The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Test Material
2.3. Experimental Design
2.4. Irrigation Method
2.5. Trial Management
2.6. Test Sampling and Measurement Methods
2.6.1. Soil Sample Collection
2.6.2. Extraction of Soil DOM
2.6.3. Fluorescence Spectroscopy Analysis and Data Processing
Data Processing and Volume Integration
Spectral Index Calculation
- (1)
- Fluorescence index (FI) is calculated [29] as below:
- (2)
- The formula of autogenous index/biological index (BIX) [29] is listed as below:
- (3)
- Humification index (HIX) is calculated [29] as below.
2.7. Statistical Analysis
3. Results and Analysis
3.1. Effects of Aerated Irrigation on DOM Fluorescence Components in Soil
3.2. Effects of Aerated Irrigation on DOM Spectral Index in Soil
3.3. Evolution Characteristics of DOM Fluorescence Components in Soil
3.4. Evolutionary Characteristics of Soil DOM Fluorescence Components Correlation Analysis of Soil DOM Fluorescence Components
4. Discussion
4.1. Effects of Aerated Irrigation on Soil DOM Components
4.2. Effect of Aerated Irrigation on Soil DOM Spectral Index
5. Conclusions
- (1)
- The composition of soil DOM under aerated irrigation showed that soil DOM components are dominated by humic acid-like substances, fulvic acid-like substances, tryptophan-like proteins, and supplemented by tyrosine-like proteins and dissolved microbial metabolites. Soil aeration could promote the consumption of soil DOM components under low irrigation. In contrast, soil aeration can accelerate the depletion of small molecular proteins and the accumulation of humus substances with higher molecular weight under high irrigation amounts. Plants can make better use of soil mineral nutrients under aerated irrigation. At the mature stage of pepper, the humification index of AI treatments ranged from 8.47 to 9.94 during the maturity growth stage of pepper, averagely increased by 31.59% compared with that in conventional subsurface drip irrigation.
- (2)
- Aerated irrigation is beneficial to the maintenance of soil fertility, has a positive effect on the DOM properties of the soil. To promote aerated irrigation in various environments, it was necessary to further study the influence mechanism of aerated irrigation on DOM humification process in long-term field conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roth, V.N.; Lange, M.; Simon, C.; Hertkorn, N.; Bucher, S.; Goodall, T.; Griffiths, R.I.; Mellado-Vázquez, P.G.; Mommer, L.; Oram, N.J.; et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 2019, 12, 755–761. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Li, R.; Qu, M. Effects of dissolved organic matter on environment. Ecol. Environ. 2004, 13, 271–275. (In Chinese) [Google Scholar]
- Kalbitz, K.; Solinger, S.; Park, J.H.; Michalzik, B.; Matzner, E. Controls on the dynamics of dissolved organic matter in soils: A review. Soil Sci. 2000, 165, 277–304. [Google Scholar] [CrossRef]
