Machine Learning Approach to Predict Flow Regime Index of a Stellate Water-Retaining Labyrinth Channel Emitter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geometric Design of Study
2.2. Selection of Data
2.3. Backpropagation Neural Network (BPNN)
2.4. Extreme Learning Machine (ELM)
2.5. Multiple Linear Regression (MLR)
2.6. Assessment Indices
2.6.1. Root Mean Square Error (RMSE)
2.6.2. Mean Absolute Error (MAE)
2.6.3. Mean Bias Error (MBE)
2.6.4. Coefficient of Determination (R2)
2.6.5. Comprehensive Indicator (CI)
2.7. Experimental Procedure
3. Results
3.1. CFD Simulated Data Verification
3.2. Analysis and Division Data
3.3. Performance of BPNN Model
3.4. Performance of ELM Model
3.5. Performance of MLR Model
3.6. Comparison of Developed Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lamm, F.R.; Colaizzi, P.D.; Sorensen, R.B.; Bordovsky, J.P.; Dougherty, M.; Balkcom, K.; Zaccaria, D.; Bali, K.M.; Rudnick, D.R.; Peters, R.T. A 2020 Vision of Subsurface Drip Irrigation in the U.S. Trans. ASABE 2021, 64, 1319–1343. [Google Scholar] [CrossRef]
- Nogueira, V.H.B.; Diotto, A.V.; Thebaldi, M.S.; Colombo, A.; Silva, Y.F.; Lima, E.M.D.C.; Resende, G.F.L. Variation in the Flow Rate of Drip Emitters in a Subsurface Irrigation System for Different Soil Types. Agric. Water Manag. 2021, 243, 106485. [Google Scholar] [CrossRef]
- Ait-Mouheb, N.; Schillings, J.; Al-Muhammad, J.; Bendoula, R.; Tomas, S.; Amielh, M.; Anselmet, F. Impact of Hydrodynamics On Clay Particle Deposition and Biofilm Development in a Labyrinth-Channel Dripper. Irrig. Sci. 2019, 37, 1–10. [Google Scholar] [CrossRef]
- Li, Y.; Feng, J.; Xue, S.; Muhammad, T.; Chen, X.; Wu, N.; Li, W.; Zhou, B. Formation Mechanism for Emitter Composite-Clogging in Drip Irrigation System. Irrig. Sci. 2019, 37, 169–181. [Google Scholar] [CrossRef]
- Peng, H.; Shuqin, L.; Zeyuan, L.; Hongxu, Z.; Muhammd, T.; Ruonan, W.; Wenchao, L.; Yunkai, L. Water Temperature Effects On Hydraulic Performance of Pressure-Compensating Emitter in a Drip Irrigation System. Irrig. Drain. 2021, 70, 332–341. [Google Scholar] [CrossRef]
- Yang, B.; Wang, J.; Zhang, Y.; Wang, H.; Ma, X.; Mo, Y. Anti-Clogging Performance Optimization for Dentiform Labyrinth Emitters. Irrig. Sci. 2020, 38, 275–285. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Long, J.; Liu, X.; Yang, Q. The Mechanism of Emitter Clogging Analyzed by CFD-DEM Simulation and PTV Experiment. Adv. Mech. Eng. 2018, 10, 1687814017743025. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Li, Y.; Wang, W.; Xue, S. Effect of Optimization Forms of Flow Path On Emitter Hydraulic and Anti-Clogging Performance in Drip Irrigation System. Irrig. Sci. 2018, 36, 37–47. [Google Scholar] [CrossRef]
- Xu, T.; Zhang, L. Influence and Analysis of Structure Design and Optimization On the Performance of a Pit Drip Irrigation Emitter. Irrig. Drain. 2020, 69, 633–645. [Google Scholar] [CrossRef]
- Guo, L.; Bai, D.; Zhou, W.; Wang, X. Evaluation of Numerical Simulation Accuracy for Two-Ways Mixed Flow Drip Irrigation Emitter Based On CFD. Int. J. Heat Technol. 2017, 35, 384–392. [Google Scholar] [CrossRef]
- Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and Verification of Hydraulic Performance and Energy Dissipation Mechanism of Perforated Drip Irrigation Emitters. Water 2021, 13, 171. [Google Scholar] [CrossRef]
