Effect of Planting Patterns and Seeding Rate on Dryland Wheat Yield Formation and Water Use Efficiency on the Loess Plateau, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Treatments
2.3. Sampling and Measurement
2.4. Ear Number, Grain Yield, and Water Use Efficiency (WUE)
2.5. Statistical Analysis
3. Results
3.1. Effects of Planting Patterns and Seeding Rate on Soil Water Storage (SWS)
3.2. Effects of Planting Patterns and Seeding Rate on Soil Water Consumption (SWC)
3.3. Effects of Planting Patterns and Seeding Rate on Dry Matter Accumulation at Four Growth Stages
3.4. Accumulation and Translocation of Dry Matter at Pre- and Post-Anthesis Period
3.5. Yield and Yield Attributes and Water Use Efficiency (WUE)
3.6. Correlation Analysis
3.7. Contribution of Water to Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, F.C.; Wang, Z.H.; Dai, J.; Li, Q.; Wang, X.; Xue, C.; Liu, H.; He, G. Fate of nitrogen from green manure, straw, and fertilizer applied to wheat under different summer fallow management strategies in dryland. Biol. Fertil. Soils 2015, 51, 769–780. [Google Scholar] [CrossRef]
- He, G.; Wang, Z.H.; Li, F.C.; Dai, J.; Li, Q.; Cheng, X.; Cao, H.B.; Wang, S.; Malhi, S.S. Soil water storage and winter wheat productivity affected by soil surface management and precipitation in dryland of the Loess Plateau, China. Agric. Water Manag. 2016, 171, 1–9. [Google Scholar] [CrossRef]
- Li, H.; Xue, J.F.; Gao, Z.Q.; Xue, N.W.; Yang, Z.P. Response of yield increase for dryland winter wheat to tillage practice during summer fallow and sowing method in the Loess Plateau of China. J. Integr. Agric. 2018, 17, 817–825. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Xu, Y.Y.; Ma, X.C.; Ahmad, I.; Manzoor; Jia, Q.M.; Akmal, M.; Hussain, Z.; Arif, M.; Cai, T.; et al. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agric. Water Manag. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Jiao, F.L.; Hong, S.Z.; Liu, C.Y.; Ma, Y.Z.; Li, Q.Q. Wide-precision planting pattern under different tillage methods affects photosynthesis and yield of winter wheat. Arch. Agron. Soil Sci. 2022, 68, 1352–1368. [Google Scholar] [CrossRef]
- Wang, H.W.; Li, L.; Yu, S.B.; Wang, Q.; Feng, Y.; Ren, A.X.; Lin, W.; Sun, M.; Gao, Z.Q. Contribution of deep ploughing and furrow sowing to yield and its formation of dryland wheat. Crops 2020, 6, 116–122. [Google Scholar] [CrossRef]
- Noor, H.; Sun, M.; Lin, W.; Gao, Z.Q. Effect of different sowing methods on water use efficiency and grain yield of wheat in the Loess Plateau, China. Water 2022, 14, 577. [Google Scholar] [CrossRef]
- Xue, L.Z.; Khana, S.; Sun, M.; Anwar, S.; Ren, A.X.; Gao, Z.Q.; Lin, W.; Xue, J.F.; Yang, Z.P.; Deng, Y. Effects of tillage practices on water consumption and grain yield of dryland winter wheat under different precipitation distribution in the loess plateau of China. Soil Tillage Res. 2019, 191, 66–74. [Google Scholar] [CrossRef]
- Hou, H.Z.; Lv, J.F.; Guo, T.W.; Zhang, G.P.; Dong, B.; Zhang, X.C. Effects of whole field soil-plastic mulching on spring wheat water consumption, yield, and soil water balance in semiarid region. Sci. Agric. Sin. 2014, 47, 4392–4404. [Google Scholar] [CrossRef]
