Living Mulch as Sustainable Tool to Improve Leaf Biomass and Phytochemical Yield of Cynara cardunculus var. altilis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Weather Conditions
2.3. Biomass Yield and Primary Metabolites Analysis
2.4. Secondary Metabolites Analysis
2.5. Chemicals and Standards
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biomass Yield and Primary Metabolites
3.2. Secondary Metabolites Analysis
3.3. Correlation Coefficients
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Robačer, M.; Canali, S.; Kristensen, H.L.; Bavec, F.; Mlakar, S.G.; Jakop, M.; Bavec, M. Cover crops in organic field vegetable production. Sci. Hortic. 2016, 208, 104–110. [Google Scholar] [CrossRef]
- Bhaskar, V.; Bellinder, R.R.; Reiners, S.; DiTommaso, A. Reduced herbicide rates for control of living mulch and weeds in fresh market tomato. Weed Technol. 2020, 34, 55–63. [Google Scholar] [CrossRef]
- Scavo, A.; Restuccia, A.; Abbate, C.; Lombardo, S.; Fontanazza, S.; Pandino, G.; Anastasi, U.; Mauromicale, G. Trifolium subterraneum cover cropping enhances soil fertility and weed seedbank dynamics in a Mediterranean apricot orchard. Agron. Sustain. Dev. 2021, 41, 70. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agron Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Sportelli, M.; Frasconi, C.; Fontanelli, M.; Pirchio, M.; Gagliardi, L.; Raffaelli, M.; Peruzzi, A.; Antichi, D. Innovative living mulch management strategies for organic conservation field vegetables: Evaluation of continuous mowing, flaming, and tillage performances. Agronomy 2022, 12, 622. [Google Scholar] [CrossRef]
- Adamczewska-Sowińska, K. Wpływ żywych ściółek na plonowanie i wartość biologiczną papryki. Zesz. Probl. Post. Nauk Rol. 2008, 527, 59–65. [Google Scholar]
- Adamczewska-Sowińska, K.; Kołota, E. Wartość nawozowa żywych ściółek stosowanych w uprawie pomidora i papryki. Zesz. Probl. Post. Nauk Rol. 2009, 539, 23–29. [Google Scholar]
- Adamczewska-Sowińska, K.; Kołota, E. Yielding and nutritive value of field cultivated eggplant with use of living and synthetic mulches. Acta Sci. Pol. Hortorum Cultus 2010, 9, 191–199. [Google Scholar]
- Adamczewska-Sowińska, K.; Kołota, E.; Winiarska, S. Living mulches in field cultivation of vegetables. Veget. Crops Resear. Bullet. 2009, 70, 19–29. [Google Scholar] [CrossRef]
- Pesce, G.R.; Mauromicale, G. Cynara cardunculus L.: Historical and economic importance, botanical descriptions, genetic resources and traditional uses. In The Globe Artichoke Genome, Compendium of Plant Genomes; Portis, E., Acquadro, A., Lanteri, S., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 1–19. [Google Scholar] [CrossRef]
- Portis, E.; Scaglione, D.; Acquadro, A.; Mauromicale, G.; Mauro, R.; Knapp, S.; Lanteri, S. Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res. Notes 2012, 5, 252. [Google Scholar] [CrossRef]
- Rossoni, G.; Grande, S.; Galli, C.; Visioli, F. Wild artichoke prevents the age-associated loss of vasomotor function. J. Agric. Food Chem. 2005, 53, 10291–10296. [Google Scholar] [CrossRef]
- Hamza, R.A.; Mostafa, I.; Mohamed, Y.S.; Dora, G.A.; Ateya, A.; Abdelaal, M.; Fantoukh, O.I.; Alqahtani, A.; Attia, R.A. Bioguided isolation of potential antitumor agents from the aerial parts of cultivated cardoon (Cynara cardunculus varaltilis). Saudi Pharm. J. 2023, 31, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, R.; Fausel, M. Antioxidant and hepatoprotective effects of artichoke extracts and constituents in cultured rat hepatocytes. Toxicol. In Vitro 1997, 11, 669–672. [Google Scholar] [CrossRef] [PubMed]
- Bundy, R.; Walker, A.F.; Middleton, R.W.; Wallis, C.; Simpson, H.C.R. Artichoke leaf extract (Cynara scolymus) reduced plasma cholesterol in otherwise healthy hypercholesterolemic adults: A randomized, double blind placebo controlled trial. Phytomedicine 2008, 15, 668–675. [Google Scholar] [CrossRef] [PubMed]