- Al-Amoud, A.I.; Mattar, M.A.; Ateia, M.I. Impact of Water Temperature and Structural Parameters On the Hydraulic Labyrinth-Channel Emitter Performance. Span. J. Agric. Res. 2014, 12, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Li, N.; Liu, X.; Yang, Q.; Li, Z.; Long, J. Influence of Dentation Angle of Labyrinth Channel of Drip Emitters on Hydraulic and Anti-Clogging Performance. Irrig. Drain. 2019, 68, 256–267. [Google Scholar] [CrossRef]
- Zhangzhong, L.; Yang, P.; Li, Y.; Ren, S. Effects of Flow Path Geometrical Parameters On Flow Characteristics and Hydraulic Performance of Drip Irrigation Emitters. Irrig. Drain. 2016, 65, 426–438. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Lu, B. Rapid Prediction of Hydraulic Performance for Emitters with Labyrinth Channels. J. Irrig. Drain. Eng. 2013, 139, 414–418. [Google Scholar] [CrossRef]
- Yang, C.; Gabbouj, M.; Jia, M.; Li, Z. Hierarchical Symbol Transition Entropy: A Novel Feature Extractor for Machinery Health Monitoring. IEEE Trans. Ind. Inform. 2022, 18, 6131–6141. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Fan, M.; Li, X. Wind Speed Prediction Using Measurements From Neighboring Locations and Combining the Extreme Learning Machine and the AdaBoost Algorithm. Energy Rep. 2022, 8, 1508–1518. [Google Scholar] [CrossRef]
- Chatterjee, S.; Thakur, R.S.; Yadav, R.N.; Gupta, L. Sparsity-Based Modified Wavelet De-Noising Autoencoder for ECG Signals. Signal Process. 2022, 198, 108605. [Google Scholar] [CrossRef]
- Razmi, M.; Saneie, M.; Basirat, S. Estimating Discharge Coefficient of Side Weirs in Trapezoidal and Rectangular Flumes Using Outlier Robust Extreme Learning Machine. Appl. Water Sci. 2022, 12, 176. [Google Scholar] [CrossRef]
- Sadgrove, E.J.; Falzon, G.; Miron, D.; Lamb, D.W. The Segmented Colour Feature Extreme Learning Machine: Applications in Agricultural Robotics. Agronomy 2021, 11, 2290. [Google Scholar] [CrossRef]
- Aqel, D.; Al-Zubi, S.; Mughaid, A.; Jararweh, Y. Extreme Learning Machine for Plant Diseases Classification: A Sustainable Approach for Smart Agriculture. Clust. Comput. 2022, 25, 2007–2020. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Liu, Y.; Han, X. Apple Quality Identification and Classification by Image Processing Based On Convolutional Neural Networks. Sci. Rep. 2021, 11, 16618. [Google Scholar] [CrossRef] [PubMed]
- Gao, F.; Fang, W.; Sun, X.; Wu, Z.; Zhao, G.; Li, G.; Li, R.; Fu, L.; Zhang, Q. A Novel Apple Fruit Detection and Counting Methodology Based On Deep Learning and Trunk Tracking in Modern Orchard. Comput. Electron. Agric. 2022, 197, 107000. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Ngo, H.H.; Guo, W.; Chang, S.W.; Nguyen, D.D.; Nguyen, C.T.; Zhang, J.; Liang, S.; Bui, X.T.; Hoang, N.B. A Low-Cost Approach for Soil Moisture Prediction Using Multi-Sensor Data and Machine Learning Algorithm. Sci. Total Environ. 2022, 833, 155066. [Google Scholar] [CrossRef]
- Adongo, T.A.; Abagale, F.K.; Agyare, W.A. Modelling and Forecasting Reservoir Sedimentation of Irrigation Dams in the Guinea Savannah Ecological Zone of Ghana. Water Pract. Technol. 2021, 16, 1355–1369. [Google Scholar] [CrossRef]
- Wan, X.; Li, B.; Chen, D.; Long, X.; Deng, Y.; Wu, H.; Hu, J. Irrigation Decision Model for Tomato Seedlings Based On Optimal Photosynthetic Rate. Int. J. Agric. Biol. Eng. 2021, 14, 115–122. [Google Scholar] [CrossRef]
- Trejo-Alonso, J.; Fuentes, C.; Chávez, C.; Quevedo, A.; Gutierrez-Lopez, A.; González-Correa, B. Saturated Hydraulic Conductivity Estimation Using Artificial Neural Networks. Water 2021, 13, 705. [Google Scholar] [CrossRef]
