Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Greenhouse Environment
2.2. Plant Material
2.3. Transplant and Growing Medium Analysis
2.4. Nutrient Mineral Supply
2.5. Biostimulant Supplies
2.6. Treatments and Experimental Design
- T1 = conventional full CRF dose: 4 gL−1 GM;
- T2 = limited CRF dose: 50% of T1: 2 gL−1 GM;
- T3 = T2 + B1D1 (0.5 gL−1);
- T4 = T2 + B1D2 (1.0 gL−1);
- T5 = T2 + B2D1 (1.5 mL L−1);
- T6 = T2 + B2D2 (2.5 mL L−1).
2.7. Root Morphology and Growth Measurements
2.8. Above-Ground Macronutrients Analysis
2.9. Nitrogen Use Efficiency (NUE)
- i.
- Physiological Use Efficiency as the ratio between above-ground dry biomass and total amount of N in above-ground tissues;
- ii.
- Agronomic Use Efficiency as the ratio between above-ground dry biomass and total N supplied with CRF.
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yousaf, M.; Li, J.; Lu, J.; Ren, T.; Cong, R.; Fahad, S.; Li, X. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci. Rep. 2017, 7, 1270. [Google Scholar] [CrossRef] [Green Version]
- Stellacci, A.M.; Cristiano, G.; Rubino, P.; De Lucia, B.; Cazzato, E. Nitrogen uptake, nitrogen partitioning and N-use e_ciency of container-grown Holm oak (Quercus ilex L.) under different nitrogen levels and fertilizer sources. J. Food Agric. Environ. 2013, 11, 990–994. [Google Scholar]
- Mantovani, J.R.; Silveira, L.G.D.; Landgraf, P.R.C.; Santos, A.R.D.; Costa, B.D.S. Phosphorus rates and use of cattle manure in potted gerbera cultivation. Ornam. Hortic. 2017, 23, 412–418. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D. The greening of the green revolution. Nature 1998, 396, 211–212. [Google Scholar] [CrossRef]
- Berg, M.; Köpke, U.; Haas, G. Nitrate leaching: Comparing conventional, integrated and organic agricultural production systems. Intern. Assoc. Hydrol. Sci. 2002, 273, 131–136. [Google Scholar]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon Footprint Management by Agricultural Practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef]
- Chen, J.H. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In Proceedings of the InternationalWorkshop on Sustained Management of the Soil-Rhizosphere System for Effcient Crop Production and Fertilizer Use, Bangkok, Thailand, 16–20 October 2006; Volume 16, p. 20. [Google Scholar]
- Bouwman, L.; Goldewijk, K.K.; Van Der Hoek, K.W.; Beusen, A.H.W.; Van Vuuren, D.P.; Willems, J.; Rufino, M.C.; Stehfest, E. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc. Natl. Acad. Sci. USA 2013, 110, 20882–20887. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [Green Version]
- Torbert, H.A.; King, K.W.; Harmel, R.D. Impact of Soil Amendments on Reducing Phosphorus Losses from Runoff. Sod. J. Environ. Qual. 2005, 34, 1415. [Google Scholar] [CrossRef]
- Hansen, B.; Thorling, L.; Schullehner, J.; Termansen, M.; Dalgaard, T. Groundwater nitrate response to sustainable nitrogen management. Sci. Rep. 2017, 7, 8566. [Google Scholar] [CrossRef] [Green Version]
- Shu, J.; Wu, H.; Chen, M.; Peng, H.; Li, B.; Liu, R.; Liu, Z.; Wang, B.; Huang, T.; Hu, Z. Fractional removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using carbonate and struvite precipitation. Water Res. 2019, 153, 229–238. [Google Scholar] [CrossRef]
- Novello, G.; Cesaro, P.; Bona, E.; Massa, N.; Gosetti, F.; Scarafoni, A.; Todeschini, V.; Berta, G.; Lingua, G.; Gamalero, E. The Effects of Plant Growth-Promoting Bacteria with Biostimulant Features on the Growth of a Local Onion Cultivar and a Commercial Zucchini Variety. Agronomy 2021, 11, 888. [Google Scholar] [CrossRef]
