Exogenous Application of Multi-Walled Carbon Nanotubes (MWCNTs) and Nano-Selenium (Nano-Se) Alleviated the PEG-Induced Water Deficit Stress and Improved the Crop Performance of Camelina
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Experimental Procedure
2.1.1. Experiment 1: Evaluation of Drought Tolerance of the Fifteen Camelina Genotypes
2.1.2. Experiment 2: Alleviative Effect of MWCNTs and Nano-Se on PEG-Induced WDS in Camelina
2.2. Statistical Analysis
3. Results
3.1. PEG Dose Responses and Drought Tolerance of Camelina Genotypes
3.2. Alleviation of PEG-Induced WDS Using MWCNTs or Nano-Se in Camelina
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- El Sabagh, A.; Hossain, A.; Barutcular, C.; Gormus, O.; Ahmad, Z.; Hussain, S.; Islam, M.S.; Alharby, H.; Bamagoos, A.; Kumar, N.; et al. Effects of drought stress on the quality of major oilseed crops: Implications and possible mitigation strategies—A review. Appl. Ecol. Environ. Res. 2019, 17, 4019–4043. [Google Scholar] [CrossRef]
- Valliyodan, B.; Nguyen, H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr. Opin. Plant Biol. 2006, 9, 189–195. [Google Scholar] [CrossRef]
- Al-Yasi, H.; Attia, H.; Alamer, K.; Hassan, F.; Ali, E.; Elshazly, S.; Siddique, K.H.M.; Hessini, K. Impact of drought on growth, photosynthesis, osmotic adjustment, and cell wall elasticity in damask rose. Plant Physiol. Bioch. 2020, 150, 133–139. [Google Scholar] [CrossRef]
- Miao, Y.Y.; Zhu, Z.B.; Guo, Q.S.; Ma, H.L.; Zhu, L.F. Alternate wetting and drying irrigation-mediated changes in the growth, photosynthesis and yield of the medicinal plant Tulipa edulis. Ind. Crop. Prod. 2015, 66, 81–88. [Google Scholar] [CrossRef]
- Sorcia-Morales, M.; Gomez-Merino, F.C.; Sanchez-Segura, L.; Spinoso-Castillo, J.L.; Bello-Bello, J.J. Multi-walled carbon nanotubes improved development during in vitro multiplication of sugarcane (Saccharum spp.) in a semi-automated bioreactor. Plants 2021, 10, 2015. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Adisa, I.O.; Pullagurala, V.L.R.; Peralta-Videa, J.R.; Dimkpa, C.O.; Elmer, W.H.; Gardea-Torresdey, J.L.; White, J.C. Recent advances in nano-enabled fertilizers and pesticides: A critical review of mechanisms of action. Environ. Sci.-Nano. 2019, 6, 2002–2030. [Google Scholar] [CrossRef]
- Singh, R.P.; Handa, R.; Manchanda, G. Nanoparticles in sustainable agriculture: An emerging opportunity. J. Control. Release 2021, 329, 1234–1248. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; de Silva, K.; Nedosekin, D.A.; Dervishi, E.; Biris, A.S.; Shashkov, E.V.; Galanzha, E.I.; Zharov, V.P. Complex genetic, photothermal, and photoacoustic analysis of nanoparticle-plant interactions. Proc. Natl. Acad. Sci. USA 2011, 108, 1028–1033. [Google Scholar] [CrossRef] [Green Version]
- El-Moneim, D.A.; Dawood, M.F.A.; Moursi, Y.S.; Farghaly, A.A.; Afifi, M.; Sallam, A. Positive and negative effects of nanoparticles on agricultural crops. Nanotechnol. Environ. Eng. 2021, 6, 21. [Google Scholar] [CrossRef]
- Singh, S.; Tripathi, D.K.; Chauhan, D.K. Effects of nano-materials on seed germination and seedling growth: Striking the slight balance between the concepts and controversies. Mater. Focus 2016, 5, 1–6. [Google Scholar] [CrossRef]
- Khodakovskaya, M.V.; Kim, B.S.; Kim, J.N.; Alimohammadi, M.; Dervishi, E.; Mustafa, T.; Cernigla, C.E. Carbon nanotubes as plant growth regulators: Effects on tomato growth, reproductive system, and soil microbial community. Small 2013, 9, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, M.; Yang, X.L.; Zhang, Y.; Hui, H.T.; Zhang, D.Q.; Shu, J. Multi-walled carbon nanotubes enhanced the antioxidative system and alleviated salt stress in grape seedlings. Sci. Hortic. 2022, 293, 110698. [Google Scholar] [CrossRef]
