76.3 (5.5) | 79.7 (2.9) | |
Management | Average irrigated surface [%] | 4.6 (5.1) | 13.7 (23) | 17.5 (25) | 7.1 (15.6) | 15.4 (22) | 7.1 (7.6) | 31 (30.3) |
Trend irrigated surface [%/year] | 0.1 (0.2) | 0.6 (1.5) | 0.6 (1.4) | 0.6 (1.6) | 0.7 (1.6) | −0.1 (0.5) | 2.2 (1.8) | |
Crop model irrigated surface [%] | 29 (12) | 37 (15) | 30 (13) | 48 (12) | 43 (11) | 41 (9) | 46 (14) | |
Fertilization [kg/ha] | 14.6 (17.2) | 79.5 (51.0) | 63.5 (46.5) | 106.2 (46.8) | 80.6 (46.1) | 87.4 (48.6) | 64.6 (34.7) | |
Trend fertilization [kg/ha/year] | 0.8 (0.7) | 4.9 (6.6) | 3.7 (3.2) | 6.9 (9.7) | 3.7 (2.7) | 3.1 (2.9) | 4.9 (1.5) | |
Crop model fertilization [kg/ha] | 52 (3) | 59 (9) | 57 (6) | 63 (11) | 61 (8) | 60 (7) | 63 (10) | |
Surface improved variety [%] | 99.9 (0.6) | 99.5 (3.4) | 99.9 (1.5) | 98.9 (5.1) | 99.4 (3.9) | 99.9 (0.9) | 98.1 (6.9) | |
Trend improved variety [%/year] | 0 (0) | 0 (0.1) | 0 (0) | 0 (0.1) | 0.1 (0.3) | 0 (0) | 0.4 (0.4) | |
Crop model improved variety [%] | 24 (7) | 23 (9) | 21 (11) | 26 (6) | 29 (9) | 28 (9) | 32 (11) | |
Crop model late sowing [0–1] | 0.6 (0.2) | 0.5 (0.2) | 0.4 (0.17) | 0.6 (0.2) | 0.6 (0.2) | 0.6 (0.2) | 0.63 (0.2) | |
Crop model plant density [pl/m2] | 17.1 (0.8) | 18.4 (1.7) | 17.6 (1.1) | 19.5 (1.8) | 16.7 (1.7) | 16.3 (1.5) | 17.9 (1.6) | |
Eco | Average price [INR/100 kg] | 843.3 (333.9) | 753.3 (321.2) | 781.2 (327.5) | 682.1 (293.9) | 848.3 (353.4) | 845.5 (371.1) | 853.5 (318.9) |
Trend price [INR/100 kg/year] | 56.2 (2.8) | 53.1 (5.1) | 54.3 (4.4) | 50.1 (5.6) | 58.2 (9.4) | 61.9 (7.1) | 51.4 (9.4) |
Method | TPE | |||||
---|---|---|---|---|---|---|
A1 | AE1 | AE2 | B | G | ||
Overall | Informed | 0.51 | 0.54 | 0.18 | 0.03 | 0.39 |
Estimated ExM parameters | 0.76 | 0.78 | 0.61 | 0.52 | 0.67 | |
Time effect | Informed | 0.36 | 0.46 | −0.06 | −0.14 | 0.28 |
Estimated ExM parameters | 0.28 | 0.32 | −0.02 | 0.09 | 0.08 | |
Location effect | Informed | 0.54 | 0.61 | 0.49 | 0.05 | 0.72 |
Estimated ExM parameters | 0.53 | 0.45 | 0.29 | 0.23 | 0.56 |
A1 | AE1 | AE2 | B | G | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | B | B | B | B | B | |||||
Total rain | 3.13 | 0.03 | 1.15 | 0.01 | −0.30 | 0.00 | −0.41 | 0.02 | −1.14 | 0.02 |
Average max T | −274.66 | 0.03 | −326.16 | 0.05 | −205.19 | 0.02 | −250.04 | 0.01 | −410.39 | 0.07 |
Average min T | 244.54 | 0.02 | 194.69 | 0.01 | 101.24 | 0.00 | 489.15 | 0.02 | 511.27 | 0.04 |
Model: new | 0.00 | 0.03 | 0.00 | 0.06 | 0.00 | 0.08 | 0.00 | 0.18 | 0.00 | 0.13 |
Model: old | −310.94 | −515.09 | −656.03 | −1050.82 | −810.35 | |||||