- Ren, A.X.; Sun, M.; Xue, L.Z.; Deng, Y.; Wang, P.R.; Lei, M.M.; Xue, J.F.; Lin, W.; Yang, Z.P.; Gao, Z.Q. Spatio-temporal dynamics in soil water storage reveals effects of nitrogen inputs on soil water consumption at different growth stages of winter wheat. Agric. Water Manag. 2019, 216, 379–389. [Google Scholar] [CrossRef]
- Dong, F.; Yan, Q.Y.; Yang, F.; Jia, Y.Q.; Li, F.; Lu, J.X.; Zhang, J.C. Effects of sowing method on winter wheat yield and soil hydrothermal conditions under different irrigation conditions. J. Henan Agric. Sci. 2020, 49, 7–14. [Google Scholar] [CrossRef]
- Zhao, J.; Lin, W.; Sun, M.; Ren, A.X.; Tong, J.; Li, H.; Wang, X.W.; Gao, Z.Q. Effects of deep ploughing during the fallow period and soil moisture-based furrow sowing on water and nitrogen resource utilization of dryland wheat. Chin. J. Appl. Ecol. 2021, 32, 1307–1316. [Google Scholar] [CrossRef]
- Mbuthia, L.W.; Acoata-martinez, V.; Debruyn, J.; Schaeffer, S.; Tyler, D.; Odoi, E.; Mpheshea, M.; Walker, F.; Eash, N. Long term tillage, cover crop, and fertilization effects on microbial community structure, activity: Implications for soil quality. Soil Biol. Biochem. 2015, 89, 24–34. [Google Scholar] [CrossRef]
- Qi, Y.L.; Ossowicki, A.; Yergeau, É.; Vigani, G.; Geissen, V.; Garbeva, P. Plastic mulch film residues in agriculture: Impact on soil suppressiveness, plant growth, and microbial communities. FEMS Microbiol. Ecol. 2022, 98, fiac017. [Google Scholar] [CrossRef] [PubMed]
- Kühling, I.; Redozubov, D.; Broll, G.; Trautz, D. Impact of tillage, seeding rate and seeding depth on soil moisture and dryland spring wheat yield in Western Siberia. Soil Tillage Res. 2017, 170, 43–52. [Google Scholar] [CrossRef]
- Guo, Q.; Huang, G.M.; Guo, Y.L.; Zhang, M.C.; Zhou, Y.Y.; Duan, L.S. Optimizing irrigation and planting density of spring maize under mulch drip irrigation system in the arid region of Northwest China. Field Crops Res. 2021, 266, 108141. [Google Scholar] [CrossRef]
- Troccoli, A.; Codianni, P. Appropriate seeding rate for einkorn, emmer, and spelt grown under rainfed condition in southern Italy. Eur. J. Agron. 2005, 22, 293–300. [Google Scholar] [CrossRef]
- Carr, P.M.; Horsley, R.D.; Poland, W.W. Tillage and seeding rate effects on wheat cultivars: II. yield components. Crop Sci. 2003, 43, 201–218. [Google Scholar] [CrossRef]
- Xue, L.Z.; Sun, M.; Gao, Z.Q.; Wang, P.R.; Ren, A.X.; Lei, M.M.; Yang, Z.P. Effects of incremental seeding rate under sub-Soiling during the fallow period on nitrogen absorption and utilization, yield and grain protein content in dryland wheat. Sci. Agric. Sin. 2017, 50, 2451–2462. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Ma, S.K.; Chang, X.H.; Wang, D.M.; Wang, Y.J.; Yang, Y.S.; Zhao, G.C.; Yang, J.C. Effects of tridimensional uniform sowing on water consumption, nitrogen use, and yield in winter wheat. Crop J. 2019, 7, 480–493. [Google Scholar] [CrossRef]
- Roques, S.E.; Berry, P.M. The yield response of oilseed rape to plant population density. J. Agric. Sci. Camb. 2016, 154, 305–320. [Google Scholar] [CrossRef]
- Zhang, D.S.; Zhang, L.Z.; Liu, J.G.; Han, S.; Wang, Q.; Evers, J.; Liu, J.; Werf, W.V.D.; Li, L. Plant density affects light interception and yield in cotton grown as companion crop in young jujube plantations. Field Crops Res. 2014, 169, 132–139. [Google Scholar] [CrossRef]