- Gebhardt, R. Choleretic and anticholestatic activities of flavonoids of artichoke (Cynara cardunculus L. subspscolymus (L.) Hayek). Acta Hort. 2005, 681, 429–435. [Google Scholar] [CrossRef]
- Speroni, E.; Cervellati, R.; Covoni, P.; Guizzardi, S.; Renzulli, C.; Guerra, M. Efficacy of different Cynara scolymus preparation of liver complaints. J. Ethnopharmacol. 2003, 86, 203–211. [Google Scholar] [CrossRef]
- Kraft, K. Artichoke leaf extract-recent findings reflecting effects on lipid metabolism, liver, and gastrointenstinal tracts. Phytomedicine 1997, 4, 369–378. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Williamson, G.; Mauromicale, G. Flavonoids content of Cynara cardunculus L. Wild and cultivated germplasm accessions. Acta Hortic. 2013, 983, 81–86. [Google Scholar] [CrossRef]
- Barracosa, P.; Barracosa, M.; Pires, E. Cardoon as a sustainable crop for biomass and bioactive compounds production. Chem. Biodivers. 2019, 16, e1900498. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The influence of pre-harvest factors on the quality of globe artichoke. Sci. Hort. 2018, 233, 479–490. [Google Scholar] [CrossRef]
- Pinelli, P.; Agostini, F.; Comino, C.; Lanteri, S.; Portis, E.; Romani, A. Simultaneous quantification of caffeoyl esters and flavonoids in wild and cultivated cardoon leaves. Food Chem. 2007, 105, 1695–1701. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauro, R.P.; Mauromicale, G. Variation in polyphenol profile and head morphology among clones of globe artichoke selected from a landrace. Sci. Hort. 2012, 138, 259–265. [Google Scholar] [CrossRef]
- Benlloch-Gonzàlez, M.; Fournier, J.M.; Ramos, J.; Benlloch, M. Strategies underlying salt tolerance in halophytes are present in Cynara cardunculus. Plant Sci. 2005, 168, 635–659. [Google Scholar] [CrossRef]
- Pandino, G.; Bonomo, A.; Scavo, A.; Mauromicale, G.; Lombardo, S. Caffeoylquinic acids and flavones profile in Cynara cardunculus L. seedlings under controlled conditions as affected by light and water-supply treatments. Sci. Hortic. 2022, 302, 111180. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Characterization of phenolic acids and flavonoids in leaves, stems, bracts and edible parts of globe artichokes. Acta Hort. 2012, 942, 413–417. [Google Scholar] [CrossRef]
- Pandino, G.; Meneghini, M.; Tavazza, R.; Lombardo, S.; Mauromicale, G. Phytochemicals accumulation and antioxidant activity in callus and suspension cultures of Cynara scolymus L. Plant Cell Tissue Organ Cult. 2017, 128, 223–230. [Google Scholar] [CrossRef]
- Sałata, A.; Gruszecki, R. The quantitative analysis of poliphenolic compounds in different parts of the globe artichoke (Cynara scolymus L.) depending on growth stage of plants. Acta Sci. Pol. Hortorum Cultus 2010, 9, 175–181. [Google Scholar]
- Pandino, G.; Lombardo, S.; Moglia, A.; Portis, E.; Lanteri, S.; Mauromicale, G. Leaf polyphenol profile and SSR-based fingerprinting of new segregant Cynara cardunculus genotypes. Front. Plant Sci. 2015, 5, 800. [Google Scholar] [CrossRef]
- Galvez, C.J.; Martin-Cordero, P.; Houghton, A.M. Antioxidant activity of methanol extract obtained from Plantago species. J. Agric. Food Chem. 2005, 53, 1927–1933. [Google Scholar] [CrossRef]
- Sałata, A.; Lombardo, S.; Pandino, G.; Mauromicale, G.; Buczkowska, H.; Nurzyńska-Wierdak, R. Biomass yield and polyphenol compounds profile in globe artichoke as affected by irrigation frequency and drying temperature. Ind. Crops Prod. 2022, 176, 114375. [Google Scholar] [CrossRef]
- Pandino, G.; Barbagallo, R.N.; Lombardo, S.; Restuccia, C.; Muratore, G.; Licciardello, F.; Mazzaglia, A.; Ricceri, J.; Pesce, G.R.; Mauromicale, G. Quality traits of ready-to-use globe artichoke slices as affected by genotype, harvest time and storage time. Part I: Biochemical and physical aspects. Food Sci. Technol. 2017, 76, 181–189. [Google Scholar] [CrossRef]
- PN-72/A-75050; Fruit and Vegetable Products, Wines and Meads—Sampling. Polish Committee for Standardization: Warsaw, Poland, 1972.
