Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Germplasm
2.2. Experimental Design
2.3. Near-Infrared Scanning
2.3.1. Near-Infrared Calibration
Protein Content
Calibration
Validation
2.4. Protein Concentrations and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biel, W.; Kazimierska, K.; Bashutska, U. Nutritional value of wheat, triticale, barley and oat grains. Acta Sci. Pol. Zootech. 2020, 19, 19–28. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization. 2022. Available online: https://www.fao.org/faostat/en/#data (accessed on 20 June 2018).
- Dahlberg, J.A. Classification and characterization of sorghum. In Sorghum; Smith, C.W., Frederick, J.R., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 2000; pp. 99–130. [Google Scholar]
- Awika, J.M.; Rooney, L.W. Sorghum phytochemicals and their potential impact on human health. Phytochemistry 2004, 65, 1199–1221. [Google Scholar] [CrossRef]
- Rhodes, D.H.; Hoffmann, L.; Rooney, W.L.; Herald, T.J.; Bean, S.; Boyles, R.; Brenton, Z.W.; Kresovich, S. Genetic architecture of kernel composition in global sorghum germplasm. BMC Genom. 2017, 18, 15. [Google Scholar] [CrossRef]
- Peiris, K.H.; Bean, S.R.; Chiluwal, A.; Perumal, R.; Jagadish, S.K. Moisture effects on robustness of sorghum grain protein near-infrared spectroscopy calibration. Cereal Chem. 2019, 96, 678–688. [Google Scholar] [CrossRef]
- Ratnavathi, C.; Patil, J. Sorghum utilization as food. Nutr. Food Sci. 2013, 4, 1–8. [Google Scholar] [CrossRef]
- Belton, P.; Delgadillo, I.; Halford, N.; Shewry, P. Kafirin structure and functionality. J. Cereal Sci. 2006, 44, 272–286. [Google Scholar] [CrossRef]
- Duodu, K.G.; Taylor, J.R.N.; Belton, P.S.; Hamaker, B.R. Factors affecting sorghum protein digestibility. J. Cereal Sci. 2003, 38, 117–131. [Google Scholar] [CrossRef]
- Dudley, J.; Lambert, R. 100 generations of selection for oil and protein in corn. Plant. Breed. Rev. 2010, 24, 79–110. [Google Scholar]
- Smith, C.W.; Frederiksen, R.A. Sorghum: Origin, History, Technology and Production; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Casa, A.M.; Pressoir, G.; Brown, P.J.; Mitchell, S.E.; Rooney, W.L.; Tuinstra, M.R.; Franks, C.D.; Kresovich, S. Community resources and strategies for association mapping in sorghum. Crop Sci. 2008, 48, 30–40. [Google Scholar] [CrossRef]
- Sukumaran, S.; Xiang, W.; Bean, S.R.; Pedersen, J.F.; Kresovich, S.; Tuinstra, M.R.; Tesso, T.T.; Hamblin, M.T.; Yu, J. Association mapping for grain quality in a diverse sorghum collection. Plant Genome 2012, 5. [Google Scholar] [CrossRef]
- Shegro, A.; Shargie, N.G.; van Biljon, A.; Labuschagne, M.T. Diversity in starch, protein and mineral composition of sorghum landrace accessions from Ethiopia. J. Crop Sci. Biotechnol. 2012, 15, 275–280. [Google Scholar] [CrossRef]