- Dam, R.F.; Mehdi, B.B.; Burgess, M.S.E.; Madramootoo, C.A.; Mehuys, G.R.; Callum, I.R. Soil bulk density and crop yield under eleven consecutive years of corn with different tillage and residue practices in a sandy loam soil in central Canada. Soil Tillage Res. 2005, 84, 41–53. [Google Scholar] [CrossRef]
- Sun, M.; Ren, A.X.; Gao, Z.Q.; Wang, P.R.; Mo, F.; Xue, L.Z.; Lei, M.M. Long-term evaluation of tillage methods in fallow season for soil water storage, wheat yield and water use efficiency in semiarid southeast of the Loess Plateau. Field Crops Res. 2018, 218, 24–32. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, Y.M.; Zhang, Z.; Liu, Y.; Han, M.K.; Hu, N.Y.; Wang, Z.M.; Sun, Z.C. Limited irrigation influence on rotation yield, water use, and wheat traits. Agron. J. 2020, 112, 241–256. [Google Scholar] [CrossRef]
- Arduini, I.; Masoni, A.; Ercoli, L.; Mariotti, M. Grain yield, and dry matter and nitrogen accumulation and remoblilization in durum wheat as affected by variety and seeding rate. Eur. J. Agron. 2006, 25, 309–318. [Google Scholar] [CrossRef]
- Zhang, J.Z.; Sun, M.; Gao, Z.Q.; Zheng, Y.; Ren, A.X.; Yang, Z.P.; Hao, X.Y.; Zong, Y.Z. Effects of mulching in fallow period on soil moisture and yield components of dryland wheat. Chin. J. Ecol. 2015, 34, 1004–1012. [Google Scholar] [CrossRef]
- Gao, Y.M.; Sun, M.; Gao, Z.Q.; Cui, K.; Zhao, H.M.; Yang, Z.P.; Hao, X.Y. Effects of mulching on grain yield and water use efficiency of dryland wheat in different rainfall years. Sci. Agric. Sin. 2015, 48, 3589–3599. [Google Scholar] [CrossRef]
- Wang, Z.X.; Sun, M.; Ren, A.X.; Lin, W.; Zhao, Q.L.; Zhang, R.R.; Li, L.; Hao, R.X.; Han, X.Y.; Gao, Z.Q. Effects of nitrogen application rate on soil water use and yield of dryland wheat under furrow sowing in drought year. Chin. J. Ecol. 2021, 11, 3598–3607. [Google Scholar] [CrossRef]
- Li, R.; Cui, R.M.; Jia, Z.K.; Han, Q.F.; Lu, W.T.; Hou, X.Q. Effects of different furrow-ridge mulching ways on soil moisture and water use efficiency of winter wheat. Sci. Agric. Sin. 2011, 44, 3312–3322. [Google Scholar] [CrossRef]
- Yu, S.Z.; Chen, Y.H.; Yu, S.L.; Dong, Q.Y.; Zhou, X.B.; Li, Q.Q.; Wu, W.; Sun, N.N. Study on Dynamic Changes of Soil Water in Winter Wheat Field of Furrow Planting and Bed Planting. J. Soil Water Conserv. 2005, 19, 133–137. [Google Scholar] [CrossRef]
- Li, F.J.; Xu, D.Y.; Wu, P.; Le, T.; Zhu, M.; Li, C.Y.; Zhu, X.K.; Yang, S.J.; Ding, J.F.; Guo, W.S. Effects of mechanical tillage and sowing methods on photosynthetic production and yield of wheat in rice stubble. Trans. Chin. Soc. Agric. Eng. 2021, 37, 41–49. [Google Scholar] [CrossRef]
- Zhang, J.S.; Jia, Y.H.; Li, P.; Sun, P.; Jiang, W.; Shi, S.B. Effects of uniforming sowing pattern and planting density on photosynthesis, dry matter accumulation and distribution and yield of winter wheat. J. Triticeae Crops 2021, 41, 438–447. [Google Scholar] [CrossRef]
- Tian, Z.W.; Wang, F.R.; Dai, T.B.; Cai, J.; Jiang, D.; Cao, X.W. Characteristics of dry matter accumulation and translocation during the wheat genetic improvement and their relationship to grain yield. Sci. Agric. Sin. 2012, 45, 801–808. [Google Scholar] [CrossRef]
