Evaluation of Field Germination of Soybean Breeding Crops Using Multispectral Data from UAV
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Ground Studies
2.3. Unmanned Aerial Vehicle Platform and Sensor
2.4. Data Processing
3. Results
- for germination and NDVI, r = 0.72;
- for germination and NDRE, r = 0.70;
- for germination and ClGreen, r = 0.75.
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manylova, O.V.; Zharkova, S.V. Field Germination and Preservation of Soybean Plants for Harvesting, Depending on the Elements of Agricultural Technology. Int. J. Humanit. Nat. Sci. 2021, 12-3, 41–43. [Google Scholar] [CrossRef]
- Švubová, R.; Slováková, Ľ.; Holubová, Ľ.; Rovňanová, D.; Gálová, E.; Tomeková, J. Evaluation of the Impact of Cold Atmospheric Pressure Plasma on Soybean Seed Germination. Plants 2021, 10, 177. [Google Scholar] [CrossRef] [PubMed]
- Nemenushchaya, L.; Konovalenko, L.; Shchegolikhina, T. Development of Russian selection and seed production under the Federal scientific and technical program for agricultural development. E3S Web Conf. 2020, 164, 06014. [Google Scholar] [CrossRef]
- Mamlic, Z.; Maksimovic, I.; Canak, P.; Mamlic, G.; Djukic, V.; Vasiljevic, S.; Dozet, G. The Use of Electrostatic Field to Improve Soybean Seed Germination in Organic Production. Agronomy 2021, 11, 1473. [Google Scholar] [CrossRef]
- Federal Law of the Russian Federation “On Seed Production” dated December 17, 1997 No. 149 FZ (with amendments and additions). Available online: http://ivo.garant.ru/#/document/12106441/paragraph/18117:0 (accessed on 30 March 2022).
- Nagorny, V.D.; Lyashko, M.U. Biology and Agricultural Engineering of Soybeans; Biblio-Globe: Moscow, Russia, 2018; 418p. [Google Scholar]
- Dorokhov, A.S.; Evdokimova, O.V.; Bolsheva, K.K. Overview of the world soybean market. Innov. Agric. 2018, 4, 237–246. [Google Scholar]
- Akhalaya, B.K.; Shogenov, Y.K.; Starovoitov, S.I.; Tsench, Y.S. Three-Section Soil Processing Unit with Universal Replaceable Working Units. Bull. Kazan State Agrar. Univ. 2019, 3, 92–95. [Google Scholar] [CrossRef]
- Torikov, V.E.; Belchenko, S.A.; Dronov, I.Y.; Moiseenko, I.Y.; Zaycheva, O.A. Soybeans of the Northern Ecotype in Intensive Agriculture; Bryansk GAU: Bryansk, Russia, 2019; 284p. [Google Scholar]
- Barnakov, N.V. Scientific Foundations of Seed Production of Grain Crops; The Science: Novosibirsk, Russia, 1982; 328p. [Google Scholar]
- Lamichhane, J.R.; Constantin, J.; Schoving, C.; Maury, P.; Debaeke, P.; Aubertot, J.N.; Dürr, C. Analysis of soybean germination, emergence, and prediction of a possible northward establishment of the crop under climate change. Eur. J. Agron. 2020, 113, 125972. [Google Scholar] [CrossRef]
- Lobachevsky, Y.P.; Dorokhov, A.S. Promising scientific and technical projects in the field of mechanization and robotization of agriculture. In Formation of a Single Scientific and Technological Space of the Union State: Problems, Prospects, Innovations; Center for System Analysis and Strategic Studies of the National Academy of Sciences of Belarus: Minsk, Belarus, 2017; pp. 333–343. [Google Scholar]