- Mofokeng, M.; Shimelis, H.; Tongoona, P.; Laing, M. Protein content and amino acid composition among selected South African sorghum genotypes. J. Food Chem. Nutr. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Abdelhalim, T.S.; Kamal, N.M.; Hassan, A.B. Nutritional potential of wild sorghum: Grain quality of Sudanese wild sorghum genotypes (Sorghum bicolor L. Moench). Food Sci. Nutr. 2019, 7, 1529–1539. [Google Scholar] [CrossRef]
- De Alencar Figueiredo, L.F.; Davrieux, F.; Fliedel, G.; Rami, J.-F.; Chantereau, J.; Deu, M.; Courtois, B.; Mestres, C. Development of NIRS equations for food grain quality traits through exploitation of a core collection of cultivated sorghum. J. Agric. Food Chem. 2006, 54, 8501–8509. [Google Scholar] [CrossRef]
- Igne, B.; Gibson, L.; Rippke, G.; Schwarte, A.; Hurburgh, C., Jr. Triticale moisture and protein content prediction by near-infrared spectroscopy (NIRS). Cereal Chem. 2007, 84, 328–330. [Google Scholar] [CrossRef]
- Dowell, F.; Maghirang, E.; Xie, F.; Lookhart, G.; Pierce, R.; Seabourn, B.; Bean, S.; Wilson, J.; Chung, O. Predicting wheat quality characteristics and functionality using near-infrared spectroscopy. Cereal Chem. 2006, 83, 529–536. [Google Scholar] [CrossRef]
- Dahlberg, J.A.; Burke, J.J.; Rosenow, D.T. Development of a sorghum core collection: Refinement and evaluation of a subset from Sudan. Econ. Bot. 2004, 58, 556–567. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Fermin-Perez, R.A.; Prom, L.K.; Cooper, E.A.; Bean, S.; Rooney, W.L. Genome-wide association mapping of gain mod resistance in the US Sorghum Association Panel. Plant Genome 2019, 12, 180070. [Google Scholar] [CrossRef]
- Foss, T. The Determination of Nitrogen According to Kjeldahl Using Block Digestion and Steam Distillation. Hoganas Swed. Appl. Note. 2002. Available online: https://www.scribd.com/doc/160712141/AN300 (accessed on 20 June 2018).
- Bernardo, R. Breeding for Quantitative Traits in Plants; Stemma Press: Woodbury, MN, USA, 2002. [Google Scholar]
- Goettel, W.; Zhang, H.; Li, Y.; Qiao, Z.; Jiang, H.; Hou, D.; Song, Q.; Pantalone, V.R.; Song, B.-H.; Yu, D. POWR1 is a domestication gene pleiotropically regulating seed quality and yield in soybean. Nat. Commun. 2022, 13, 3051. [Google Scholar] [CrossRef]
- Cuevas, H.E.; Prom, L.K.; Rosa-Valentin, G. Population structure of the NPGS Senegalese sorghum collection and its evaluation to identify new disease resistant genes. PLoS ONE 2018, 13, e0191877. [Google Scholar] [CrossRef]
- Morris, G.P.; Rhodes, D.H.; Brenton, Z.; Ramu, P.; Thayil, V.M.; Deshpande, S.; Hash, C.T.; Acharya, C.; Mitchell, S.E.; Buckler, E.S.; et al. Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3—Genes Genomes Genet. 2013, 3, 2085–2094. [Google Scholar] [CrossRef] [PubMed]