- Wang, C.N.; Wu, D.Y.; Xia, X.Y.; Lin, L.T.; Han, S.L. Effect of the condition of high fat on the population quality and yield of wheat in Jinan. Jiangsu Agric. Sci. 2002, 1, 18–19. [Google Scholar] [CrossRef]
- Ma, S.Y.; Wang, Y.Y.; Liu, Y.N.; Yao, K.J.; Huang, Z.L.; Zhang, W.J.; Fan, Y.H.; Ma, Y.S. Effect of sowing date, planting density, and nitrogen application on dry matter accumulation, transfer, distribution, and yield of wheat. Chin. J. Eco-Agric. 2020, 28, 375–385. [Google Scholar] [CrossRef]
- Zhao, H.J.; Zou, Q.; Guo, T.C.; Yu, Z.W.; Wang, Y.H. Regulating effects of density and top-dressing time of nitrogen on characteristics of radiation transmission and photosynthesis in canopy of massive spike winter wheat variety L906. Acta Agron. Sin. 2002, 28, 270–277. [Google Scholar] [CrossRef]
- Dreccer, M.F.; Herwaarden, A.F.V.; Chapman, S.C. Grain number and grain weight in wheat lines contrasting for stem water soluble carbohydrate concentration. Field Crops Res. 2009, 112, 43–54. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.L.; Wang, X.J.; Wang, Y.P.; Xie, S.X. Effects of different sowing methods on growth and yield of drought seeding rice. Shandong Agric. Sci. 2016, 48, 58–61. [Google Scholar] [CrossRef]
- Hu, G.P.; Zou, J.G.; Zheng, W.; Zhu, Z.W.; Gao, C.B. Effects of planting methods on the growth and yield of wheat in rice-wheat rotation. Hubei Agric. Sci. 2014, 53, 4814–4816. [Google Scholar] [CrossRef]
- Chetan, F.; Chetan, C.; Mararu, I.P.; Simon, A. The reaction of some winter wheat variety at cultivation in the conservative system in the transylvanian plain area. Bull. UASVM Ser. Agric. 2016, 73, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Dai, X.L.; Zhou, X.Y.; Tian, Q.Z. Effects of different cultivation technologies on grain yield and quality of winter wheat. Shandong Agric. Sci. 2016, 48, 26–29. [Google Scholar] [CrossRef]
- Gan, Y.T.; Siddique, K.H.M.; Turner, N.C.; Li, X.G.; Niu, J.Y.; Yang, C.; Liu, L.P.; Chai, C. Chapter seven-ridge-furrow mulching systems: An innovative technique for boosting crop productivity in semiarid rainfed environments. Adv. Agron. 2013, 118, 429–476. [Google Scholar] [CrossRef]
- Han, J.; Jia, Z.K.; Wu, W.; Li, C.; Han, Q.; Zheng, J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Res. 2014, 155, 202–212. [Google Scholar] [CrossRef]
- Chai, S.X.; Yang, C.G.; Zhang, S.F.; Chen, H.H.; Chang, L. Effects of plastic mulching modes on soil moisture and grain yield in dryland winter wheat. Acta Agron. Sin. 2015, 41, 787–796. [Google Scholar] [CrossRef]
- Chen, Y.L.; Liu, T.; Tian, X.H.; Wang, X.; Li, M.; Wang, S.; Wang, Z. Effects of plastic film combined with straw mulch on grain yield and water use efficiency of winter wheat in Loess Plateau. Field Crops Res. 2015, 172, 53–58. [Google Scholar] [CrossRef]
- Du, X.; Zhang, W.H.; Zhang, Y.S.; Cao, C.Y.; Li, J.K. Artificial warming from late winter to early spring by phased plastic mulching increases grain yield of winter wheat. Acta Agron. Sin. 2016, 42, 1530–1540. [Google Scholar] [CrossRef]