- Kaiser, K.; Kalbitz, K. Cycling downwards–dissolved organic matter in soils. Soil Biol. Biochem. 2012, 52, 29–32. [Google Scholar] [CrossRef]
- Pace, M.L.; Reche, I.; Cole, J.J.; Fernández-Barbero, A.; Mazuecos, I.P.; PrairiepH, Y.T. Change induces shifts in the size and light absorption of dissolved organic matter. Biogeochemistry 2012, 108, 109–118. [Google Scholar] [CrossRef]
- Zhu, X.F.; Liang, C.; Masters, M.D.; Kantola, I.B.; DeLucia, E.H. The impacts of four potential bioenergy crops on soil carbon dynamics as shown by biomarker analyses and DRIFT spectroscopy. GCB Bioenergy 2018, 10, 489–500. [Google Scholar] [CrossRef] [Green Version]
- Meek, B.D.; Ehlig, C.F.; Stolzy, L.H.; Graham, L.E. Furrow and trickle irrigation, effects on soil oxygen and ethylene and tomato yield. Soil Sci. Soc. Am. J. 1983, 47, 631–635. [Google Scholar] [CrossRef]
- Armstrong, W.; Beckett, P.M.; Colmer, T.D.; Setter, T.L.; Greenway, H. Tolerance of roots to low oxygen, ‘anoxic’ cores, the phytoglobin-nitric oxide cycle, and energy or oxygen sensing. J. Plant Physiol. 2019, 239, 92–108. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Lapen, D.R.; Ma, B.L.; McLaughlin, N.B.; VandenBygaart, A.J. Soil and crop response to varying levels of compaction, nitrogen fertilization, and clay content. Soil Sci. Soc. Am. J. 2011, 75, 1483–1492. [Google Scholar] [CrossRef]
- Bhattarai, S.P.; Midmore, D.J.; Su, N. Sustainable irrigation to balance supply of soil water, oxygen, nutrients and agro-chemicals. In Biodiversity, Biofuels, Agroforestry and Conservation Agriculture. Sustainable Agriculture Reviews; Lichtfouse, E., Ed.; Springer: Dordrecht, The Netherlands, 2011; Volume 5, pp. 253–286. [Google Scholar]
- Meyer, W.S.; Barrs, H.D.; Smith, R.; White, N.S.; Heritage, A.D.; Short, D.L. Effect of irrigation on soil oxygen status and root and shoot growth of wheat in a clay soil. Aust. J. Agric. Res. 1985, 36, 171–185. [Google Scholar] [CrossRef]
- Baram, S.; Weinstein, M.; Evans, J.F.; Berezkin, A.; Sade, Y.; Ben-hur, M.; Bernstein, N.; Mamane, H. Drip irrigation with nanobubble oxygenated treated wastewater improves soil aeration. Sci. Hortic. 2022, 291, 110550. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.Q.; Wang, J.W.; Lin, L.; Zhang, M.Z.; Xu, J. Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato. Soil Sci. Soc. Am. J. 2016, 80, 1208–1221. [Google Scholar] [CrossRef] [Green Version]
- Lei, H.J.; Xiao, Z.Y.; Zhang, Z.H.; Jin, C.C.; Pan, H.W.; Sun, K.P.; Xi, H.P. Effects of oxygen and nitrogen coupled irrigation on soil fertility and bacterial community under greenhouse pepper cropping system. Trans. Chin. Soc. Agric. Eng. 2021, 37, 158–166. (In Chinese) [Google Scholar]
- Bhattarai, S.P.; Midmore, D.J.; Pendergast, L. Yield, water-use efficiencies and root distribution of soybean, chickpea and pumpkin under different subsurface drip irrigation depths and oxygation treatments in vertisols. Irrig. Sci. 2008, 26, 439–450. [Google Scholar] [CrossRef]
- Wolińska, A.; Stpniewska, Z. Soil aeration variability as affected by reoxidation. Pedosphere 2013, 23, 236–242. [Google Scholar] [CrossRef]