- Kang, L.; Wu, Y.L.; Zhang, J.B.; An, Q.S.; Zhou, C.R.; Li, D.; Pan, C.P. Nano-selenium enhances the antioxidant capacity, organic acids and cucurbitacin B in melon (Cucumis melo L.) plants. Ecotoxicol. Environ. Saf. 2022, 241, 113777. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhu, N.L.; Liang, X.J.; Zheng, L.R.; Zhang, C.X.; Li, Y.F.; Zhang, Z.Y.; Gao, Y.X.; Zhao, J.T. A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotox. Environ. Saf. 2020, 189, 109955. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.Q.; Qi, Z.Y.; Li, M.Q.; Ahammed, G.J.; Chu, X.Y.; Zhou, J. Selenium forms and methods of application differentially modulate plant growth, photosynthesis, stress tolerance, selenium content and speciation in Oryza sativa L. Ecotox. Environ. Saf. 2019, 169, 911–917. [Google Scholar] [CrossRef]
- Zahedi, S.M.; Abdelrahman, M.; Hosseini, M.S.; Hoveizeh, N.F.; Tran, L.S.P. Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles. Environ. Pollut. 2019, 253, 246–258. [Google Scholar] [CrossRef]
- Zhou, C.R.; Li, D.; Shi, X.L.; Zhang, J.B.; An, Q.S.; Wu, Y.L.; Kang, L.; Li, J.Q.; Pan, C.P. Nanoselenium enhanced wheat resistance to aphids by regulating biosynthesis of DIMBOA and volatile components. J. Agr. Food Chem. 2021, 69, 14103–14114. [Google Scholar] [CrossRef]
- Fatima, Z.; Ahmed, M.; Hussain, M.; Abbas, G.; Ul-Allah, S.; Ahmad, S.; Ahmed, N.; Ali, M.A.; Sarwar, G.; Haque, E.; et al. The fingerprints of climate warming on cereal crops phenology and adaptation options. Sci. Rep. 2020, 10, 18013. [Google Scholar] [CrossRef]
- Gao, Y.; Jiang, C.J.; Zhang, Y.X.; Liu, L.; Wang, Y.W.; Kim, D.; Yu, J.L.; Diao, J.X.; Wu, N.; Chen, M.; et al. Agronomic performance of camelina genotypes selected for seed yield and quality characteristics in eastern China. Ind. Crop. Prod. 2022, 184, 115077. [Google Scholar] [CrossRef]
- Bansal, S.; Durrett, T.P. Camelina sativa: An ideal platform for the metabolic engineering and field production of industrial lipids. Biochimie 2016, 120, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Caldwell, C.; Corscadden, K.; He, Q.S.; Li, J.L. An evaluation of biodiesel production from Camelina sativa grown in Nova Scotia. Ind. Crops Prod. 2016, 81, 162–168. [Google Scholar] [CrossRef]
- Čanak, P.; Jeromela, A.M.; Vujošević, B.; Kiprovski, B.; Mitrović, B.; Alberghini, B.; Facciolla, E.; Monti, A.; Zanetti, F. Is drought stress tolerance affected by biotypes and seed size in the emerging oilseed crop camelina? Agronomy 2020, 10, 1856. [Google Scholar] [CrossRef]
- Eberle, C.A.; Thom, M.D.; Nemec, K.T.; Forcella, F.; Lundgren, J.G.; Gesch, R.W.; Riedell, W.E.; Papiernik, S.K.; Wagner, A.; Peterson, D.H.; et al. Using pennycress, camelina, and canola cash cover crops to provision pollinators. Ind. Crop. Prod. 2015, 75, 20–25. [Google Scholar] [CrossRef]
- Zanetti, F.; Eynck, C.; Christou, M.; Krzyzaniak, M.; Righini, D.; Alexopoulou, E.; Stolarski, M.J.; Van Loo, E.N.; Puttick, D.; Monti, A. Agronomic performance and seed quality attributes of camelina (Camelina sativa L. crantz) in multi-environment trials across Europe and Canada. Ind. Crop. Prod. 2017, 107, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.J.; Auer, C. Overwintering assessment of camelina (Camelina sativa) cultivars and congeneric species in the northeastern US. Ind. Crop. Prod. 2019, 139, 111532. [Google Scholar] [CrossRef]