- Cheng, H.B.; Niu, J.B.; Chai, S.X.; Chang, L.; Yang, C.G. Effect of different mulching materials and methods on soil moisture and temperature and grain yield of dryland spring wheat in northwestern China. Acta Pratacult. Sin. 2016, 25, 47–57. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Chai, S.X.; Fan, Y.D.; Cheng, H.B.; Huang, C.X.; Tan, K.M.; Chang, L.; Yang, C.G. Effects of mulching models on soil temperature and yield of winter wheat in rainfed area. Chin. J. Agrometeorol. 2014, 35, 403–409. [Google Scholar] [CrossRef]
- Yang, C.G.; Chai, S.X.; Chang, L.; Yang, D.L. Effects of plastic mulching on water consumption characteristics and grain yield of winter wheat in arid region of northwest China. Sci. Agric. Sin. 2015, 48, 661–671. [Google Scholar] [CrossRef]
- Liu, X.L.; Wang, K.; Yang, Z.P.; Xue, J.F.; Du, T.Q.; Zong, Y.Z.; Hao, X.Y.; Sun, M.; Gao, Z.Q. Effect of different sowing dates and sowing methods on agronomic characters and yield of dry land winter wheat in two-cropping areas. Acta Agric. Boreall Sin. 2018, 33, 232–238. [Google Scholar] [CrossRef]
- Xue, Y.S.; Liu, Y.G.; Zhang, Y.M.; Shi, C.H.; Lin, Q.; Gai, W.L. Effects of furrow sowing on dry matter accumulation and grain filling in salt tolerant cultivar Qingmai 6. J. Triticeae Crops 2016, 36, 1651–1656. [Google Scholar] [CrossRef]
- Mao, X.M.; Zhong, W.W.; Wang, X.Y.; Chen, Y.H.; Zhou, X.B. Effects of planting patterns and nitrogen application on photosynthetic characteristics and yield of wheat. Jiangsu Agric. Sci. 2018, 46, 56–60. [Google Scholar] [CrossRef]
- Luo, C.L.; Zhang, X.F.; Duan, H.X.; Mburub, M.D.; Xiong, Y.C. Allometricrelation ship and yield formation in response to planting density under ridge-furrow plastic mulching in rainfed wheat. Field Crops Res. 2020, 251, 107785. [Google Scholar] [CrossRef]
- Liu, J.M.; Qu, C.; Yang, X.Y.; Zhang, S.L. Effects of seeding rate on winter wheat yield and soil water dynamics under straw mulching on dryland. Acta Agric. Boreali-Occident. Sin. 2014, 23, 36–43. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, T.C.; Guan, X.K.; Zhang, X. Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crops Res. 2018, 221, 166–174. [Google Scholar] [CrossRef]
- Qi, Y.L.; Ossowicki, A.; Yang, X.M.; Lwanga, E.H.; Diniandreote, F.; Geissen, V.; Garbeva, P. Effects of plastic mulch film residues on wheat rhizosphere and soil properties. J. Hazard. Mater. 2020, 387, 121711. [Google Scholar] [CrossRef] [PubMed]
Year | Fallow Period | SS–WS | WS–JS | JS–AS | AS–MS | Total |
---|---|---|---|---|---|---|
2009–2020 | 259.9 | 70.2 | 26.1 | 35.8 | 55.8 | 447.8 |
2017–2018 | 199.3 | 152.4 | 0.0 | 49.8 | 16.1 | 417.6 |
2018–2019 | 254.5 | 0.0 | 8.9 | 36.7 | 23.3 | 323.4 |
Year | Organic Matter (g/kg) | Available N (mg/kg) | Available Phosphorus (mg/kg) | Available Potassium (mg/kg) |
---|---|---|---|---|
2017–2018 | 9.17 | 34.53 | 20.29 | 98.29 |
2018–2019 | 10.66 | 41.92 | 19.82 | 96.34 |
Parameter | WS | JS | AS | MS |
---|---|---|---|---|
Year (Y) | 14.039 | 1.490 | 233.075 ** | 233.718 ** |
Planting patterns (P) | 197.711 ** | 265.635 ** | 615.046 ** | 1028.671 ** |
Seeding rate (R) | 11.586 ** | 4.665 ** | 1106.158 ** | 2288.279 ** |
Y × P | 16.989 ** | 5.088 * | 54.425 ** | 36.501 ** |
Y × R | 199.660 ** | 156.056 ** | 49.778 ** | 39.826 ** |
P × R | 6.137 ** | 1.524 | 18.913 ** | 57.483 ** |
Y × P × R | 14.566 ** | 4.765 ** | 15.260 ** | 22.459 ** |
Parameter | DMABA | DMAAA | ||
---|---|---|---|---|