- Lei, H.J.; Sun, K.P.; Zhang, Z.H.; Liu, L.L.; Yang, H.G.; Pan, H.W.; Jing, M.; Xi, H.M. Response of pepper growth and nitrogen uptake to aerated drip irrigationin greenhouse. Agric. Res. Arid. Areas. 2021, 39, 33–41. (In Chinese) [Google Scholar]
- Zhang, Q.; Zeng, J.; Zhang, Z.h.; Yang, H.G.; Pan, H.W. Study on growth characteristics and yield of greenhouse tomato under cyclic aeration subsurface drip irrigation. Trans. Chin. Soc. Agric. Eng. 2022, 53, 365–377. (In Chinese) [Google Scholar]
- Scuriatti, M.P.; Tomás, M.C.; Wagner, J.R. Influence of soybean protein isolates-phosphatidycholine interaction on the stability on oil-in-water emulsions. J. Am. Oil Chem. Soc. 2003, 80, 1093–1100. [Google Scholar] [CrossRef]
- Hu, Y.; Wei, D.; Li, Y.; Wang, W.; Jin, L.; Cai, S.S.; Bai, Y. Impact of synergistic fertilizer on the flurorescence characteristics of soil fulvic acid based on the flurorescence spectroscopy technique. Spectrosc. Spec. Anal. 2021, 41, 1360–1366. (In Chinese) [Google Scholar]
- Zhao, H.C.; Liu, J.H.; Zhao, B.P.; Zhang, X.J. Effect of fertilization on soil dissolved organic matter under different yield levels of spring corn. Ecol. Environ. 2014, 23, 1286–1291. (In Chinese) [Google Scholar]
- Mohammad, H.; Catherine, M.; Yves, D.; Nicolas, P.; Frédéric, T. Changes in water extractable organic matter (WEOM) in a calcareous soil under field conditions with time and soil depth. Geoderma 2009, 155, 75–85. [Google Scholar]
- Zhu, Y.; Cai, H.J.; Song, L.B.; Chen, H. Impacts of oxygation on plant growth, yield and fruit quality of tomato. Trans. Chin. Soc. Agric. Eng. 2017, 48, 199–211. (In Chinese) [Google Scholar]
- Lei, H.J.; Zang, M.; Zhang, Z.H.; Liu, H.; Liu, Z.Y. Impact of working pressure and surfactant concentration on air–water transmission in drip irrigation tape under cycle aeration. Trans. Chin. Soc. Agric. Eng. 2014, 30, 63–69. (In Chinese) [Google Scholar]
- Lei, H.J.; Yang, H.G.; Liu, H.; Pan, H.W.; Liu, X.; Zang, M. Characteristic and influencing factors of N2O emission from greenhouse tomato field soil under water-fertilizer–air coupling drip irrigation. Trans. Chin. Soc. Agric. Eng. 2019, 35, 95–104. (In Chinese) [Google Scholar]
- Chen, W.; Paul, W.; Leenheer, J.A.; Booksh, K. Fluorescence excitation–emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, 5701–5710. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.T.; Shi, H.; Liu, X.F.; Zan, L.; Wu, Y.F.; Zheng, J.Y. Spectrofluorometric characterization of soil dissolved organic matter under different vegetation in Loess Hilly Region. Plant Nutr. Fert. Sci. 2016, 22, 171–179. (In Chinese) [Google Scholar]
- Wang, X.P.; Zhang, F.; Kung, H.; Abduwasit, G.; Turmbo Adam, L.; Yang, J.Y.; Ren, Y.; Jing, Y.Q. Evaluation and estimation of surface water quality in an arid region based on EEM–PARAFAC and 3D fluorescence spectral index: A case study of the Ebinur Lake Watershed, China. Catena 2017, 155, 62–74. [Google Scholar] [CrossRef]