- Mazitov, N.K.; Shogenov, Y.K.; Tsench, Y.S. Agricultural machinery: Solutions and prospects. Bull. VIESKH 2018, 3, 94–100. [Google Scholar]
- Chen, Y.; Weng, Q.; Tang, L.; Wang, L.; Xing, H.; Liu, Q. Developing an intelligent cloud attention network to support global urban green spaces mapping. ISPRS J. Photogramm. Remote Sens. 2023, 198, 197–209. [Google Scholar] [CrossRef]
- Natarajan, S.; Basnayake, J.; Wei, X.; Lakshmanan, P. High-throughput phenotyping of indirect traits for early-stage selection in sugarcane breeding. Remote Sens. 2019, 11, 2952. [Google Scholar] [CrossRef]
- Ge, H.; Ma, F.; Li, Z.; Du, C. Grain Yield estimation in rice breeding using phenological data and vegetation indices derived from UAV images. Agronomy 2021, 11, 2439. [Google Scholar] [CrossRef]
- Prey, L.; Hanemann, A.; Ramgraber, L.; Seidl-Schulz, J.; Noack, P.O. UAV-Based estimation of grain yield for plant breeding: Applied strategies for optimizing the use of sensors, vegetation indices, growth stages, and machine learning algorithms. Remote Sens. 2022, 14, 6345. [Google Scholar] [CrossRef]
- Oehme, L.H.; Reineke, A.-J.; Weiß, T.M.; Würschum, T.; He, X.; Müller, J. Remote sensing of maize plant height at different growth stages using uav-based digital surface models (DSM). Agronomy 2022, 12, 958. [Google Scholar] [CrossRef]
- Zhou, J.; Yungbluth, D.; Vong, C.N.; Scaboo, A.; Zhou, J. Estimation of the maturity date of soybean breeding lines using uav-based multispectral imagery. Remote Sens. 2019, 11, 2075. [Google Scholar] [CrossRef]
- Elfanah, A.M.S.; Darwish, M.A.; Selim, A.I.; Shabana, M.M.A.; Elmoselhy, O.M.A.; Khedr, R.A.; Ali, A.M.; Abdelhamid, M.T. Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield*trait biplot approach. Agronomy 2023, 13, 353. [Google Scholar] [CrossRef]
- Deng, L.; Mao, Z.; Li, X.; Hu, Z.; Duan, F.; Yan, Y. UAV-based Multispectral Remote Sensing for Precision Agriculture: A Comparison between Different Cameras. ISPRS J. Photogramm. Remote Sens. 2018, 146, 124–136. [Google Scholar] [CrossRef]
- Di Gennaro, S.F.; Toscano, P.; Gatti, M.; Poni, S.; Berton, A.; Matese, A. Spectral Comparison of UAV-Based Hyper and Multispectral Cameras for Precision Viticulture. Remote Sens. 2022, 14, 449. [Google Scholar] [CrossRef]
- Navia, J.; Mondragon, I.; Patino, D.; Colorado, J. Multispectral Mapping in Agriculture: Terrain Mosaic Using an Autonomous Quadcopter UAV. In Proceedings of the International Conference on Unmanned Aircraft Systems (ICUAS), Arlington, VA, USA, 7–10 June 2016; pp. 1351–1358. [Google Scholar] [CrossRef]
- Ranđelović, P.; Đorđević, V.; Milić, S.; Balešević-Tubić, S.; Petrović, K.; Miladinović, J.; Đukić, V. Prediction of Soybean Plant Density Using a Machine Learning Model and Vegetation Indices Extracted from RGB Images Taken with a UAV. Agronomy 2020, 10, 1108. [Google Scholar] [CrossRef]
- Yue, J.; Feng, H.; Tian, Q.; Zhou, C. A robust spectral angle index for remotely assessing soybean canopy chlorophyll content in different growing stages. Plant Methods 2020, 16, 104. [Google Scholar] [CrossRef]