- Havlin, J.L.; Tisdale, S.L.; Nelson, W.L.; Beaton, J.D. Soil Fertility and Fertilizers, an Introduction to Nutrient Management, 8th ed.; Pearson: Boston, MA, USA, 2014. [Google Scholar]
- Murillo-Amador, B.; Morales-Prado, L.E.; Troyo-Diéguez, E.; Córdoba-Matson, M.V.; Hernández-Montiel, L.G.; Rueda-Puente, E.O.; Nieto-Garibay, A. Changing environmental conditions and applying organic fertilizers in Origanum vulgare L. Front. Plant Sci. 2015, 6, 549. [Google Scholar] [CrossRef] [Green Version]
- Pitton, B.J.; Oki, L.R.; Sisneroz, J.; Evans, R.Y. A nursery system nitrogen balance for production of a containerized woody ornamental plant. Sci. Hortic. 2022, 291, 110569. [Google Scholar] [CrossRef]
- Chen, J.; Wei, X. Controlled-release fertilizers as a means to reduce nitrogen leaching and runoff in container-grown plant production. Nitrogen Agric. Updates 2018, 1, 33–52. [Google Scholar] [CrossRef] [Green Version]
- Vejan, P.; Khadiran, T.; Abdullah, R.; Ahmad, N. Controlled release fertilizer: A review on developments, applications and potential in agriculture. J. Control Release 2021, 339, 321–334. [Google Scholar] [CrossRef]
- Lawrencia, D.; Wong, S.K.; Low, D.Y.S.; Goh, B.H.; Goh, J.K.; Ruktanonchai, U.R.; Soottitantawat, A.; Lee, L.H.; Tang, S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 2021, 10, 238. [Google Scholar] [CrossRef]
- Mello, S.C.; Li, Y.C.; Migliaccio, K.W.; Linares, E.P.; Colee, J.; Angelotti-Mendonça, J. Effects of polymer coated urea and irrigation rates on lantana growth and nitrogen leaching. Soil Sci. Soc. Am. J.—Soil Biol. Biochem. 2017, 81, 546–555. [Google Scholar] [CrossRef]
- Pitton, B.J.L.; Wikramanayake, A.M.; Johnson, G.E. Mechanically-Incorporated Controlled-Release Fertilizer Results in Greater Nitrogen and Salt Leaching Losses from Soilless Substrate in Containers. Horticulturae 2023, 9, 42. [Google Scholar] [CrossRef]
- Szparaga, A.; Kocira, S. Generalized logistic functions in modelling emergence of Brassica napus L. PLoS ONE 2018, 13, e0201980. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, S.K.; Thakral, S.K.; Bhardwaj, K.K.; Jhariya, M.K.; Meena, R.S.; Jangir, C.K.; Bedwal, S.; Jat, R.D.; Gaber, A.; et al. Integrated Nutrient Management Improves the Productivity and Nutrient Use Efficiency of Lens culinaris Medik. Sustainability 2022, 14, 1284. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-based biostimulants modulate rhizosphere microbial populations and improve N uptake effciency, yield, and nutritional quality of leafy vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Maitra, S.; Brestic, M.; Bhadra, P.; Shankar, T.; Praharaj, S.; Palai, J.B.; Shah, M.M.R.; Barek, V.; Ondrisik, P.; Skalický, M.; et al. Bioinoculants—Natural Biological Resources for Sustainable Plant Production. Microorganisms 2022, 10, 51. [Google Scholar] [CrossRef]
- Alori, E.T.; Babalola, O.O. Microbial Inoculants for Improving Crop Quality and Human Health in Africa. Front. Microbiol. 2018, 9, 2213. [Google Scholar] [CrossRef] [Green Version]
- EU. Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of EU Fertilising Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and Repealing Regulation (EC) No 2003/2003. Off. J. Eur. Union 2019, 62, 1–114. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L: 2019:170:TOC (accessed on 29 December 2022).
