Amelioration of Salt-Induced Damage on Paeonia ostii ‘Fengdan’ by Exogenous Application of Silicon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Plant Materials
2.1.2. Experimental Agent
2.2. Experimental Design
Tree Peony Seedling Selection and Pharmaceutical Treatments
2.3. Parameters Determined
2.3.1. Growth Characteristics
2.3.2. Determination of Leaf Gas Exchange Indicators and Chlorophyll Levels
2.3.3. Determination of the MDA Level and ROS Levels
2.3.4. Determination of Antioxidant Enzymatic Activities
2.3.5. Determination of Osmotic Substance Levels
2.3.6. Determination of Total Polyamines Contents and Related Synthetases Activities
2.4. Statistical Analysis
3. Results
3.1. Changes in Growth of P. ostii ‘Fengdan’ Seedlings Affected by Exogenous Silicon under Salt Stress
3.2. Effects of Exogenous Silicon on Leaf Gas Exchange Indicators of P. ostii ‘Fengdan’ Seedlings under Salt Stress
3.3. Effects of Exogenous Silicon on Leaf Photosynthetic Pigment Content of P. ostii ‘Fengdan’ Seedlings under Salt Stress
3.4. Effects of MDA Level and ROS Levels on P. ostii ‘Fengdan’ Seedlings under Salt Stress
3.5. Effects of Exogenous Silicon on Antioxidant-Related Enzyme Activities of P. ostii ‘Fengdan’ Seedlings under Salt Stress
3.6. Effects of Exogenous Silicon on Osmotic Substance Content of P. ostii ‘Fengdan’ Seedlings under Salt Stress
3.7. Effects of Exogenous Silicon on Total Polyamines Content and Related Synthetase Activities of P. ostii ‘Fengdan’ Seedlings under Salt Stress
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, W.B.; Kim, Y.H.; Lee, H.S.; Kim, K.Y.; Deng, X.P.; Kwak, S.S. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses. Plant Physiol. Biochem. 2009, 47, 570–577. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Ibrahim, M.; Farid, M.; Adress, M. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 2015, 22, 15416–15431. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.Y.; Zheng, W.; Tian, Y.; Wu, Y.; Zhou, D.W. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings. Photosynthetica 2011, 49, 275–284. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Gong, H.J.; Yin, J.L. Role of silicon in mediating salt tolerance in plants: A review. Plants 2019, 8, 147. [Google Scholar] [CrossRef]
- Liang, Q.; Wang, W.; Guo, S.; Li, S.; Liu, R. Effects of arbuscular mycorrhizae on photosynthesis of paeonia suffruticosa grown under salt stress. J. Qingdao Agric. Univ. (Nat. Sci.) 2013, 30, 79–83. [Google Scholar]
- Zhu, Y.X.; Xia, Y.C.; Liu, L.C.; Yin, J.L.; Ma, D.F. Beneficial effects of silicon on salt tolerance in plants. J. Plant Nutr. Fertil. 2019, 25, 498–509. [Google Scholar] [CrossRef]
- Guo, L.L.; Guo, D.L.; Zhao, W.; Hou, X.G. Newly developed SSR markers reveal genetic diversity and geographical clustering in Paeonia suffruticosa based on flower colour. J. Hortic. Sci. Biotechnol. 2018, 93, 416–424. [Google Scholar] [CrossRef]
- Guo, N.N.; Wang, T.R.; Liu, B.D.; Li, Q. Progress in extraction and application of tree peony seed oil. Grain Oil Food Technol. 2019, 27, 20–23. [Google Scholar]
- Xie, X.Q.; Lin, Q.J.; Wang, M.S.; Chen, Z.D.; Su, J.Q. NaCl physiological response of stress to six foreign species of wild taxonaceae. Fujian Sci. Technol. Trop. Crop. 2020, 45, 26–28. [Google Scholar]
- Lu, L.; Wang, E.Q.; Ji, H.L.; Pang, J.J. Strategic necessity analysis and countermeasures of oil-use peony industrial development in China. Acta Agric. Jiangxi 2017, 29, 147–150. [Google Scholar]
- Gou, T.Y.; Su, Y.; Chen, X.H.; Zhu, Y.X.; Gong, H.J. Silicon up regulates NHX1 expression to enhance Na+ partitioning into vacuoles in leaf mesophyll cells of cucumber under salt stress. J. Plant Nutr. Fertil. 2020, 26, 1923–1934. [Google Scholar]