- PN-90/A-75101/03; Fruit and Vegetable Preserves. Determination of Dry Weight Content. Polish Committee for Standardization: Warsaw, Poland, 1990.
- Jakubowski, S. Modyfikacja metody Henneberga i Stochmanna oznaczania włókna surowego. Biul. Inst. Hod. Rośl. Radzików 1980, 142, 88. [Google Scholar]
- PN-A-75101-07; Fruit and Vegetable Products—Sample Preparation and Methods of Physicochemical Analyses—Determination of Sugar Content and Non-Sugar Extract Content. Polish Committee for Standardization: Warsaw, Poland, 1990.
- PN-A-04019; Food Products—Determination of Vitamin C Content. Polish Committee for Standardization: Warsaw, Poland, 1998.
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. Trans. 1983, 603, 591–592. [Google Scholar] [CrossRef]
- Dewanto, V.X.; Wu, K.; Adom, K.; Liu, R.H. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 2002, 97, 654–660. [Google Scholar] [CrossRef]
- IUPAC. Nomenclature of cyclitols. Biochem. J. 1976, 153, 23–31. [Google Scholar]
- Yen, G.C.; Chen, H.Y. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agric. Food Chem. 1995, 43, 27–32. [Google Scholar] [CrossRef]
- Hauggaard-Nielsen, H.; Jensen, E.S. Facilitative root interactions in intercrops. Plant Soil 2005, 274, 237–250. [Google Scholar] [CrossRef]
- Li, L.; Tilman, D.; Lambers, H.; Zhang, F.S. Plant diversity and overyielding: Insights from belowground facilitation of intercropping in agriculture. New Phytol. 2014, 203, 63–69. [Google Scholar] [CrossRef]
- Lombardo, S.; Mauromicale, G. Herbaceous field crops’ cultivation. Agronomy 2021, 11, 742. [Google Scholar] [CrossRef]
- Boari, F.; Schiattone, M.I.; Calabrese, N.; Montesano, F.F.; Cantore, V. Effect of nitrogen management on wild and domestic genotypes of cardoon for agro-energy purpose. Acta Hortic. 2016, 1147, 15–22. [Google Scholar] [CrossRef]
- Toukabri, W.; Ferchichi, N.; Hlel, D.; Jadlaoui, M.; Kheriji, O.; Zribi, F.; Taamalli, W.; Mhamdi, R.; Trabelsi, D. Improvements of durum wheat main crop in weed control, productivity and grain quality through the inclusion of fenugreek and clover as companion plants: Effect of N fertilization regime. Agronomy 2021, 11, 78. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Barros, L. Chemical composition of Cynara cardunculus L. varaltilis bracts cultivated in Central Greece: The impact of harvesting time. Agronomy 2020, 10, 1976. [Google Scholar] [CrossRef]
- Pandino, G.; Mauromicale, G. Globe artichoke and cardoon forms between traditional and modern uses. Acta Hort. 2020, 1284, 1–18. [Google Scholar] [CrossRef]
- Ben Salem, M.; Affes, H.; Ksouda, K.; Dhouibi, R.; Sahnoun, Z.; Hammami, S.; Zeghal, K.M. Pharmacological Studies of Artichoke Leaf Extract and Their Health Benefits. Plant Foods Hum. Nutr. 2015, 70, 441–453. [Google Scholar] [CrossRef]
- Silva, L.R.; Jacinto, T.A.; Coutinho, P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022, 11, 336. [Google Scholar] [CrossRef]