PAWC: 1.3 (clay) | 0.00 | 0.10 | 0.00 | 0.10 | 0.00 | 0.09 | 0.00 | 0.06 | 0.00 | 0.10 |
PAWC: 0.9 (loam) | −317.95 | −212.49 | −54.22 | −40.73 | −163.03 | |||||
PAWC: 0.6 (sand) | −719.26 | −712.41 | −633.46 | −600.34 | −732.02 | |||||
SoilDepth: 180 | 0.00 | 0.03 | 0.00 | 0.03 | 0.00 | 0.02 | 0.00 | 0.04 | 0.00 | 0.02 |
SoilDepth: 120 | −10.75 | −4.99 | −3.05 | −5.17 | −3.64 | |||||
SoilDepth: 60 | −348.39 | −324.55 | −297.91 | −464.91 | −325.53 | |||||
Sowing: early | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Sowing: average | −33.06 | −104.43 | −141.86 | 13.67 | −107.31 | |||||
Sowing: late | −126.58 | −293.17 | −422.51 | 65.67 | −179.60 | |||||
Density: 12 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Density: 18 | 2.89 | 22.94 | 27.49 | 59.15 | 37.77 | |||||
Density: 24 | −21.50 | 4.50 | 10.95 | 63.99 | 33.25 | |||||
Variety: Landrace | 0.00 | 0.02 | 0.00 | 0.06 | 0.00 | 0.11 | 0.00 | 0.11 | 0.00 | 0.08 |
Variety: HHB67 | 4.25 | 7.21 | 81.74 | −20.67 | −50.24 | |||||
Variety: 9444 | 342.73 | 616.67 | 928.79 | 938.29 | 727.95 | |||||
Fertilizer: 0 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.00 | 0.01 |
Fertilizer: 60 | 26.86 | 68.38 | 129.68 | 134.92 | 113.70 | |||||
Fertilizer: 100 | 41.91 | 117.21 | 236.16 | 241.59 | 208.92 | |||||
Irrigation [mm] | 4.75 | 0.17 | 4.14 | 0.05 | 3.08 | 0.01 | 5.35 | 0.02 | 3.79 | 0.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garin, V.; Choudhary, S.; Murugesan, T.; Kaliamoorthy, S.; Diancumba, M.; Hajjarpoor, A.; Chellapilla, T.S.; Gupta, S.K.; Kholovà, J. Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools. Agronomy 2023, 13, 1607. https://doi.org/10.3390/agronomy13061607
Garin V, Choudhary S, Murugesan T, Kaliamoorthy S, Diancumba M, Hajjarpoor A, Chellapilla TS, Gupta SK, Kholovà J. Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools. Agronomy. 2023; 13(6):1607. https://doi.org/10.3390/agronomy13061607
Chicago/Turabian StyleGarin, Vincent, Sunita Choudhary, Tharanya Murugesan, Sivasakthi Kaliamoorthy, Madina Diancumba, Amir Hajjarpoor, Tara Satyavathi Chellapilla, Shashi Kumar Gupta, and Jana Kholovà. 2023. "Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools" Agronomy 13, no. 6: 1607. https://doi.org/10.3390/agronomy13061607
APA StyleGarin, V., Choudhary, S., Murugesan, T., Kaliamoorthy, S., Diancumba, M., Hajjarpoor, A., Chellapilla, T. S., Gupta, S. K., & Kholovà, J. (2023). Characterization of the Pearl Millet Cultivation Environments in India: Status and Perspectives Enabled by Expanded Data Analytics and Digital Tools. Agronomy, 13(6), 1607. https://doi.org/10.3390/agronomy13061607