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hort. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Bulgari, R.; Cocetta, G.; Trivellini, A.; Vernieri, P.; Ferrante, A. Biostimulants and crop responses: A review. Biol. Agric. Hortic. 2015, 31, 1–17. [Google Scholar] [CrossRef]
- García, A.C.; van Tol de Castro, T.A.; Santos, L.A.; Tavares, O.C.H.; Castro, R.N.; Berbara, R.L.L.; García-Mina, J.M. Structure–Property–Function Relationship of Humic Substances in Modulating the Root Growth of Plants: A Review. J. Environ. Qual. 2019, 48, 1622–1632. [Google Scholar] [CrossRef]
- Kim, H.J.; Ku, K.M.; Choi, S.; Cardarelli, M. Vegetal-derived biostimulant enhances adventitious rooting in cuttings of basil, tomato, and chrysanthemum via brassinosteroid-mediated processes. Agronomy 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G. Editorial: Biostimulants in Agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Moncada, A.; Vetrano, F. Use of Microbial Biostimulants to Increase the Salinity Tolerance of Vegetable Transplants. Agronomy 2021, 11, 1143. [Google Scholar] [CrossRef]
- Hamid, B.; Zaman, M.; Farooq, S.; Fatima, S.; Sayyed, R.Z.; Baba, Z.A.; Sheikh, T.A.; Reddy, M.S.; El Enshasy, H.; Gafur, A.; et al. Bacterial Plant Biostimulants: A Sustainable Way towards Improving Growth, Productivity, and Health of Crops. Sustainability 2021, 13, 2856. [Google Scholar] [CrossRef]
- Posmyk, M.M.; Szafrańska, K. Biostimulators: A New Trend towards Solving an Old Problem. Front. Plant Sci. 2016, 7, 748. [Google Scholar] [CrossRef] [Green Version]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef]
- EL Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Corsi, S.; Ruggeri, G.; Zamboni, A.; Bhakti, P.; Espen, L.; Ferrante, A.; Noseda, M.; Varanini, Z.; Scarafoni, A. A Bibliometric Analysis of the Scientific Literature on Biostimulants. Agronomy 2022, 12, 1257. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Tinti, A.; Schiavon, M.; Pizzeghello, D.; Nardi, S. Evaluation of Seaweed Extracts From Laminaria and Ascophyllum nodosum spp. as Biostimulants in Zea mays L. Using a Combination of Chemical, Biochemical and Morphological Approaches. Front. Plant Sci. 2018, 9, 428. [Google Scholar] [CrossRef]
- De Pascale, S.; Rouphael, Y.; Colla, G. Plant biostimulants: Innovative tool for enhancing plant nutrition in organic farming. Eur. J. Hortic. Sci. 2018, 82, 277–285. [Google Scholar] [CrossRef]
- Chiaiese, P.; Corrado, G.; Colla, G.; Kyriacou, M.C.; Rouphael, Y. Renewable Sources of Plant Biostimulation: Microalgae as a Sustainable Means to Improve Crop Performance. Front. Plant Sci. 2018, 9, 1782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, W.R.; van Staden, J. Effect of seaweed concentrate on the growth of wheat. S. Afr. J. Sci. 1986, 82, 199–200. [Google Scholar]
- Abetz, P.; Young, C.L. The Effect of Seaweed Extract Sprays Derived from Ascophyllum nodosum on Lettuce and Cauliflower Crops. Bot. Mar. 1983, 26, 487–492. [Google Scholar] [CrossRef]
- Crouch, I.J.; van Staden, J. Effect of seaweed concentrate on the establishment and yield of greenhouse tomato plants. J. Appl. Phycol. 1992, 4, 291–296. [Google Scholar] [CrossRef]
- Burchett, S.; Fuller, M.P.; Jellings, A.J. Application of seaweed extract improves winter hardiness of winter barley cv Igri. In Proceedings of the Society for Experimental Biology, Annual Meeting, The York University, Toronto, ON, Canada, 22–27 March 1998; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.G.; Adil, M.; Bajpai, S.; Critchley, A.T.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [Green Version]
- Hrólfsdóttir, A.Þ.; Arason, S.; Sveinsdóttir, H.I.; Gudjónsdóttir, M. Added Value of Ascophyllum nodosum Side Stream Utilization during Seaweed Meal Processing. Mar. Drugs 2022, 20, 340. [Google Scholar] [CrossRef]