- Ibraheem, F.; Gaffoor, I.; Chopra, S. Flavonoid Phytoalexin-Dependent Resistance to Anthracnose Leaf Blight Requires a Functional yellow seed1 in Sorghum bicolor. Genetics 2010, 184, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Y.; Li, X.R.; Xiang, W.W.; Zhu, C.S.; Lin, Z.W.; Wu, Y.; Li, J.R.; Pandravada, S.; Ridder, D.D.; Bai, G.H.; et al. Presence of tannins in sorghum grains is conditioned by different natural alleles of Tannin1. Proc. Natl. Acad. Sci. USA 2012, 109, 10281–10286. [Google Scholar] [CrossRef]
- Rhodes, D.H.; Hoffmann, L.; Rooney, W.L.; Ramu, P.; Morris, G.P.; Kresovich, S. Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) Moench] germplasm. J. Agric. Food Chem. 2014, 62, 10916–10927. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, H.E.; Rosa-Valentin, G.; Hayes, C.M.; Rooney, L.W.; Hoffmann, L. Genomic characterization of a core set of the USDA-NPGS Ethiopian sorghum germplasm collection: Implications for germplasm conservation, evaluation, and utilization in crop improvement. BMC Genom. 2017, 18, 108. [Google Scholar] [CrossRef] [PubMed]
- Dykes, L.; Hoffmann, L.; Portillo-Rodriguez, O.; Rooney, W.L.; Rooney, L.W. Prediction of total phenols, condensed tannins, and 3-deoxyanthocyanidins in sorghum grain using near-infrared (NIR) spectroscopy. J. Cereal Sci. 2014, 60, 138–142. [Google Scholar] [CrossRef]
Sample Set | n | Means ± S.D. 1 | Minimum | Maximum |
---|---|---|---|---|
Calibration | 28 | 10.36 ± 2.51 | 5.55 | 16.09 |
Validation | 78 | 10.32 ± 2.44 | 6.11 | 15.85 |
Panel | ||||
2018 | 228 | 09.99 ± 2.40 | 3.23 | 17.43 |
2020 | 228 | 12.24 ± 2.42 | 6.76 | 21.13 |
2022 | 228 | 09.06 ± 2.02 | 3.61 | 16.33 |
Accession | Origin | Mean ± S.D. 1 | Race | Seed Color |
---|---|---|---|---|
PI 525907 | Mali | 15.00 ± 1.96 | Guinea | Light Brown |
PI 563345 | Burkina Faso | 14.96 ± 2.09 | Guinea | Red |
PI 525919 | Mali | 14.79 ± 2.05 | Guinea | White |
PI 586420 | Sierra Leone | 14.77 ± 2.38 | Guinea | White |
PI 525906 | Mali | 14.76 ± 0.97 | Guinea | White |
PI 585975 | Togo | 14.24 ± 2.98 | Guinea | White |
PI 525910 | Mali | 14.23 ± 2.15 | Guinea-bicolor | White |
PI 515900 | Togo | 14.20 ± 1.54 | Guinea | White |
PI 510953 | Botswana | 13.55 ± 1.41 | Guinea-kafir | Light Brown |
PI 586409 | Sierra Leone | 13.55 ± 2.53 | Guinea | Light Red |
PI 560375 | South Africa | 13.54 ± 3.12 | Kafir | Light Brown |
PI 514590 | Senegal | 13.10 ± 0.82 | Guinea-bicolor | Light Brown |
PI 513901 | Benin | 13.02 ± 2.80 | Guinea | White |
PI 585477 | Ghana | 12.96 ± 3.09 | Guinea | Red |
PI 585795 | Mali | 12.94 ± 1.70 | Guinea | White |
PI 585983 | Benin | 12.84 ± 2.87 | Guinea | White |
SC112 | Improved | 11.20 ± 3.12 | n.a. | n.a. |
Red Amber | Improved | 10.73 ± 2.04 | n.a. | n.a. |
SC15 | Improved | 10.16 ± 2.09 | n.a. | n.a. |
SC309 | Improved | 09.76 ± 1.30 | n.a. | n.a. |