- Zhang, C.J.; Wu, N.; Diao, J.X.; Kim, D.S.; Wang, Y.W.; Gao, Y.; Zhang, Y.X.; Chen, M.; Yu, J.L.; Zhang, H.X.; et al. Agronomic evaluation of a Chinese camelina [Camelina sativa (L.) Crantz] cultivar in multiple semi-arid locations of northern China. Ital. J. Agron. 2022, 17, 2034. [Google Scholar] [CrossRef]
- Gugel, R.K.; Falk, K.C. Agronomic and seed quality evaluation of Camelina sativa in western Canada. Can. J. Plant Sci. 2006, 86, 1047–1058. [Google Scholar] [CrossRef]
- Rizzitello, R.; Zhang, C.J.; Auer, C. Camelina (Camelina sativa L. Crantz) crop performance, insect pollinators, and pollen dispersal in the Northeastern US. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Karim, A.N.M.A.; Sarker, U.K.; Hasan, A.K.; Islam, N.; Uddin, M.R. Selection of drought tolerant high yielding chickpea genotypes based on field performance and genetic variation in Bangladesh. Legume Res. 2021, 44, 1131–1137. [Google Scholar] [CrossRef]
- Waraich, E.A.; Ahmed, Z.; Ahmad, Z.; Ahmad, R.; Erman, M.; Cig, F.; El Sabagh, A. Alterations in growth and yield of camelina induced by different planting densities under water deficit stress. Phyton-Int. J. Exp. Bot. 2020, 89, 587–597. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yu, J.L.; Gao, Y.; Li, Z.W.; Kim, D.; Chen, M.; Fan, Y.; Zhang, H.X.; Yan, X.B.; Zhang, C.J. Agronomic evaluation of shade tolerance of 16 spring Camelina sativa (L.) Crantz genotypes under different artificial shade levels using a modified membership function. Front. Plant Sci. 2022, 13, 978932. [Google Scholar] [CrossRef] [PubMed]
- Streibig, J.C. Models for curve-fitting herbicide dose response data. Acta Agric. Scand. 1980, 30, 59–64. [Google Scholar] [CrossRef]
- Knezevic, S.Z.; Streibig, J.C.; Ritz, C. Utilizing R software package for dose-response studies: The concept and data analysis. Weed Technol. 2007, 21, 840–848. [Google Scholar] [CrossRef]
- Manivannan, P.; Jaleel, C.A.; Somasundaram, R.; Panneerselvam, R. Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. Comptes Rendus Biol. 2008, 331, 418–425. [Google Scholar] [CrossRef]
- Chen, Y.L.; Ghanem, M.E.; Siddique, K.H.M. Characterising root trait variability in chickpea (Cicer arietinum L.) germplasm. J. Exp. Bot. 2017, 68, 1987–1999. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fotovat, R.; Valizadeh, M.; Toorchi, M. Association between water-use efficiency components and total chlorophyll content (SPAD) in wheat (Triticum aestivum L.) under well-watered and drought stress conditions. J. Food Agric. Environ. 2007, 5, 225–227. [Google Scholar]
- Li, X.Y.; Liu, X.; Yao, Y.; Li, Y.H.; Liu, S.; He, C.Y.; Li, J.M.; Lin, Y.Y.; Li, L. Overexpression of Arachis hypogaea AREB1 gene enhances drought tolerance by modulating ROS scavenging and maintaining endogenous ABA content. Int. J. Mol. Sci. 2013, 14, 12827–12842. [Google Scholar] [CrossRef] [Green Version]
- Shao, Q.S.; Wang, H.Z.; Guo, H.P.; Zhou, A.C.; Huang, Y.Q.; Sun, Y.L.; Li, M.Y. Effects of shade treatments on photosynthetic characteristics, chloroplast ultrastructure, and physiology of Anoectochilus roxburghii. PLoS ONE 2014, 9, e85996. [Google Scholar] [CrossRef]
- Ahmad, Z.; Anjum, S.; Skalicky, M.; Waraich, E.A.; Tariq, R.M.S.; Ayub, M.A.; Hossain, A.; Hassan, M.M.; Brestic, M.; Islam, M.S.; et al. Selenium alleviates the adverse effect of drought in oilseed crops camelina (Camelina sativa L.) and canola (Brassica napus L.). Molecules 2021, 26, 1699. [Google Scholar] [CrossRef]