- Kurbanov, R.K.; Zakharova, N.I. Application of Vegetation Indexes to Assess the Condition of Crops. Agric. Mach. Technol. 2020, 14, 4–11. [Google Scholar] [CrossRef]
- Zhou, J.; Beche, E.; Vieira, C.C.; Yungbluth, D.; Zhou, J.F.; Scaboo, A.; Chen, P.Y. Improve Soybean Variety Selection Accuracy Using UAV-Based High-Throughput Phenotyping Technology. Front. Plant Sci. 2022, 12, 768742. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, J.; Yang, G.; Liu, J.; Cao, J.; Li, C.; Zhao, X.; Gai, J. Establishment of Plot-Yield Prediction Models in Soybean Breeding Programs Using UAV-Based Hyperspectral Remote Sensing. Remote Sens. 2019, 11, 2752. [Google Scholar] [CrossRef]
- Da Silva, E.E.; Baio, F.H.R.; Teodoro, L.P.R.; da Silva Junior, C.A.; Borges, R.S.; Teodoro, P.E. UAV-multispectral and vegetation indices in soybean grain yield prediction based on in situ observation. Remote Sens. Appl. Soc. Environ. 2020, 18, 100318. [Google Scholar] [CrossRef]
- Belyshkina, M.; Zagoruiko, M.; Mironov, D.; Bashmakov, I.; Rybalkin, D.; Romanovskaya, A. The Study of Possible Soybean Introduction into New Cultivation Regions Based on the Climate Change Analysis and the Agro-Ecological Testing of the Varieties. Agronomy 2023, 13, 610. [Google Scholar] [CrossRef]
- Zhou, J.; Mou, H.; Zhou, J.; Md Liakat, A.; Ye, H.; Chen, P.; Nguyen, H.T. Qualification of Soybean Responses to Flooding Stress Using UAV-Based Imagery and Deep Learning. Plant Phenomics 2021, 2021, 9892570. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhou, J.; Ye, H.; Ali, M.L.; Nguyen, H.T.; Chen, P. Classification of soybean leaf wilting due to drought stress using UAV-based imagery. Comput. Electron. Agric. 2020, 175, 105576. [Google Scholar] [CrossRef]
- Etienne, A.; Saraswat, D. Machine learning approaches to automate weed detection by UAV based sensors. In Proceedings of the SPIE 11008, Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping IV; SPIE: Baltimore, MD, USA, 2019; Volume 110080R. [Google Scholar] [CrossRef]
- Kurbanov, R.K.; Zakharova, N.I. Justification and selection of vegetation indices to determine the early soybeans readiness for harvesting. In Proceedings of the 14th International Scientific and Practical Conference on State and Prospects for the Development of Agribusiness, Interagromash, Rostov-on-Don, Russia, 24–26 February 2021; p. 01008. [Google Scholar]
- Dospekhov, B.A. Methodology of Field Experience (with the Basics of Statistical Processing of Research Results), 5th ed.; Agroprom Izdat: Moscow, Russia, 1985; 351p. [Google Scholar]
- Federal State Budgetary Institution. “State Commission of the Russian Federation for Testing and Protection of Breeding Achievements” Methodology of State Variety Testing of Agricultural Crops; General Part; Federal State Budgetary Institution: Moscow, Russia, 2019; 329p.
- GOST R 52325-2005; Seeds of Agricultural Plants. Varietal and Sowing Qualities. General Technical Conditions. Standartinform: Moscow, Russia, 2005.