- Ma, J.F.; Yamaji, N. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 2008, 65, 3049–3057. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Wang, S.; Tanaka, K.; Fujihara, S.; Itai, A.; Den, X.; Zhang, S. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ. 2016, 39, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Guo, J.; Hu, Y.; Gong, H. Distinct physiological responses of tomato and cucumber plants in silicon-mediated alleviation of cadmium stress. Front. Plant Sci. 2015, 6, 453. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhu, J.; Li, Z.; Chu, G.; Ding, Y.; Zhang, J.; Sun, W. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environ. Exp. Bot. 2008, 64, 286–294. [Google Scholar] [CrossRef]
- Yin, L.N.; Wang, S.W.; Liu, P.; Wang, W.H.; Cao, D.; Deng, X.P.; Zhang, S.Q. Silicon-mediated changes in polyamine and 1-aminocyclopropane-l-carboxylic acid are involved in Si-induced drought resistance in Sorghum bicolor L. Plant Physiol. Biochem. 2014, 80, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Imtiaz, M.; Rizwan, M.S.; Mushtag, M.A. Silicon occurrence, uptake, transport and mechanisms of heavy metals, minerals and salinity enhanced tolerance in plants with future prospects: A review. J. Environ. Manag. 2016, 183, 521–529. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ashraf, U.; Chang, C.; Abrar, M.; Cheng, X. Effects of silicon and phosphatic fertilization on rice yield and soil fertility. Soil Sci. Plant Nutr. 2020, 20, 557–565. [Google Scholar] [CrossRef]
- Li, E.B.; Fan, W.H.; Liu, F.W.; Wang, G.L.; Yu, M.M. Effects of silicon on growth and photosynthesis of cucumber seedling under cadmium stress. North. Hortic. 2021, 8, 8–16. [Google Scholar]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.F.; Sebnem, K.; Rady, M.M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef]
- Rahmati, M.; Vercambre, G.; Davarynejad, G.; Bannayan, M.; Azizi, M.; Génard, M. Water scarcity conditions affect peach fruitsize and polyphenol contents more severely than other fruit quality traits. J. Sci. Food Agric. 2015, 95, 1055–1065. [Google Scholar] [CrossRef]
- Liang, Y.C. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 1999, 209, 217. [Google Scholar] [CrossRef]
- Rohanipoor, A.; Norouzi, M.; Moezzi, A.; Hassibi, P. Effect of silicon on some physiological properties of maize (Zea mays) under salt stress. J. Biodivers. Environ. Sci. 2013, 7, 71–79. [Google Scholar]
- Abdel-Latif, A.; El-Demerdash, F.M. The ameliorative effects of silicon on salt-sressed sorghum seedlings and its influence on the activities of sucrose synthase and PEP carboxylase. J. Plant Physiol. Pathol. 2017, 5, 2–8. [Google Scholar] [CrossRef]
- Shi, X.; Yang, Y.; Xue, X.; Liu, W.; Song, C.; Guo, L.; Hou, X. Effects of chitooligosaccharide on the growth physiology of Paeonia ostii‘Fengdan’seedlings under drought stress. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2021, 45, 120–126. [Google Scholar]
- Zou, Q. Experimental Guidance of Plant Physiology; China Agriculture Press: Beijing, China, 2003. [Google Scholar]
- Hu, X.; Xu, Z.; Xu, W.; Li, J.; Zhao, N.; Zhou, Y. Application of γ-aminobutyric acid demonstrates a protective role of polyamine and GABA metabolism in muskmelon seedlings under Ca (NO3)2 stress. Plant Physiol. Biochem. 2015, 92, 1–10. [Google Scholar] [CrossRef]
- Kochian, L.V.; Piñeros, M.A.; Hoekenga, O.A. The physiology, genetics and molecular biology of plant aluminum resistance and toxicity. Plant Soil 2005, 274, 175–195. [Google Scholar] [CrossRef]
- Zhang, W.; Xie, Y.; Wu, Y.; Wassie, M.; Li, K.; Wang, Z.; Li, H.; Liu, D. Amelioration of salt-induced damage on alfalfa by exogenous application of silicon. Grassl. Sci. 2021, 2, 44–46. [Google Scholar] [CrossRef]