- Duarte, M.E.; Cardoso, M.A.; Noseda, M.D.; Cerezo, A.S. Structural studies on fucoidans from the brown seaweed Sargassum stenophyllum. Carbohyd. Res. 2001, 333, 281–293. [Google Scholar] [CrossRef]
- Afonso, N.C.; Catarino, M.D.; Silva, A.; Cardoso, S.M. Brown macroalgae as valuable food ingredients. Antioxidants 2019, 8, 365. [Google Scholar] [CrossRef] [Green Version]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants Application in Horticultural Crops under Abiotic Stress Conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Franzoni, G.; Cocetta, G.; Prinsi, B.; Ferrante, A.; Espen, L. Biostimulants on Crops: Their Impact under Abiotic Stress Conditions. Horticulturae 2022, 8, 189. [Google Scholar] [CrossRef]
- Wang, Y.; Fu, F.; Li, J.; Wang, G.; Wu, M.; Zhan, J.; Chen, X.; Mao, Z. Effects of seaweed fertilizer on the growth of Malus hupehensis Rehd. Seedlings, soil enzyme activities and fungal communities under replant condition. Eur. J. Soil Biol. 2016, 75, 1–7. [Google Scholar] [CrossRef]
- Kulkarni, M.G.; Rengasamy, K.R.R.; Pendota, S.C.; Gruz, J.; Plaˇcková, L.; Novák, O.; Doležal, K.; Van Staden, J. Bioactive molecules derived from smoke and seaweed Ecklonia maxima showing phytohormone-like activity in Spinacia oleracea L. New Biotechnol. 2019, 48, 83–89. [Google Scholar] [CrossRef]
- Stirk, W.A.; Rengasamy, K.R.R.; Kulkarni, M.G.; van Staden, J. Plant Biostimulants from Seaweed. In The Chemical Biology of Plant Biostimulants; JohnWiley & Sons, Ltd.: Hoboken, NJ, USA, 2020; pp. 31–55. ISBN 978-1-119-35725-4. [Google Scholar]
- Petropoulos, S.A. Practical Applications of Plant Biostimulants in Greenhouse Vegetable Crop Production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M. Seaweed extracts as biostimulants of plant growth and development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Paradiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Kisvarga, S.; Farkas, D.; Boronkay, G.; Neményi, A.; Orlóci, L. Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant. Agronomy 2022, 12, 1043. [Google Scholar] [CrossRef]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Image Analysis of Adventitious Root Quality in Wild Sage and Glossy Abelia Cuttings after Application of Different Indole-3-Butyric Acid Concentrations. Plants 2022, 11, 290. [Google Scholar] [CrossRef]
- Abdelkader, M.; Voronina, L.; Puchkov, M.; Shcherbakova, N.; Pakina, E.; Zargar, M.; Lyashko, M. Seed Priming with Exogenous Amino Acids Improves Germination Rates and Enhances Photosynthetic Pigments of Onion Seedlings (Allium cepa L.). Horticulturae 2023, 9, 80. [Google Scholar] [CrossRef]
- Pecha, J.; Fürst, T.; Kolomazník, K.; Friebrová, V.; Svoboda, P. Protein biostimulant foliar uptake modeling: The impact of climatic conditions. AIChE J. 2012, 58, 2010–2019. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant Substances for Sustainable Agriculture: Origin, Operating Mechanisms and Effects on Cucurbits, Leafy Greens, and Nightshade Vegetables Species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef]
- Caruso, G.; De Pascale, S.; Cozzolino, E.; Cuciniello, A.; Cenvinzo, V.; Bonini, P.; Colla, G.; Rouphael, Y. Yield and nutritional quality of vesuvian piennolo tomato PDO as affected by farming system and biostimulant application. Agronomy 2019, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Kolomazník, K.; Pecha, J.; Friebrová, V.; Janáčová, D.; Vašek, V. Diffusion of biostimulators into plant tissues. Heat Mass Transf. 2012, 48, 1505–1512. [Google Scholar] [CrossRef]
- Sarojnee, D.Y.; Navindra, B.; Chandrabose, S. Effect of naturally occurring amino acid stimulants on the growth and yield of hot peppers. J. Anim. Plant Sci. 2009, 5, 414–424. [Google Scholar]