- Rial, C.; Novaes, P.; Varela, R.M.; Molinillo, J.M.G.; Macías, F.A. Phytotoxicity of cardoon (Cynara cardunculus) allelochemicals on standard target species and weeds. J. Agric. Food Chem. 2014, 62, 6699–6706. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, C.; Parafati, L.; Cirvilleri, G.; Mauromicale, G. Antimicrobial activity of cultivated cardoon (Cynara cardunculus L. varaltilis DC.) leaf extracts against bacterial species of agricultural and food interest. Ind. Crops Prod. 2019, 129, 206–211. [Google Scholar] [CrossRef]
- Scavo, A.; Pandino, G.; Restuccia, A.; Lombardo, S.; Pesce, G.R.; Mauromicale, G. Allelopathic potential of leaf aqueous extracts from Cynara cardunculus L. on the seedling growth of two cosmopolitan weed species. Ital. J. Agron. 2019, 14, 78–83. [Google Scholar] [CrossRef]
- Pandino, G.; Gattesco, F.; Bosisio, S.; Lombardo, S.; Russo, A.; Mauromicale, G. Cynaropicrin, total caffeoylquinic acids and flavonoids in leaves of Cynara cardunculus (cardoon) forms. Acta Hortic. 2020, 1284, 279–284. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Lo Monaco, A.; Mauromicale, G. Choice of time of harvest influences the polyphenol profile of globe artichoke. J. Funct. Foods 2013, 5, 1822–1828. [Google Scholar] [CrossRef]
- Mandim, F.; Petropoulos, S.A.; Giannoulis, K.D.; Dias, M.I.; Fernandes, Â.; Pinela, J.; Kostic, M.; Soković, M.; Barros, L.; Santos-Buelga, C.; et al. Seasonal variation of bioactive properties and phenolic composition of Cynara cardunculus varaltilis. Food Res. Int. 2020, 134, 109281. [Google Scholar] [CrossRef] [PubMed]
- Steuer, R.; Kurths, J.; Fiehn, O.; Weckwerth, W. Interpreting correlations in metabolomic networks. Biochem. Soc. Trans. 2003, 31, 1476–1478. [Google Scholar] [CrossRef] [PubMed]
- Pandino, G.; Lombardo, S.; Mauromicale, G.; Williamson, G. Phenolic acid and flavonoids in leaf and floral stem of cultivated and wild Cynara cardunculus L. genotypes. Food Chem. 2011, 126, 417–422. [Google Scholar] [CrossRef]
- Ierna, A.; Mauro, R.P.; Mauromicale, G. Biomass, grain and energy yield in Cynara cardunculus L. as affected by fertilization, genotype and harvest time. Biomass Bioenergy 2012, 36, 404–410. [Google Scholar] [CrossRef]
- Valentão, P.; Fernandes, E.; Carvalho, F.; Andrade, P.B.; Seabra, R.M.; Bastos, M.L. Antioxidative properties of cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J. Agric. Food Chem. 2002, 50, 4989–4993. [Google Scholar] [CrossRef]
- Ruiz-Cano, D.; Pérez-Llamas, F.; Frutos, M.J.; Arnao, M.B.; Espinosa, C.; López-Jiménez, J.A.; Castillo, J.; Zamora, S. Chemical and functional properties of the different by-products of artichoke (Cynara scolymus L.) from industrial canning processing. Food Chem. 2014, 160, 134–140. [Google Scholar] [CrossRef]
Years | Month | |||||||
---|---|---|---|---|---|---|---|---|