Keller | Improved | 09.03 ± 1.18 | n.a. | n.a. |
Rox Orange | Improved | 08.61 ± 1.16 | n.a. | n.a. |
Kansas Orange | Improved | 07.54 ± 1.99 | n.a. | n.a. |
RTx430 | Improved | 06.83 ± 3.92 | n.a. | n.a. |
6550 Sumac | Improved | 06.69 ± 1.24 | n.a. | n.a. |
Seed Color 1 | |||||||
---|---|---|---|---|---|---|---|
Country 2 | n | Protein ± S.D. 3 | White | Light Brown | Light Red | Brown | Red |
MLI | 33 | 11.53 ± 1.47 A | 18 | 14 | 1 | 0 | 0 |
TGO | 22 | 11.22 ± 1.44 AB | 7 | 6 | 5 | 0 | 1 |
BEN | 13 | 11.10 ± 1.23 ABC | 5 | 0 | 5 | 0 | 0 |
SEA | 12 | 10.83 ± 1.16 ABCD | 5 | 6 | 0 | 0 | 0 |
GHA | 10 | 10.71 ± 1.08 ABCDE | 0 | 1 | 2 | 1 | 2 |
NGA | 10 | 10.67 ± 0.87 ABCDE | 3 | 0 | 4 | 2 | 1 |
BFA | 12 | 10.39 ± 2.00 ABCDE | 4 | 4 | 0 | 0 | 3 |
CMR | 5 | 10.07 ± 2.37 BCDEF | 1 | 2 | 0 | 1 | 1 |
ZMB | 18 | 10.01 ± 1.51 BCDEFG | 5 | 5 | 0 | 7 | 1 |
MWI | 6 | 09.88 ± 1.04 CDEFG | 0 | 1 | 0 | 2 | 2 |
ZAF | 7 | 09.74 ± 1.89 DEFG | 2 | 1 | 2 | 0 | 0 |
ZWE | 12 | 09.55 ± 0.67 EFG | 0 | 5 | 2 | 1 | 4 |
BDI | 13 | 09.05 ± 1.23 FG | 0 | 0 | 1 | 0 | 11 |
KEN | 5 | 08.87 ± 0.91 FG | 0 | 0 | 0 | 1 | 4 |
UGA | 29 | 08.76 ± 1.57 G | 2 | 2 | 0 | 8 | 16 |
RWA | 9 | 08.28 ± 1.25 H | 0 | 1 | 0 | 0 | 8 |
Protein ± S.D. 3 | |||||||
10.90 ± 2.02 A | 10.77 ± 1.38 A | 10.48 ± 1.40 A | 9.52 ± 1.32 B | 9.27 ± 1.72 B |
Seed Color 1 | |||||||
---|---|---|---|---|---|---|---|
Race 2 | n | Protein ± S.D. 3 | White | Light Brown | Light Red | Brown | Red |
Gui-Bic | 7 | 11.56 ± 1.62 A | 2 | 4 | 0 | 0 | 0 |
Gui-Kaf | 8 | 11.32 ± 1.09 A | 2 | 4 | 0 | 2 | 0 |
Gui | 85 | 11.10 ± 1.61 A | 32 | 24 | 16 | 1 | 5 |
Gui-Cau | 7 | 10.53 ± 1.08 AB | 4 | 1 | 0 | 1 | 0 |
Kaf | 26 | 09.81 ± 1.47 CB | 5 | 3 | 0 | 3 | 12 |
Kaf-Bic | 10 | 09.79 ± 1.21 CB | 1 | 0 | 0 | 5 | 3 |
Kaf-Cau | 19 | 09.75 ± 1.42 CB | 1 | 8 | 3 | 4 | 2 |
Kaf-Dur | 19 | 09.14 ± 1.48 C | 3 | 3 | 1 | 1 | 10 |
Cau | 30 | 08.73 ± 1.62 C | 2 | 2 | 2 | 9 | 14 |
Protein ± S.D.3 | |||||||
10.90 ± 2.02 A | 10.77 ± 1.38 A | 10.48 ± 1.40 A | 9.52 ± 1.32 B | 9.27 ± 1.72 B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cuevas, H.E.; Peiris, K.H.S.; Bean, S.R. Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection. Agronomy 2023, 13, 1330. https://doi.org/10.3390/agronomy13051330
Cuevas HE, Peiris KHS, Bean SR. Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection. Agronomy. 2023; 13(5):1330. https://doi.org/10.3390/agronomy13051330
Chicago/Turabian StyleCuevas, Hugo E., Kamaranga H. S. Peiris, and Scott R. Bean. 2023. "Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection" Agronomy 13, no. 5: 1330. https://doi.org/10.3390/agronomy13051330
APA StyleCuevas, H. E., Peiris, K. H. S., & Bean, S. R. (2023). Assessment of Grain Protein in Tropical Sorghum Accessions from the NPGS Germplasm Collection. Agronomy, 13(5), 1330. https://doi.org/10.3390/agronomy13051330