- Khan, S.; Yu, H.; Li, Q.; Gao, Y.; Sallam, B.N.; Wang, H.; Liu, P.; Jiang, W. Exogenous Application of Amino Acids Improves the Growth and Yield of Lettuce by Enhancing Photosynthetic Assimilation and Nutrient Availability. Agronomy 2019, 9, 266. [Google Scholar] [CrossRef] [Green Version]
- Baltazar, M.; Correia, S.; Guinan, K.J.; Sujeeth, N.; Bragança, R.; Gonçalves, B. Recent Advances in the Molecular Effects of Biostimulants in Plants: An Overview. Biomolecules 2021, 11, 1096. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Amino acids in plants: Regulation and functions in development and stress defense. Front. in Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Kolukisaoglu, Ü. d-Amino Acids in Plants: Sources, Metabolism, and Functions. Int. J. Mol. Sci. 2020, 21, 5421. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- García, C.J.; Alacid, V.; Tomás-Barberán, F.A.; García, C.; Palazón, P. Untargeted Metabolomics to Explore the Bacteria Exo-Metabolome Related to Plant Biostimulants. Agronomy 2022, 12, 1926. [Google Scholar] [CrossRef]
- López-Gómez, P.; Smith, E.N.; Bota, P.; Cornejo, A.; Urra, M.; Buezo, J.; Moran, J.F. Tryptophan Levels as a Marker of Auxins and Nitric Oxide Signaling. Plants 2022, 11, 1304. [Google Scholar] [CrossRef]
- Shehata, S.; Abdel-Azem, H.; Abou El-Yazied, A.; El-Gizawy, A. Effect of foliar spraying with amino acids and seaweed extract on growth chemical constitutes, yield and its quality of celeriac plant. Eur. J. Sci. Res. 2011, 58, 257–265. [Google Scholar]
- Al-Karaki, G.N.; Othman, Y. Effect of foliar application of amino acids biostimulants on growth, macronutrient, total phenols contents and antioxidant activity of soilless grown lettuce cultivars. S. Afr. J. of Bot. 2023, 154, 225–231. [Google Scholar] [CrossRef]
- Youssef, S.M.; El-Serafy, R.S.; Ghanem, K.Z.; Elhakem, A.; Abdel Aal, A.A. Foliar Spray or Soil Drench: Microalgae Application Impacts on Soil Microbiology, Morpho-Physiological and Biochemical Responses, Oil and Fatty Acid Profiles of Chia Plants under Alkaline Stress. Biology 2022, 11, 1844. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, A.A.; Takacs-Hajos, M. Evaluation of moringa (Moringa oleifera Lam.) leaf extract on bioactive compounds of lettuce (Lactuca sativa L.) grown under glasshouse environment. J. King Saud Univ. -Sci. 2022, 34, 101916. [Google Scholar] [CrossRef]
- Esmaeilian, Y.; Amiri, M.B.; Tavassoli, A.; Caballero-Calvo, A.; Rodrigo-Comino, J. Replacing chemical fertilizers with organic and biological ones in transition to organic farming systems in saffron (Crocus sativus) cultivation. Chemosphere 2022, 307, 135537. [Google Scholar] [CrossRef] [PubMed]
- Quille, P.; Claffey, A.; Feeney, E.; Kacprzyk, J.; Ng, C.K.-Y.; O’Connell, S. The Effect of an Engineered Biostimulant Derived from Ascophyllum nodosum on Grass Yield under a Reduced Nitrogen Regime in an Agronomic Setting. Agronomy 2022, 12, 463. [Google Scholar] [CrossRef]
- Jabbar, A.; Liu, W.; Wang, Y.; Zhang, J.; Wu, Q.; Peng, J. Adoption and Impact of Integrated Soil Fertility Management Technology on Food Production. Agronomy 2022, 12, 2261. [Google Scholar] [CrossRef]
- Canellas, L.P.; Canellas, N.O.A.; da Silva, R.M.; Spaccini, R.; Mota, G.P.; Olivares, F.L. Biostimulants Using Humic Substances and Plant-Growth-Promoting Bacteria: Effects on Cassava (Manihot esculentus) and Okra (Abelmoschus esculentus) Yield. Agronomy 2023, 13, 80. [Google Scholar] [CrossRef]
- Abdel-Mawgoud, A.M.R.; El-Bassiouny, A.M.; Ghoname, A.; Abou-Hussein, S.D. Foliar application of amino acids andmicronutrients enhance performance of green bean crop under newly reclaimed land conditions. Aust. J. Basic Appl. Sci. 2011, 5, 51–55. [Google Scholar]