- Kapoor, D.; Singh, S.; Kumar, V.; Romero, R.; Prasad, R.; Singh, J. Antioxidant enzymes regulation in plants in reference to reactive oxygen species (ROS) and reactive nitrogen species (RNS). Plant Gene 2019, 19, 100182. [Google Scholar] [CrossRef]
- Pan, Y.; Wu, L.J.; Yu, Z.L. Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 2006, 49, 157–165. [Google Scholar] [CrossRef]
- Saed-Moucheshi, A.; Sohrabi, F.; Fasihfar, E.; Baniasadi, F.; Riasat, M.; Mozafari, A.A. Superoxide dismutase (SOD) as a selection criterion for triticale grain yield under drought stress: A comprehensive study on genomics and expression profiling, bioinformatics, heritability, and phenotypic variability. BMC Plant Biol. 2021, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Acar, O.; Turkan, I.; Ozdemir, F. Superoxide dismutase and peroxidase activities in drought sensitive and resistant barley (Hordeum vulgare L.) varieties. Acta Physiol. Plant. 2001, 23, 351–356. [Google Scholar] [CrossRef]
- Efeoglu, B.; Ekmekci, Y.; Cicek, N. Physiological responses of three maize cultivars to drought stress and recovery. S. Afr. J. Bot. 2009, 75, 34–42. [Google Scholar] [CrossRef] [Green Version]
- Güneş, A.; Kordali, S.; Turan, M.; Bozhüyük, A.U. Determination of antioxidant enzyme activity and phenolic contents of some species of the Asteraceae family from medicanal plants. Ind. Crops Prod. 2019, 137, 208–213. [Google Scholar] [CrossRef]
- Ahmed, Z.; Waraich, E.A.; Ahmad, R.; Shahbaz, M. Morpho-physiological and biochemical responses of camelina (Camelina sativa crantz) genotypes under drought stress. Int. J. Agric. Biol. 2017, 19, 1–7. [Google Scholar] [CrossRef]
- Nayyar, H.; Walia, D.P. Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biol. Plantarum. 2003, 46, 275–279. [Google Scholar] [CrossRef]
- Wang, X.P.; Han, H.Y.; Liu, X.Q.; Gu, X.X.; Chen, K.; Lu, D.L. Multi-walled carbon nanotubes can enhance root elongation of wheat (Triticum aestivum) plants. J. Nanopart. Res. 2012, 14, 814. [Google Scholar] [CrossRef]
- Nawaz, F.; Ahmad, R.; Ashraf, M.Y.; Waraich, E.A.; Khan, S.Z. Effect of selenium foliar spray on physiological and biochemical processes and chemical constituents of wheat under drought stress. Ecotox. Environ. Saf. 2015, 113, 191–200. [Google Scholar] [CrossRef]
- Li, D.; An, Q.S.; Wu, Y.L.; Li, J.Q.; Pan, C.P. Foliar application of selenium nanoparticles on celery stimulates several nutrient component levels by regulating the alpha-linolenic acid pathway. Acs Sustain. Chem. Eng. 2020, 8, 10502–10510. [Google Scholar] [CrossRef]
- González-García, Y.; López-Vargas, E.R.; Cadenas-Pliego, G.; Benavides-Mendoza, A.; González-Morales, S.; Robledo-Olivo, A.; Alpuche-Solís, Á.G.; Juárez-Maldonado, A. Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. Int. J. Mol. Sci. 2019, 20, 5858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babajani, A.; Iranbakhsh, A.; Ardebili, Z.O.; Eslami, B. Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ. Sci. Pollut. Res. 2019, 26, 24430–24444. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Majumdar, S.; Servin, A.D.; Pagano, L.; Dhankher, O.P.; White, J.C. Carbon nanomaterials in agriculture: A critical review. Front. Plant Sci. 2016, 7, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Accessions No. | Country of Origin | Seed Source | Time of Harvest | Storage Condition | Seed Accessibility |
---|---|---|---|---|---|