- Kumar, N.; Adeloye, A.J.; Shankar, V.; Rustum, R. Neural Computing Modelling of the Crop Water Stress Index. Agric. Water Manag. 2020, 239, 106259. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Guo, P.; Zhang, C.; Zhang, F.; Guo, S. An Inexact Irrigation Water Allocation Optimization Model Under Future Climate Change. Stoch. Environ. Res. Risk Assess. 2019, 33, 271–285. [Google Scholar] [CrossRef]
- Mattar, M.A.; Alamoud, A.I. Artificial Neural Networks for Estimating the Hydraulic Performance of Labyrinth-Channel Emitters. Comput. Electron. Agric. 2015, 114, 189–201. [Google Scholar] [CrossRef]
- Lavanholi, R.; de Camargo, A.P.; Avila Bombardelli, W.W.; Frizzone, J.A.; Ait-Mouheb, N.; da Silva, E.A.; de Oliveira, F.C. Prediction of Pressure-Discharge Curves of Trapezoidal Labyrinth Channels from Nonlinear Regression and Artificial Neural Networks. J. Irrig. Drain. Eng. 2020, 146, 04020018. [Google Scholar] [CrossRef]
- Mattar, M.A.; Alamoud, A.I. Gene Expression Programming Approach for Modeling the Hydraulic Performance of Labyrinth-Channel Emitters. Comput. Electron. Agric. 2017, 142, 450–460. [Google Scholar] [CrossRef]
- Seyedzadeh, A.; Maroufpoor, S.; Maroufpoor, E.; Shiri, J.; Bozorg-Haddad, O.; Gavazi, F. Artificial Intelligence Approach to Estimate Discharge of Drip Tape Irrigation Based On Temperature and Pressure. Agric. Water Manag. 2020, 228, 105905. [Google Scholar] [CrossRef]
- Mattar, M.A.; Alamoud, A.I.; Al-Othman, A.A.; Elansary, H.O.; Farah, A.-H.H. Hydraulic Performance of Labyrinth-Channel Emitters: Experimental Study, ANN, and GEP Modeling. Irrig. Sci. 2020, 38, 1–16. [Google Scholar] [CrossRef]
- Li, Y.; Feng, X.; Liu, Y.; Han, X.; Liu, H.; Sun, Y.; Li, H.; Xie, Y. Research on Hydraulic Properties and Energy Dissipation Mechanism of the Novel Water-Retaining Labyrinth Channel Emitters. Agronomy 2022, 12, 1708. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.; Ma, J. Influence of Emitter Structure On its Hydraulic Performance Based On the Vortex. Agriculture 2021, 11, 508. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Wu, P.; Cai, Y.; Zhao, X.; Yao, C. Hydraulic Performance and Parameter Optimisation of a Microporous Ceramic Emitter Using Computational Fluid Dynamics, Artificial Neural Network and Multi-Objective Genetic Algorithm. Biosyst. Eng. 2020, 189, 11–23. [Google Scholar] [CrossRef]
- Falcucci, G.; Krastev, V.K.; Biscarini, C. Multi-Component Lattice Boltzmann Simulation of the Hydrodynamics in Drip Emitters. J. Agric. Eng. 2017, 48, 175–180. [Google Scholar] [CrossRef] [Green Version]
- Huang, G. An Insight into Extreme Learning Machines: Random Neurons, Random Features and Kernels. Cogn. Comput. 2014, 6, 376–390. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Y.; Cui, D.; Mao, S.; Huang, G.-B. R-ELMNet: Regularized Extreme Learning Machine Network. Neural Netw. 2020, 130, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Solat, S.; Alinazari, F.; Maroufpoor, E.; Shiri, J.; Karimi, B. Modeling Moisture Bulb Distribution On Sloping Lands: Numerical and Regression-Based Approaches. J. Hydrol. 2021, 601, 126835. [Google Scholar] [CrossRef]
- Maroufpoor, S.; Sammen, S.S.; Alansari, N.; Abba, S.; Malik, A.; Shahid, S.; Mokhtar, A.; Maroufpoor, E. A Novel Hybridized Neuro-Fuzzy Model with an Optimal Input Combination for Dissolved Oxygen Estimation. Front. Environ. Sci. 2022, 10, 1210. [Google Scholar] [CrossRef]