TA (kg ha−1) | CG (%) | AA (kg ha−1) | CG (%) | |
Year (Y) | 0.846 | 49.764 * | 504.748 ** | 49.764 * |
Planting patterns (P) | 1.102 | 24.296 ** | 51.813 ** | 24.296 ** |
Seeding rate (R) | 49.724 ** | 10.012 ** | 398.647 ** | 10.012 ** |
Y × P | 2.253 | 0.674 | 1.690 | 0.674 |
Y × R | 1.932 | 3.762 * | 10.791 ** | 3.762 * |
P × R | 8.214 ** | 2.786 * | 29.492 ** | 2.786 * |
Y × P × R | 5.550 ** | 6.588 ** | 5.574 ** | 6.588 ** |
Parameter | Spike Number (104 ha−1) | Kernels per Spike | 1000-Kernel Weigh (g) | Grain Yield (kg ha−1) | Water Use Efficiency (kg ha−1 mm−1) |
---|---|---|---|---|---|
Year (Y) | 590.967 ** | 266.230 ** | 944.841 ** | 69.342 * | 46.025 * |
Planting patterns (P) | 26.682 ** | 11.301 ** | 4.094 | 27.107 ** | 18.649 ** |
Seeding rate (R) | 91.102 ** | 25.382 ** | 16.280 ** | 644.983 ** | 555.393 ** |
Y × P | 3.176 ** | 2.556 | 0.460 | 2.544 | 0.488 |
Y × R | 9.216 ** | 2.001 | 45.474 ** | 6.851 ** | 7.940 ** |
P × R | 4.475 ** | 3.415 ** | 30.417 ** | 52.885 ** | 51.442 ** |
Y × P × R | 5.284 ** | 2.022 | 7.814 ** | 2.700 * | 1.759 |
Parameter | 2017–2018 | 2018–2019 | ||||||
---|---|---|---|---|---|---|---|---|
Spike Number | Kernels per Spike | 1000-Kernel Weigh | Yield | Spike Number | Kernels per Spike | 1000-Kernel Weigh | Yield | |
SWS (WS) | 0.879 ** | 0.910 ** | −0.654 * | 0.864 ** | 0.708 ** | 0.557 * | 0.194 | 0.747 ** |
SWS (JS) | 0.839 ** | 0.887 ** | −0.583 * | 0.852 ** | 0.612 * | 0.756 ** | 0.024 | 0.873 ** |
SWC (SS–WS) | −0.869 ** | −0.904 ** | 0.649 * | −0.853 ** | −0.681 * | −0.542 | −0.200 | −0.720 ** |
SWC (WS–JS) | 0.692 ** | 0.661 * | −0.638 * | 0.598 * | 0.554 * | −0.016 | 0.389 | 0.211 |
SWC (JS–AS) | 0.793 ** | 0.889 ** | −0.671 * | 0.767 ** | 0.795 ** | 0.537 | −0.104 | 0.755 ** |
SWC (AS–MS) | 0.753 ** | 0.885 ** | −0.531 | 0.766 ** | 0.667 * | 0.738 ** | −0.004 | 0.887 ** |
DMABA | 0.894 ** | 0.965 ** | −0.653 * | 0.903 ** | 0.814 ** | 0.713 ** | −0.084 | 0.970 ** |
DMAAA | 0.750 ** | 0.625 * | −0.485 | 0.798 ** | 0.371 | 0.654 * | −0.0049 | 0.777 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Mu, J.; Hu, Y.; Ren, A.; Lei, B.; Ding, P.; Li, L.; Sun, M.; Gao, Z. Effect of Planting Patterns and Seeding Rate on Dryland Wheat Yield Formation and Water Use Efficiency on the Loess Plateau, China. Agronomy 2023, 13, 851. https://doi.org/10.3390/agronomy13030851
Zhang J, Mu J, Hu Y, Ren A, Lei B, Ding P, Li L, Sun M, Gao Z. Effect of Planting Patterns and Seeding Rate on Dryland Wheat Yield Formation and Water Use Efficiency on the Loess Plateau, China. Agronomy. 2023; 13(3):851. https://doi.org/10.3390/agronomy13030851
Chicago/Turabian StyleZhang, Jingjing, Junyi Mu, Yanan Hu, Aixia Ren, Bin Lei, Pengcheng Ding, Linghong Li, Min Sun, and Zhiqiang Gao. 2023. "Effect of Planting Patterns and Seeding Rate on Dryland Wheat Yield Formation and Water Use Efficiency on the Loess Plateau, China" Agronomy 13, no. 3: 851. https://doi.org/10.3390/agronomy13030851
APA StyleZhang, J., Mu, J., Hu, Y., Ren, A., Lei, B., Ding, P., Li, L., Sun, M., & Gao, Z. (2023). Effect of Planting Patterns and Seeding Rate on Dryland Wheat Yield Formation and Water Use Efficiency on the Loess Plateau, China. Agronomy, 13(3), 851. https://doi.org/10.3390/agronomy13030851