- Peeyush, S.; Yael, L.; Michael, R.; Shlomit, M.; Ibrahim, S.; Arkady, K.; Maggie, V.; Guy, J.L.; Asher, B.T.; Mikhail, B. Green manure as part of organic management cycle: Effects on changes in organic matter characteristics across the soil profile. Geoderma 2017, 305, 197–207. [Google Scholar]
- Isao, N. Close-up view on the inner workings of two-dimensional correlation spectroscopy. Vib. Spectrosc. 2012, 60, 146153. [Google Scholar]
- Garcia, R.D.; Diéguez, M.D.C.; Gerea, M.; Garcia, P.E.; Reissig, M. Characterisation and reactivity continuum of dissolved organic matter in forested headwater catchments of Andean Patagonia. Freshw. Biol. 2018, 63, 1049–1062. [Google Scholar] [CrossRef]
- Wang, F.L.; Bettany, J.R. Influence of Freeze–thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil. J. Environ. Qual. 1993, 22, 709–714. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Hernandez–Ramirez, G. Temperature and moisture effects on microbial biomass and soil organic matter mineralization. Soil Sci. Soc. Am. J. 2012, 76, 2055–2067. [Google Scholar] [CrossRef]
- Peng, H.L.; Chen, Y.W.; He, J.G.; Guo, D.B.; Pan, X.L.; Ma, Y.Q.; Qu, F.S.; Nan, J. Cation exchange resin–induced hydrolysis for improving biodegradability of waste activated sludge, characterization of dissolved organic matters and microbial community. Bioresour. Technol. 2020, 302, 122870. [Google Scholar] [CrossRef] [PubMed]
- De La Fuente, C.; Clemente, R.; Martínez-Alcalá, I.; Tortosa, G.; Bernal, M.P. Impact of fresh and composted solid olive husk and their water–soluble fractions on soil heavy metal fractionation; microbial biomass and plant uptake. J. Hazard. Mater. 2011, 186, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.J.; Zeng, X.B. Behavior and environmental impact of soil dissolved organic matter. Chin. J. Eco.–Agric. 2007, 15, 206–211. (In Chinese) [Google Scholar]
- Wang, J.J.; Liu, Y.N.; Bowden, R.D.; Lajtha, K.; Simpson, A.J.; Huang, W.L.; Simpson, M.J. Long–term nitrogen addition alters the composition of soil–derived dissolved organic matter. ACS Earth Space Chem. 2020, 4, 189–201. [Google Scholar] [CrossRef]
- Miao, C.H.; Lv, Y.Z.; Yu, Y.; Zhao, K. Study on the adsorption behavior of soil to soluble organic matter in compost based on spectroscopy. Spectrosc. Spect. Anal. 2020, 40, 3832–3838. (In Chinese) [Google Scholar]
- Li, X.D.; Cao, Y.Z.; Ding, J.; Wang, J.Q.; Wang, L.N. Effects of long–term different water incubation on the content and structure characteristics of soil dissolved organic matter on contaminated sites. Acta Sci. Circumst. 2021, 41, 3366–3373. (In Chinese) [Google Scholar]
- Jia, H.L.; Xi, M.; Kong, F.L.; Li, Y.; Qiao, T. Research progress on the biodegradation of soil dissolved organic matter. Chin. J. Environ. Sci. 2016, 35, 183–188. (In Chinese) [Google Scholar]