- Shchelko, L.G.; Sedova, T.S.; Korneychuk, V.A. The International Classifier of the CMEA Genus Glycine Willd; VIR: Leningrad, Russia, 1990; 38p. [Google Scholar]
- Kurbanov, R.K.; Zakharova, N.I.; Sidorenko, V.; Vilyunov, S. The Use of Vegetation Indices in Comparison to Traditional Methods for Assessing Overwintering of Grain Crops. Lect. Notes Data Eng. Commun. Technol. 2022, 119, 52–64. [Google Scholar]
- Barnhart, I.; Demarco, P.; Prasad, P.V.; Mayor, L.; Jugulam, M.; Ciampitti, I.A. High-resolution unmanned aircraft systems imagery for stay-green characterization in grain sorghum (Sorghum bicolor L.). J. Appl. Remote Sens. 2021, 15, 044501. [Google Scholar] [CrossRef]
- Daugela, I.; Visockiene, J.S.; Kumpiene, J. Detection and analysis of methane emissions from a landfill using unmanned aerial drone systems and semiconductor sensors. Detritus 2020, 10, 127–138. [Google Scholar] [CrossRef]
- Bawa, A.; Samanta, S.; KHimanshu, S.; Singh, J.; Kim, J.J.; Zhang, T.; Chang, A.; Jung, J.; De-Laune, P.; Bordovsky, J.; et al. A support vector machine and image processing based approach for counting open cotton bolls and estimating lint yield from UAV imagery. Smart Agric. Technol. 2023, 3, 100140. [Google Scholar] [CrossRef]
- Xiao, D.; Pan, Y.; Feng, J.; Yin, J.; Liu, Y.; He, L. Remote sensing detection algorithm for apple fire blight based on UAV multispectral image. Comput. Electron. Agric. 2022, 199, 107137. [Google Scholar] [CrossRef]
- Trevisan, R.; Pérez, O.; Schmitz, N.; Diers, B.; Martin, N. High-throughput phenotyping of soybean maturity using time series uav imagery and convolutional neural networks. Remote Sens. 2020, 12, 3617. [Google Scholar] [CrossRef]
- Wang, N.; Guo, Y.; Wei, X.; Zhou, M.; Wang, H.; Bai, Y. UAV-based remote sensing using visible and multispectral indices for the estimation of vegetation cover in an oasis of a desert. Ecol. Indic. 2022, 41, 109155. [Google Scholar] [CrossRef]
- Marin, D.B.; Ferraz, G.A.; Santana, L.S.; Barbosa, B.D.S.; Barata, R.A.P.; Osco, L.P.; Ramos, A.P.M.; Guimarães, P.H.S. Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models. Comput. Electron. Agric. 2021, 190, 106476. [Google Scholar] [CrossRef]
- David, S. Sturges’ rule. Wiley Interdiscip. Rev. Comput. Stat. 2009, 1, 303–306. [Google Scholar]
- Kayad, A.; Sozzi, M.; Paraforos, D.S.; Rodrigues, F.A.; Cohen, Y.; Fountas, S.; Francisco, M.-J.; Pezzuolo, A.; Grigolato, S.; Marinello, F. How many gigabytes per hectare are available in the digital agriculture era? A digitization footprint estimation. Comput. Electron. Agric. 2022, 198, 107080. [Google Scholar] [CrossRef]
- Santos Santana, L.; Araújo ESilva Ferraz, G.; Bedin Marin, D.; Dienevam Souza Barbosa, B.; Mendes Dos Santos, L.; Ferreira Ponciano Ferraz, P.; Conti, L.; Camiciottoli, S.; Rossi, G. Influence of flight altitude and control points in the georeferencing of images obtained by unmanned aerial vehicle. Eur. J. Remote Sens. 2021, 54, 59–71. [Google Scholar] [CrossRef]