- Behar, O.; Khellaf, A.; Mohammedi, K. Comparison of Solar Radiation Models and their Validation Under Algerian Climate—The Case of Direct Irradiance. Energy Convers. Manag. 2015, 98, 236–251. [Google Scholar] [CrossRef]
- Saccone, D.; De Marchis, M.; Simos, T.E. Optimization of the Design of Labyrinth Emitter for Agriculture Irrigation Using Computational Fluid Dynamic Analysis. AIP Conf. Proc. 2018, 2040, 140013. [Google Scholar]
- Li, S.; Yang, J.; Ansell, A. Discharge Prediction for Rectangular Sharp-Crested Weirs by Machine Learning Techniques. Flow Meas. Instrum. 2021, 79, 101931. [Google Scholar] [CrossRef]
s (mm) | (°) | h (mm) | r (mm) | a (mm) | d (mm) | n |
---|---|---|---|---|---|---|
2.10–2.50 | 20–60 | 0.60–1.00 | 0.60–1.00 | 0.45–0.60 | 0.90–1.30 | 10–19 |
Items | Flow Rate (L/h) | x | ||||
---|---|---|---|---|---|---|
20 kPa | 60 kPa | 100 kPa | 140 kPa | 180 kPa | ||
Simulations | 3.257 | 5.521 | 7.044 | 8.276 | 9.348 | 0.477 |
Measurements | 3.449 | 5.651 | 7.237 | 8.499 | 9.626 | 0.472 |
Parameter | Minimum | Maximum | Median | Mean | SD | CV | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|---|
s (mm) | 2.10 | 2.50 | 2.30 | 2.2822 | 0.1481 | 6.49 | 0.1417 | −1.3886 |
θ (°) | 20 | 60 | 40 | 39.7778 | 14.0078 | 35.22 | 0.0069 | −1.2690 |
h (mm) | 0.60 | 1.00 | 0.80 | 0.7948 | 0.1411 | 17.75 | 0.0440 | −1.2870 |
r (mm) | 0.60 | 1.00 | 0.80 | 0.7956 | 0.1392 | 17.50 | 0.0295 | −1.2574 |
a (mm) | 0.45 | 0.65 | 0.55 | 0.5481 | 0.0706 | 12.87 | 0.0177 | −1.2899 |
d (mm) | 0.90 | 1.30 | 1.10 | 1.0933 | 0.1399 | 12.80 | 0.0534 | −1.2644 |
n | 10 | 19 | 15 | 14.6889 | 2.8741 | 19.57 | 0.1114 | −1.2425 |
x | 0.4779 | 0.5023 | 0.4905 | 0.4907 | 0.0049 | 1.010 | −0.0202 | −0.3256 |
Items | SE | t-Stat | p-Value | F | VIF | |
---|---|---|---|---|---|---|
Intercept | 0.004694 | 98.95 | 0 | - | - | - |
s | 0.001593 | 6.086 | 8.38 × 10−8 | 37.04 | 1.16 | - |
θ | 0.000016 | 8.391 | 9.39 × 10−12 | 70.40 | 1.11 | - |
h | 0.001672 | 8.938 | 1.09 × 10−12 | 79.88 | 1.14 | - |
r | 0.001539 | −8.559 | 4.83 × 10−12 | 73.26 | 1.05 | - |
a | 0.003274 | 6.642 | 9.52 × 10−9 | 44.12 | 1.11 | - |
d | 0.001571 | −1.855 | 6.84 × 10−2 | 3.441 | 1.11 | - |
n | 0.000073 | −10.380 | 4.20 × 10−15 | 107.7 | 1.08 | - |
MLR | - | - | - | - | - | 85.76% |
Model | RMSE | MAE | MBE | R2 |
---|---|---|---|---|
MLR | 0.00404 | 0.00287 | 0.00081 | 51.08% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Feng, X.; Han, X.; Sun, Y.; Li, H. Machine Learning Approach to Predict Flow Regime Index of a Stellate Water-Retaining Labyrinth Channel Emitter. Agronomy 2023, 13, 1063. https://doi.org/10.3390/agronomy13041063
Li Y, Feng X, Han X, Sun Y, Li H. Machine Learning Approach to Predict Flow Regime Index of a Stellate Water-Retaining Labyrinth Channel Emitter. Agronomy. 2023; 13(4):1063. https://doi.org/10.3390/agronomy13041063
Chicago/Turabian StyleLi, Yanfei, Xianying Feng, Xingchang Han, Yitian Sun, and Hui Li. 2023. "Machine Learning Approach to Predict Flow Regime Index of a Stellate Water-Retaining Labyrinth Channel Emitter" Agronomy 13, no. 4: 1063. https://doi.org/10.3390/agronomy13041063
APA StyleLi, Y., Feng, X., Han, X., Sun, Y., & Li, H. (2023). Machine Learning Approach to Predict Flow Regime Index of a Stellate Water-Retaining Labyrinth Channel Emitter. Agronomy, 13(4), 1063. https://doi.org/10.3390/agronomy13041063