- Yu, G.H.; Wu, M.J.; Wei, G.R.; Wei, G.R.; Luo, Y.H.; Ran, W.; Wang, B.R.; Zhang, J.Z.; Shen, Q.R. Binding of organic ligands with Al (III) in dissolved organic matter from soil, implications for soil organic carbon storage. Environ. Sci. Technol. 2012, 46, 6102–6109. [Google Scholar] [CrossRef] [PubMed]
- Vinks, J.P.M.; Harmsen, J.; Rijnaarts, H. Delayed immobilization of heavy metals in soils and sediments under reducing and anaerobic conditions; consequences for flooding and storage. J. Soil Sediments 2010, 10, 1633–1645. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Wang, D.Y.; Wei, S.Q.; Yan, J.L.; Liang, J.; Chen, X.S.; Liu, J.; Wang, Q.L.; Lu, S.; Gao, J.; et al. Influences of the alternation of wet–dry periods on the variability of chromophoric dissolved organic matter in the water level fluctuation zone of the Three Gorges Reservoir area, China. J. Soil Sediments 2018, 636, 249–259. [Google Scholar]
- Cory, R.M.; McKnight, D.M. Fluorescence spectroscopy reveals ubiquitous presence of oxidized and reduced quinones in dissolved organic matter. Environ. Sci. Technol. 2005, 39, 8142–8149. [Google Scholar] [CrossRef]
- Fellman, J.B.; Hood, E.; Spencer, R.G. Spencer Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems, a review. Limnol. Oceanogr. 2010, 55, 2452–2462. [Google Scholar] [CrossRef]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of fluorescent dissolved organic matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Jia, H.Z.; Liu, Z.W.; Shi, Y.F.; Yang, K.J.; Fu, G.J.; Zhu, L.Y. Spectral characteristics of soil dissolved organic matter under different vegetation types in sandy soil. Chin. Sci. Bull. 2021, 66, 4425–4436. [Google Scholar] [CrossRef]
- Ponge, J.F. Humus forms in terrestrial ecosystems, A framework to biodiversity. Soil Biol. Biochem. 2003, 35, 935–945. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.J.; Duan, Y.F.; Ye, Y.Y.; Xiao, S.S.; Zhang, W.; Wang, K.L. The impacts of tillage on soil soluble organic matter and its movement and leaching in karst area. Acta Ecol. Sinica. 2018, 38, 6981–6991. (In Chinese) [Google Scholar]
Soil Layer/cm | pH | Soil Bulk Density/g·kg−1 | SOM/g·kg−1 | TN/g·kg−1 | TP/g·kg−1 | TK/g·kg−1 | Field Capacity/% |
---|---|---|---|---|---|---|---|
0–20 | 7.75 | 1.43 | 20,14 | 1.04 | 0.93 | 28.69 | 27.6 |
20–40 | 7.82 | 1.49 | 19.25 | 1.12 | 1.22 | 32.24 | 28.4 |
Treatment | Irrigation Amount W/mm | Aerated Irrigation Air Void Fraction/% | Nitrogen N/kg hm−2 |
---|---|---|---|
W1A0N1 | 0.6 Ep | 0 | 225 |
W1A1N1 | 0.6 Ep | 15 | 225 |
W2A0N1 | 1.0 Ep | 0 | 225 |
W2A1N1 | 1.0 Ep | 15 | 225 |
W1A0N2 | 0.6 Ep | 0 | 300 |
W1A1N2 | 0.6 Ep | 15 | 300 |
W2A0N2 | 1.0 Ep | 0 | 300 |
W2A1N2 | 1.0 Ep | 15 | 300 |
Growth Period | Start Time | End Time | Days after Transplanting/d |
---|---|---|---|
Seedling stage | 1 April 2021 | 25 April 2021 | 1–25 |
Flowering and fruiting stage | 26 April 2021 | 20 May 2021 | 26–50 |
Fruit expansion stage | 21 May 2021 | 20 June 2021 | 51–81 |
Maturity stage | 21 June 2021 | 18 July 2021 | 82–109 |
Fluorescent Area | λEx/λEm/nm | Fluorescent Components |
---|---|---|
I | 200–250/280–330 | Tyrosine-like proteins |