CamK1 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK2 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK3 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK4 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK5 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK6 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK7 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK8 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK9 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK10 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamK11 | Korea | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamC2 | China | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamC3 | China | Yanbian University | 2020 | 4 °C | Yangzhou University |
CamC4 | China | RCCPET a | 2020 | 4 °C | Yangzhou University |
‘SO-40’ | USA | Sustainable Oils, California | 2020 | 4 °C | Yangzhou University |
Genotype | Treatments | C18:1 | C18:2 | C18:3 | C20:1 | C20:2 | C20:3 | C24:1 | SFA | MUFA | PUFA |
---|---|---|---|---|---|---|---|---|---|---|---|
CamK8 | Control | 17.52a | 27.02a | 16.12a | 9.76a | 0.95a | 2.88a | 0.71a | 5.21ab | 27.69a | 47.69a |
PEG | 16.63a | 25.67a | 17.13a | 11.83a | 0.98a | 4.13a | ND | 5.56a | 28.46a | 46.93a | |
PEG + MWCNTs1 | 20.01a | 25.57a | 17.15a | 10.77a | 0.9a | 2.98a | 0.65ab | 4.70c | 30.78a | 47.25a | |
PEG + MWCNTs2 | 18.76a | 27.35a | 18.82a | 10.52a | 1.08a | 3.82a | 0.24b | 5.04bc | 27.96a | 47.72a | |
PEG + nano-Se1 | 17.29a | 28.24a | 17.09a | 10.38a | 0.98a | 3.42a | ND | 5.01bc | 29.68a | 51.32a | |
PEG + nano-Se2 | 18.42a | 25.15a | 18.27a | 10.25a | 0.96a | 3.91a | ND | 5.15ab | 29.09a | 48.74a | |
CamK9 | Control | 19.48a | 27.17a | 15.71a | 10.53a | 1.1a | 3.36a | 0.58a | 4.90bc | 30.16a | 47.81b |
PEG | 18.36a | 29.26a | 14.7a | 8.99a | 1.01a | 3.27a | 0.45a | 5.44abc | 27.54ab | 48.69b | |
PEG + MWCNTs1 | 18.9a | 28.15a | 15.75a | 10.51a | 1.16a | 3.01a | 0.56a | 4.58c | 29.76a | 52.24a | |
PEG + MWCNTs2 | 16.38a | 29.35a | 16.89a | 9.39a | 1.17a | 3.92a | 0.72a | 3.93d | 30.14a | 52.89a | |
PEG + nano-Se1 | 16.95a | 26.36a | 21.04a | 12.57a | 1.48a | 3.69a | 0.53a | 5.77ab | 29.12a | 52.04a | |
PEG + nano-Se2 | 19.14a | 27.2a | 13.53a | 9.77a | 0.95a | 4.14a | 0.56a | 6.33a | 29.40a | 46.38b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.-Z.; Gao, Y.; Zhang, Y.; Yu, J.; Kim, D.-S.; Chen, M.; Wang, Y.; Fan, Y.; Zhang, H.; Yan, X.; et al. Exogenous Application of Multi-Walled Carbon Nanotubes (MWCNTs) and Nano-Selenium (Nano-Se) Alleviated the PEG-Induced Water Deficit Stress and Improved the Crop Performance of Camelina. Agronomy 2023, 13, 979. https://doi.org/10.3390/agronomy13040979
Wu H-Z, Gao Y, Zhang Y, Yu J, Kim D-S, Chen M, Wang Y, Fan Y, Zhang H, Yan X, et al. Exogenous Application of Multi-Walled Carbon Nanotubes (MWCNTs) and Nano-Selenium (Nano-Se) Alleviated the PEG-Induced Water Deficit Stress and Improved the Crop Performance of Camelina. Agronomy. 2023; 13(4):979. https://doi.org/10.3390/agronomy13040979
Chicago/Turabian StyleWu, Hui-Zhen, Yang Gao, Youxin Zhang, Jialin Yu, Do-Soon Kim, Min Chen, Yawen Wang, Yi Fan, Haixi Zhang, Xuebing Yan, and et al. 2023. "Exogenous Application of Multi-Walled Carbon Nanotubes (MWCNTs) and Nano-Selenium (Nano-Se) Alleviated the PEG-Induced Water Deficit Stress and Improved the Crop Performance of Camelina" Agronomy 13, no. 4: 979. https://doi.org/10.3390/agronomy13040979
APA StyleWu, H.-Z., Gao, Y., Zhang, Y., Yu, J., Kim, D.-S., Chen, M., Wang, Y., Fan, Y., Zhang, H., Yan, X., & Zhang, C.-J. (2023). Exogenous Application of Multi-Walled Carbon Nanotubes (MWCNTs) and Nano-Selenium (Nano-Se) Alleviated the PEG-Induced Water Deficit Stress and Improved the Crop Performance of Camelina. Agronomy, 13(4), 979. https://doi.org/10.3390/agronomy13040979