April | May | June | July | August | September | October | Average/ Sum | |
Temperature (°C) | ||||||||
2018 | 7.5 | 16.7 | 18.8 | 20.6 | 20.8 | 15.5 | 10.0 | 15.7 |
2019 | 9.5 | 13.4 | 21.5 | 19.4 | 20.3 | 14.5 | 11.0 | 15.6 |
1951–2010 | 7.4 | 13.0 | 16.2 | 17.8 | 17.1 | 12.6 | 12.4 | 13.7 |
Rainfall (mm) | ||||||||
2018 | 40 | 56 | 65 | 124 | 72 | 68 | 36 | 461 |
2019 | 49 | 93 | 37 | 38 | 102 | 52 | 29 | 400 |
1951–2010 | 39 | 58 | 66 | 84 | 69 | 54 | 58 | 428 |
Parameter | CS a | HT b | GS c | (CS) × (HT) | (CS) × (GS) | (ST) × (GS) |
---|---|---|---|---|---|---|
Yield | 0.003 * | <0.001 * | 0.245 NS | 0.206 NS | 0.766 NS | 0.266 NS |
Yield of air-dried biomass | 0.009 ** | 0.001 ** | 0.010 * | 0.008 ** | 0.031 * | 0.065 NS |
Dry matter | <0.001 *** | 0.001 ** | 0.867 NS | 0.168 NS | 0.220 NS | 0.800 NS |
Crude fibre | 0.267 NS | 0.009 ** | 0.345 NS | 0.684 NS | 0.160 NS | 0.055 NS |
Total sugars | 0.345 NS | 0.442 NS | 0.234 NS | 0.343 NS | 0.534 NS | 0.715 NS |
L-ascorbic acid | 0.206 NS | 0.260 NS | 0.001 ** | 0.978 NS | 0.007 ** | 0.268 NS |
Total chlorophyll | 0.480 NS | <0.001 *** | 0.504 NS | 0.115 NS | 0.898 NS | 0.896 NS |
Total phenolic compounds | 0.121 NS | 0.025 * | <0.001 *** | 0.274 NS | 0.326 NS | 0.075 NS |
Caffeic acid | <0.001 NS | 0.010 * | <0.001 *** | 0.205 NS | 0.677 NS | 0.309 NS |
Chlorogenic acid | 0.144 ** | 0.002 ** | <0.001 *** | 0.025 | <0.001 *** | 0.004 ** |
Cynarin | 0.895 ** | <0.001 *** | <0.001 *** | 0.245 NS | 0.345 NS | 0.756 NS |
Apigenin-7-O-glucoside | <0.001 *** | <0.001 *** | <0.001 *** | <0.001 *** | 0.946 NS | 0.417 NS |
Luteolin-7-O-glucoside | <0.001 *** | 0.003 ** | <0.001 *** | <0.001 *** | 0.878 NS | 0.545 NS |
DPPH | 0.858 NS | <0.001 *** | <0.001 *** | 0.270 NS | 0.330 NS | 0.029 * |
Factor | Y | YDM | DM | CF | TS | LAA | TCh | |
---|---|---|---|---|---|---|---|---|
Cultivation system | nLM 2 | 79.1 ± 2.2 b | 8.33 ± 0.33 b | 10.54 ± 3.3 b | 11.19 ± 4.5 a | 0.90 ± 0.05 a | 2.58 ± 0.55 a | 9.27 ± 0.18 a |
LM 3 | 89.0 ± 2.3 a | 11.09 ± 0.34 a | 12.46 ± 3.2 a | 11.54 ± 4.4 a | 1.00 ± 0.05 a | 2.64 ± 0.55 a | 9.21 ± 0.18 a | |
Harvest time | 90 4 | 79.3 ± 1.9 c | 8.93 ± 0.16 b | 11.27 ± 3.1 b | 10.80 ± 3.9 b | 0.95 ± 0.03 a | 2.63 ± 0.52 a | 8.46 ± 0.28 c |
120 | 81.6 ± 1.5 b | 9.55 ± 0.20 b | 11.71 ± 3.4 a | 11.67 ± 3.8 a | 0.94 ± 0.03 a | 2.60 ± 0.53 a | 9.82 ± 0.26 a | |
150 | 91.3 ± 2.0 a | 10.52 ± 0.18 a | 11.52 ± 3.5 a | 11.65 ± 4.2 a | 0.95 ± 0.00 a | 2.60 ± 0.56 a | 9.43 ± 0.25 b | |
Growing season | 2018 | 86.1 ± 2.4 a | 9.91 ± 0.38 a | 11.51 ± 3.6 a | 11.58 ± 4.7 a | 1.01 ± 0.05 a | 2.98 ± 0.45 a | 9.45 ± 0.34 a |
2019 | 82.0 ± 2.3 a | 9.42 ± 0.37 b | 11.49 ± 3.7 a | 11.15 ± 4.9 a | 0.89 ± 0.03 a | 2.34 ± 0.55 b | 9.03 ± 0.33 a |
Factor | TP | CAF | CHL | CYN | API | LUT | DPPH | |
---|---|---|---|---|---|---|---|---|
Cultivation system | nLM 1 | 366 ± 4.8 a | 1.25 ± 0.08 a | 15.08 ± 0.3 b | 5.50 ± 0.02 b | 140 ± 2.9 b | 0.83 ± 0.03 a | 119.0 ± 6.2 a |