- Kapicioglu, H.S.; Hastaoglu, K.O.; Poyraz, F.; Gül, Y. Investigation of topographic effect in ground control point selection in UAV photogrammetry: Gaziantep/Nizip. Int. Conf. Innov. Eng. Appl. 2018, 1174–1178. [Google Scholar]
- Costa, L.; Kunwar, S.; Ampatzidis, Y.; Albrecht, U. Determining leaf nutrient concentrations in citrus trees using UAV imagery and machine learning. Precis. Agric. 2022, 23, 854–875. [Google Scholar] [CrossRef]
- Hou, M.; Tian, F.; Ortega-Farias, S.; Riveros-Burgos, C.; Zhang, T.; Lin, A. Estimation of Crop Transpiration and Its Scale Effect Based on Ground and UAV thermal infrared remote sensing images. Eur. J. Agron. 2021, 131, 126389. [Google Scholar] [CrossRef]
- Shaikh, Y.Y.J.; Vinay, P.; Lawal, B.; Stephen, D.T.; Deepak, G.; Debbie, S.; Hui, C.H.; Ajit, S. The Feasibility of Using a Low-Cost Near-Infrared, Sensitive, Consumer-Grade Digital Camera Mounted on a Commercial UAV to assess Bambara Groundnut Yield. Int. J. Remote Sens. 2022, 43, 393–423. [Google Scholar] [CrossRef]
- Wang, F.; Yao, X.; Xie, L.; Zheng, J.; Xu, T. Rice Yield Estimation Based on Vegetation Index and Florescence Spectral Information from UAV Hyperspectral Remote Sensing. Remote Sens. 2021, 13, 3390. [Google Scholar] [CrossRef]
- Koh, J.C.O.; Spangenberg, G.; Kant, S. Automated Machine Learning for High-Throughput Image-Based Plant Phenotyping. Remote Sens. 2021, 13, 858. [Google Scholar] [CrossRef]
- Dos Santos, A.; Biesseck, B.J.G.; Latte, N.; de Lima Santos, I.C.; dos Santos, W.P.; Zanetti, R.; Zanuncio, J.C. Remote detection and measurement of leaf-cutting ant nests using deep learning and an unmanned aerial vehicle. Comput. Electron. Agric. 2022, 198, N107071. [Google Scholar] [CrossRef]
- Zhou, J.; Lu, X.; Yang, R.; Chen, H.; Wang, Y.; Zhang, Y.; Huang, J.; Liu, F. Developing Novel Rice Yield Index Using UAV Remote Sensing Imagery Fusion Technology. Drones 2022, 6, 151. [Google Scholar] [CrossRef]
- Combs, T.P.; Didan, K.; Dierig, D.; Jarchow, C.J.; Barreto-Muñoz, A. Estimating Productivity Measures in Guayule Using UAS Imagery and Sentinel-2 Satellite Data. Remote Sens. 2022, 14, 2867. [Google Scholar] [CrossRef]
- Gao, M.; Yang, F.; Wei, H.; Liu, X. Individual Maize Location and Height Estimation in Field from UAV-Borne LiDAR and RGB Images. Remote Sens. 2022, 14, 2292. [Google Scholar] [CrossRef]
- Zhao, X.G.; Chen, L.P.; Gao, Y.Y.; Yang, S.; Zhai, C.Y. Optimization Method for Accurate Positioning Seeding Based on Sowing Decision. Int. J. Agric. Biol. Eng. 2021, 14, 171–180. [Google Scholar] [CrossRef]
Parameter | 2020 | 2021 | 2022 |
---|---|---|---|
Flight date | 11 June | 13 June | 14 June |
Flight time of day | 12:00 | 13:00 | 12:00 |
Flight altitude, m | 120 | 120 | 120 |
Survey time | 5 m 12 s | 8 m 23 s | 6 m 20 s |
Transverse/longitudinal overlap RGB (MSD), % | 75/85 (75/75) | 75/85 (75/75) | 75/85 (75/75) |
Flight speed, m/s | 7 | 7 | 7 |
Ground sampling distance (GSD) RGB/MSD, cm/px | 3.39/5.22 | 3.48/5.9 | 3.28/5.37 |
Flying area, ha | 2 | 4.5 | 3.2 |
Number of images RGB/MSD | 46/504 | 103/1141 | 80/822 |
Parameter | 2020 | 2021 | 2022 |