- Schaller, J.; Andreas, C.; Andrea, C.; Mohsen, Z. Biogenic amorphous silica as main driver for plant available water in soils. Sci. Rep. 2020, 10, 2424. [Google Scholar] [CrossRef] [PubMed]
- Schaller, J.; Daniel, P.; Danuta, K.; Ruth, E.; Michael, S. Silicon Cycling in Soils Revisited. Plants 2021, 10, 295. [Google Scholar] [CrossRef] [PubMed]
- Zarebanadkouki, M.; Bahareh, H.; Horst, H.G.; Schaller, J. Amorphous silica amendment to improve sandy soils’ hydraulic properties for sustained plant root access under drying conditions. Front. Environ. Sci. 2022, 10. [Google Scholar] [CrossRef]
- Kuhla, J.; Johanna, P.; Schaller, J. Effect on soil water availability, rather than silicon uptake by plants, explains the beneficial effect of silicon on rice during drought. Plant Cell Environ. 2021, 44, 3336–3346. [Google Scholar] [CrossRef]
- Zhao, X.; Li, Z.; Yu, W.; Li, J.; Zhou, Y.; Long, M. Effect of silicon on growing photosynthetic characteristics and protective enzyme activity of watermelon seedlings. Anhui Agric. Sci. 2022, 50, 151–153+157. [Google Scholar]
- Gao, W.; Xi, K.; Yin, J.; Liu, Y.; Zhu, Y.; Jia, Q. Effects of exogenous SiNPs on growth and physiological characteristics of ginger seedlings under salts tress. J. Northwest A F Univ. (Nat. Sci. Ed.) 2023, 9, 1–10. [Google Scholar]
- Stimmler, P.; Anders, P.; Elberling, B.; Goeckede, M.; Schaller, J. Arctic soil respiration and microbial community structure driven by silicon and calcium. Sci. Total Environ. 2022, 838, 156152. [Google Scholar] [CrossRef]
- Sun, Z.; Fan, W.J.; Liu, G.L.; Tian, C.G.; Zhang, P.; Liu, H.J.; Yang, J.; Zhao, F.L.; Shi, C.Y. Effects of exogenous ABA on leaf photosynthetic characteristics and associated physiological indexes of sweet potato (Ipomoea batatas) seedlings under drought stress. J. Plant Physiol. (Plant Physiol. Commun.) 2017, 53, 873–880. [Google Scholar]
- Yu, M.; Fan, W.; Liu, F.; Tian, L.; Wang, G.; Meng, Q. Effects of Silicon and Selenium on Photosynthesis and Antioxidant Enzyme System of Cucumber Seedlings under Cadmium Stress. J. Henan Agric. Sci. 2023, 52, 116–124. [Google Scholar]
- Ashraf, M.; Harris, P.J.C. Photosynthesis under stressful environments: An overview. Photosynthetica 2013, 51, 163–190. [Google Scholar] [CrossRef]
- Pinheiro, H.A.; Silva, J.V.; Endres, L.; Ferreira, V.M.; Câmara, C.D.A.; Cabral, F.F.; Oliveira, J.F.; Carvalho, L.W.T.D.; Santos, J.M.D.; Filho, B.G.D.S. Leaf gas exchange, chloroplastic pigments and dry matter accumulation in castor bean (Ricinus communis L) seedlings subjected to salt stress conditions. Ind. Crop. Prod. 2008, 27, 385–392. [Google Scholar] [CrossRef]
- Tuna, A.L.; Kaya, C.; Dikilitas, M.; Higgs, D. The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environ. Exp. Bot. 2008, 62, 1–9. [Google Scholar] [CrossRef]
- Gou, T.; Yang, L.; Hu, W.; Chen, X.; Gong, H. Silicon improves the growth of cucumber under excess nitrate stress by enhancing nitrogen assimilation and chlorophyll synthesis. Plant Physiol. Biochem. 2020, 152, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q. Study on the effects of silicon on rice growth and development. Agric. Technol. 2022, 42, 46–49. [Google Scholar]
- Zhang, Y.; Fang, H.; Chen, C.; Nie, S.; Sai, L.; Xu, Q.; Chen, X.; Lei, J. Effect of Exogenous Silicon Drip Application on Growth and Physiological Characteristics of Winter Wheat under Low Light Stress. Xinjiang Agric. Sci. 2023, 60, 336–343. [Google Scholar]
- Zhai, M.; Li, Y.; Yang, Q. Comparison of photosynthetic characteristics between potted and field Paeonia suffruticosa Andr. J. Hortic. 2008, 2, 251–256. [Google Scholar]