LM 2 | 555 ± 4.7 a | 1.55 ± 0.09 a | 20.18 ± 0.3 a | 8.32 ± 0.02 a | 202 ± 2.5 a | 0.55 ± 0.02 b | 110.5 ± 4.4 a | |
Harvest time | 90 3 | 385± 4.0 c | 1.07± 0.01 b | 10.54± 0.1 b | 5.98± 0.01 b | 121 ± 1.1 c | 0.36 ± 0.02 b | 96.2 ± 3.74 c |
120 | 445± 4.9 b | 1.53± 0.08 a | 17.67± 0.2 b | 6.88± 0.01 a | 179 ± 1.3 b | 0.76 ± 0.01 a | 113.3 ± 1.17 b | |
150 | 540± 3.3 a | 1.68± 0.06 a | 25.35± 0.4 a | 7.68± 0.02 a | 213 ± 2.1 a | 0.84 ± 0.02 a | 134.8 ± 4.16 a | |
Growing season | 2018 | 509 ± 3.9 a | 1.68 ± 0.09 a | 19.52 ± 0.3 a | 7.33 ± 0.04 a | 205 ± 3.0 a | 0.99 ± 0.02 a | 150.0 ± 7.0 a |
2019 | 402 ± 4.9 b | 1.22 ± 0.07 b | 15.73 ± 0.4 b | 6.40 ± 0.05 b | 135 ± 2.1 b | 0.47 ± 0.01 b | 79.5 ± 6.7 b |
Cultivation System | Parameter | Y | YDM | DM | CF | TS | LAA | TCh |
---|---|---|---|---|---|---|---|---|
nLM 1 | Y | - | ||||||
YDM | 0.66 | - | ||||||
DM | ns | 0.62 | - | |||||
CF | ns | ns | ns | - | ||||
TS | ns | ns | 0.67 | ns | - | |||
LAA | ns | ns | −0.58 | ns | −0.67 | - | ||
TCh | 0.73 | ns | 0.64 | ns | 0.74 | ns | - | |
LM 2 | Y | - | ||||||
YDM | ns | - | ||||||
DM | 0.78 | 0.79 | - | |||||
CF | ns | 0.54 | 0.44 | - | ||||
TS | ns | ns | 0.64 | ns | - | |||
LAA | ns | ns | −0.78 | ns | ns | - | ||
TCh | 0.58 | ns | 0.65 | 0.64 | 0.85 | ns | - |
Cultivation System | Parameter | TP | CAF | CHL | CYN | API | LUT |
---|---|---|---|---|---|---|---|
nLM 1 | TP | - | |||||
CAF | 0.77 | - | |||||
CHL | 0.67 | ns | - | ||||
CYN | ns | ns | ns | - | |||
API | ns | −0.64 | ns | ns | - | ||
LUT | ns | −0.83 | ns | 0.74 | ns | - | |
LM 2 | TP | - | |||||
CAF | 0.98 | - | |||||
CHL | ns | 0.88 | - | ||||
CYN | ns | 0.77 | ns | - | |||
API | ns | −0.78 | ns | ns | - | ||
LUT | 0.78 | −0.58 | 0.64 | 0.85 | ns | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sałata, A.; Sękara, A.; Pandino, G.; Mauromicale, G.; Lombardo, S. Living Mulch as Sustainable Tool to Improve Leaf Biomass and Phytochemical Yield of Cynara cardunculus var. altilis. Agronomy 2023, 13, 1274. https://doi.org/10.3390/agronomy13051274
Sałata A, Sękara A, Pandino G, Mauromicale G, Lombardo S. Living Mulch as Sustainable Tool to Improve Leaf Biomass and Phytochemical Yield of Cynara cardunculus var. altilis. Agronomy. 2023; 13(5):1274. https://doi.org/10.3390/agronomy13051274
Chicago/Turabian StyleSałata, Andrzej, Agnieszka Sękara, Gaetano Pandino, Giovanni Mauromicale, and Sara Lombardo. 2023. "Living Mulch as Sustainable Tool to Improve Leaf Biomass and Phytochemical Yield of Cynara cardunculus var. altilis" Agronomy 13, no. 5: 1274. https://doi.org/10.3390/agronomy13051274
APA StyleSałata, A., Sękara, A., Pandino, G., Mauromicale, G., & Lombardo, S. (2023). Living Mulch as Sustainable Tool to Improve Leaf Biomass and Phytochemical Yield of Cynara cardunculus var. altilis. Agronomy, 13(5), 1274. https://doi.org/10.3390/agronomy13051274