---|---|---|---|
Raw data size RGB/MSD, Mb | 380/2500 | 852/5650 | 691/4090 |
PIX4Dmapper project size RGB/MSD, Mb | 1290/2100 | 2860/4680 | 2150/3510 |
Maps data size RGB/MSD, Mb | 131/177 | 290/390 | 218/294 |
Total data storage, Mb | 6578 | 14,722 | 10,953 |
Group No. | Range |
---|---|
1 | 0–12.84 |
2 | 12.85–21.99 |
3 | 22–31.14 |
4 | 31.15–40.29 |
5 | 40.3–49.44 |
6 | 49.45–58.59 |
7 | 58.6–67.74 |
8 | 67.75–76.89 |
9 | 76.9–86.04 |
10 | 86.05–95.19 |
11 | 95.2–100 |
Group No. | Germination Range, % | NDVI Range | NDRE Range | ClGreen Range |
---|---|---|---|---|
Very low germination | 0–12.84 | 0–0.26 | 0–0.09 | 0–0.7 |
Low germination | 12.85–31.14 | 0.27–0.31 | 0.1–0.13 | 0.71–1.01 |
Average germination | 31.15–58.59 | 0.32–0.37 | 0.14–0.18 | 1.02–1.48 |
High germination | 58.6–100 | 0.38–0.5 | 0.19–0.3 | 1.49–2.5 |
Vegetation Index | NDVI | NDRE | ClGreen | Overall |
---|---|---|---|---|
Accuracy of 84 test plots in 2020, % | 96.43 | 82.94 | 94.44 | 95.24 |
Accuracy of 184 test plots in 2021, % | 94.93 | 87.86 | 95.05 | 96.39 |
Accuracy of 448 test plots in 2022, % | 97.02 | 89.25 | 96.5 | 94.02 |
Group No. | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2020 | 2021 | 2022 | |||||||
Breeders’ Assessment | Software Assessment | Error, % * | Breeders’ Assessment | Software Assessment | Error, % * | Breeders’ Assessment | Software Assessment | Error, % * | |
High germination | 72 | 70 | 2.4 | 169 | 158 | 6.0 | 421 | 383 | 8.5 |
Average germination | 9 | 12 | −3.6 | 12 | 18 | −3.3 | 23 | 64 | −9.2 |
Low germination | 2 | 2 | 0.0 | 2 | 5 | −1.6 | 2 | 1 | 0.2 |
Very low germination | 1 | 0 | 1.2 | 1 | 3 | −1.1 | 2 | 0 | 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurbanov, R.; Panarina, V.; Polukhin, A.; Lobachevsky, Y.; Zakharova, N.; Litvinov, M.; Rebouh, N.Y.; Kucher, D.E.; Gureeva, E.; Golovina, E.; et al. Evaluation of Field Germination of Soybean Breeding Crops Using Multispectral Data from UAV. Agronomy 2023, 13, 1348. https://doi.org/10.3390/agronomy13051348
Kurbanov R, Panarina V, Polukhin A, Lobachevsky Y, Zakharova N, Litvinov M, Rebouh NY, Kucher DE, Gureeva E, Golovina E, et al. Evaluation of Field Germination of Soybean Breeding Crops Using Multispectral Data from UAV. Agronomy. 2023; 13(5):1348. https://doi.org/10.3390/agronomy13051348
Chicago/Turabian StyleKurbanov, Rashid, Veronika Panarina, Andrey Polukhin, Yakov Lobachevsky, Natalia Zakharova, Maxim Litvinov, Nazih Y. Rebouh, Dmitry E. Kucher, Elena Gureeva, Ekaterina Golovina, and et al. 2023. "Evaluation of Field Germination of Soybean Breeding Crops Using Multispectral Data from UAV" Agronomy 13, no. 5: 1348. https://doi.org/10.3390/agronomy13051348
APA StyleKurbanov, R., Panarina, V., Polukhin, A., Lobachevsky, Y., Zakharova, N., Litvinov, M., Rebouh, N. Y., Kucher, D. E., Gureeva, E., Golovina, E., Yatchuk, P., Rasulova, V., & Ali, A. M. (2023). Evaluation of Field Germination of Soybean Breeding Crops Using Multispectral Data from UAV. Agronomy, 13(5), 1348. https://doi.org/10.3390/agronomy13051348