II | 200–250/330–380 | Tryptophan-like proteins |
III | 200–250/380–550 | Fulvic acid |
IV | >250/280–380 | Soluble microbial metabolites |
V | >250/380–550 | Humic acid |
Irrigation Treatment | Fluorescence Index (FI) | Biological Index (BIX) | Humification Index (HIX) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
FFS | FES | MS | FFS | FES | MS | FFS | FES | MS | ||
CSDI | W1A0N1 | 1.70 ± 0.02 a | 1.72 ± 0.06 a | 1.71 ± 0.03 bc | 0.72 ± 0.01 a | 0.69 ± 0.02 ab | 0.71 ± 0.02 ab | 13.69 ± 1.62 a | 12.39 ± 0.96 a | 10.69 ± 1.97 a |
W1A0N2 | 1.72 ± 0.05 a | 1.69 ± 0.02 a | 1.74 ± 0.05 ab | 0.72 ± 0.01 a | 0.70 ± 0.03 a | 0.72 ± 0.02 a | 11.77 ± 1.77 ab | 11.73 ± 0.54 ab | 9.38 ± 0.48 a | |
W2A0N1 | 1.72 ± 0.04 a | 1.76 ± 0.04 a | 1.63 ± 0.10 c | 0.70 ± 0.01 b | 0.67 ± 0.02 ab | 0.71 ± 0.02 abc | 11.90 ± 1.92 ab | 9.15 ± 0.57 c | 5.39 ± 1.99 b | |
W2A0N2 | 1.70 ± 0.03 a | 1.70 ± 0.03 a | 1.64 ± 0.06 c | 0.71 ± 0.01 ab | 0.67 ± 0.03 ab | 0.69 ± 0.02 bcd | 11.20 ± 1.06 ab | 9.84 ± 1.98 bc | 5.57 ± 2.84 b | |
AI | W1A1N1 | 1.72 ± 0.02 a | 1.73 ± 0.04 a | 1.75 ± 0.03 ab | 0.72 ± 0.01 a | 0.68 ± 0.03 ab | 0.72 ± 0.01 a | 11.52 ± 1.99 ab | 10.10 ± 1.27 bc | 9.53 ± 1.48 a |
W1A1N2 | 1.70 ± 0.06 a | 1.72 ± 0.07 a | 1.74 ± 0.04 ab | 0.72 ± 0.02 a | 0.68 ± 0.03 ab | 0.72 ± 0.01 a | 12.85 ± 1.73 ab | 9.23 ± 1.98 c | 9.53 ± 0.72 a | |
W2A1N1 | 1.70 ± 0.03 a | 1.73 ± 0.09 a | 1.67 ± 0.06 bc | 0.70 ± 0.01 b | 0.66 ± 0.03 ab | 0.67 ± 0.03 d | 12.62 ± 0.41 ab | 10.37 ± 1.82 abc | 8.47 ± 1.53 a | |
W2A1N2 | 1.66 ± 0.03 a | 1.72 ± 0.07 a | 1.81 ± 0.04 a | 0.70 ± 0.01 b | 0.65 ± 0.03 b | 0.68 ± 0.01 cd | 10.37 ± 2.37 b | 9.11 ± 1.48 c | 9.94 ± 1.43 a |
DOM Components | C1 | C2 | |
---|---|---|---|
410 nm | 465 nm | ||
C1 | 410 nm | + | − (+) |
C2 | 465 nm | + |
DOM Components | C1 | C2 | C3 | |
---|---|---|---|---|
410 nm | 465 nm | 450 nm | ||
C1 | 410 nm | + | −(+) | −(+) |
C2 | 465 nm | + | +(−) | |
C3 | 450 nm | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, R.; Lei, H.; Zhang, Y.; Xiao, Z.; Yang, G.; Pan, H.; Hou, Y.; Yu, J.; Sun, K.; Dong, Y. The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum. Agronomy 2023, 13, 980. https://doi.org/10.3390/agronomy13040980
Xiao R, Lei H, Zhang Y, Xiao Z, Yang G, Pan H, Hou Y, Yu J, Sun K, Dong Y. The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum. Agronomy. 2023; 13(4):980. https://doi.org/10.3390/agronomy13040980
Chicago/Turabian StyleXiao, Rang, Hongjun Lei, Yongling Zhang, Zheyuan Xiao, Guang Yang, Hongwei Pan, Yiran Hou, Jie Yu, Keping Sun, and Yecheng Dong. 2023. "The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum" Agronomy 13, no. 4: 980. https://doi.org/10.3390/agronomy13040980
APA StyleXiao, R., Lei, H., Zhang, Y., Xiao, Z., Yang, G., Pan, H., Hou, Y., Yu, J., Sun, K., & Dong, Y. (2023). The Influence of Aerated Irrigation on the Evolution of Dissolved Organic Matter Based on Three-Dimensional Fluorescence Spectrum. Agronomy, 13(4), 980. https://doi.org/10.3390/agronomy13040980