- Mora, M.L.; Alfaro, M.A.; Jarvis, S.C.; Demanet, R.; Cartes, P. Soil aluminium availability in andisols of southern chile and its effect on forage production and animal metabolism. Soil Use Manag. 2006, 22, 95–101. [Google Scholar] [CrossRef]
- Jia, S.; Zheng, Y.; Qiu, S.; Zhang, W. Effects of aluminum stress on growth and physiological characteristics of watermelon seedlings. J. Agric. Environ. Sci. 2014, 33, 1485–1492. [Google Scholar]
- Mukhopadyay, M.; Bantawa, P.; Das, A.; Sarkar, B.; Bera, B.; Ghosh, P.; Mondal, T.K. Changes of growth, photosynthesis and alteration of leaf antioxidative defence system of tea [Camellia sinensis (L.) O. Kuntze] seedlings under aluminum stress. Biometals 2012, 25, 1141–1154. [Google Scholar] [CrossRef]
- Li, W.; Qian, Y.; Han, L.; Liu, J.; Sun, Z. Response of the enzymatic reactive oxygen species enging system to differential photoperiod. Northwest J. Bot. 2015, 35, 1428–1436. [Google Scholar]
- Shabir, H.W.; Vinay, K.; Varsha, S.; Sah, S.K. Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J. 2016, 4, 162–176. [Google Scholar]
- Alcázar, R.; Marco, F.; Cuevas, J.C. Involvement of polyamines in plant response to abiotic stress. Biotechnol. Lett. 2006, 28, 1867–1876. [Google Scholar] [CrossRef]
- Liu, J.H.; Wang, W.; Wu, H.; Gong, X.; Takaya, M. Polyamines function in stress tolerance: From synthesis to regulation. Front. Plant Sci. 2015, 6, 827. [Google Scholar] [CrossRef] [PubMed]
- Lyu, J.; Yu, J.; Zhang, G.; Jin, N.; Tang, Z.; Zhang, J.; Zhang, X. Effect of exogenous silicon root application on growth physiology of cucumber cultivated in continuous cropping substrate. J. Gansu Agric. Univ. 2020, 55, 121–128+135. [Google Scholar]
- Hao, L.; Yu, L.; Guo, W.; Xue, Y.; Guo, Y. Effects of silicon fertilizer on the growth, development and yield of spring wheat. J. Heilongjiang Bayi Agric. Reclam. Univ. 2013, 25, 16. [Google Scholar]
- Zhang, J.; Zhang, Y.; Wang, H.; Yang, K.; Liu, T.; Sun, Y.; Xu, R.; Du, J.; Peng, C.; Gao, S. Effects of spraying different concentrations of silicon fertilizer on photosynthetic characteristics and nutrient accumulation of maize in cold fields. Mol. Plant Breed. 2022, 20, 7876–7884. [Google Scholar]
Treatment Name | Plant Height (cm) | Stem Thickness (mm) | Dry Biomass (g) | Root–Shoot Ratio | |
---|---|---|---|---|---|
Above-Ground | Below-Ground | ||||
CK | 17.97 ± 0.29 a | 4.76 ± 0.04 a | 3.28 ± 0.04 a | 5.74 ± 0.09 a | 1.75 ± 0.03 a |
Na + Si0 | 13.77 ± 0.59 c | 3.69 ± 0.15 c | 2.84 ± 0.09 c | 4.13 ± 0.03 c | 1.45 ± 0.04 c |
Na + Si1 | 17.26 ± 1.01 a | 4.80 ± 0.02 a | 3.25 ± 0.08 a | 5.22 ± 0.11 b | 1.61 ± 0.01 b |
Na + Si2 | 15.70 ± 0.58 b | 4.01 ± 0.04 b | 3.02 ± 0.09 b | 4.44 ± 0.42 c | 1.47 ± 0.11 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Xue, X.; Xu, H.; Yang, Y.; Kuang, Z.; Hou, X. Amelioration of Salt-Induced Damage on Paeonia ostii ‘Fengdan’ by Exogenous Application of Silicon. Agronomy 2023, 13, 1349. https://doi.org/10.3390/agronomy13051349
Shi X, Xue X, Xu H, Yang Y, Kuang Z, Hou X. Amelioration of Salt-Induced Damage on Paeonia ostii ‘Fengdan’ by Exogenous Application of Silicon. Agronomy. 2023; 13(5):1349. https://doi.org/10.3390/agronomy13051349
Chicago/Turabian StyleShi, Xinlong, Xian Xue, Huimin Xu, Yueqin Yang, Zuoxiang Kuang, and Xiaogai Hou. 2023. "Amelioration of Salt-Induced Damage on Paeonia ostii ‘Fengdan’ by Exogenous Application of Silicon" Agronomy 13, no. 5: 1349. https://doi.org/10.3390/agronomy13051349
APA StyleShi, X., Xue, X., Xu, H., Yang, Y., Kuang, Z., & Hou, X. (2023). Amelioration of Salt-Induced Damage on Paeonia ostii ‘Fengdan’ by Exogenous Application of Silicon. Agronomy, 13(5), 1349. https://doi.org/10.3390/agronomy13051349