- Koukounaras, A.; Tsouvaltzis, P.; Siomos, A.S. Effect of root and foliar application of amino acids on the growth and yield of greenhouse tomato in different fertilization levels. J. Food Agric. Environ. 2013, 11, 644–648. [Google Scholar]
- Qin, K.; Leskovar, D.I. Humic Substances Improve Vegetable Seedling Quality and Post-Transplant Yield Performance under Stress Conditions. Agriculture 2020, 10, 254. [Google Scholar] [CrossRef]
- Romano, D.; Scariot, V. Woody ornamentals: A review of genetic resources in the Mediterranean area. Acta Hortic 2021, 1331, 325–334. [Google Scholar] [CrossRef]
- Barik, S.S.; Sahoo, R.P.; Barik, S.S. Lantana camara L.: An emerging threat to native flora and livestock: A review. J. Pharmacogn. Phytochem. 2020, 9, 2363–2366. [Google Scholar]
- Toscano, S.; Ferrante, A.; Tribulato, A.; Romano, D. Leaf physiological and anatomical responses of Lantana and Ligustrum species under different water availability. Plant Physiol. Biochem. 2018, 127, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Randrianalijaona, J.A.; Ramanoelina, P.A.R.; Rasoarahona, J.R.E.; Emile, M.; Gaydou, E.M. Seasonal and chemotype influences on the chemical composition of Lantana camara L. essential oils from Madagascar. Anal. Chim. Acta 2005, 545, 46–52. [Google Scholar] [CrossRef]
- Costa, J.G.M.; Rodrigues, F.F.G.; Sousa, E.O.; Junior, D.M.S.; Campos, A.R.; Coutinho, H.D.M.; de Lioma, H.G. Composition ans larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem. Natural Compounds 2010, 46, 313–315. [Google Scholar] [CrossRef]
- Barreto, F.; Sousa, E.; Campos, A.; Costa, J.; Rodrigues, F. Antibacterial Activity of Lantana camara Linn and Lantana montevidensis Brig extracts from Cariri-Ceará, Brazil. J. Young Pharmacol. 2010, 2, 42–44. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Landrein, S.; Osborne, J.; Borosova, R. Flora of China, Vol. 19 (Cucurbitaceae through Valerianaceae, with Annonaceae and Berberidaceae). Wu, Z.Y., Raven, P.H., Eds.; Science Press: Beijing, China; Missouri Botanical Garden Press: St. Louis, MO, USA, 2011; pp. 644–645. [Google Scholar]
- Serviss, B.E.; Peck, J.H. Abelia (Caprifoliaceae) in the Arkansas flora. Phytoneuron 2019, 7, 1–7. [Google Scholar]
- Gilman, E.F. Abelia × grandiflora; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, EDIS: Gainesville, FL, USA, 2003. [Google Scholar]
- Loconsole, D.; Cristiano, G.; De Lucia, B. Improving Aerial and Root Quality Traits of Two Landscaping Shrubs Stem Cuttings by Applying a Commercial Brown Seaweed Extract. Horticulturae 2022, 8, 806. [Google Scholar] [CrossRef]
- De Boodt, M.; Verdonck, O.; Cappaert, I. Method for measuring water release curve of organic substrates. Acta Hortic. 1974, 37, 2054–2063. [Google Scholar] [CrossRef]
- EN 13654-1; Soil Improvers and Growing Media—Determination of Nitrogen—Part 1: Modified Kjeldahl Method. European Committee for Standardization: Brussels, Belgium, 2001.
- UNI 10780; Compost—Classification, requirements and use criteria. Ente Nazionale Italiano di Unificazione: Milano, Italy, 1998.
- EN 13037; Soil Improvers and Growing Media—Determination of pH. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 13038; Soil Improvers and Growing Media—Determination of Electrical Conductivity. European Committee for Standardization: Brussels, Belgium, 1999.
- EN 13652; Soil Improvers and Growing Media—Extraction of Water Soluble Nutrients and Elements. European Committee for Standardization: Brussels, Belgium, 2001.
- Martini, F.; Beghini, G.; Zanin, L.; Varanini, Z.; Zamboni, A.; Ballottari, M. The potential use of Chlamydomonas reinhardtii and Chlorella sorokiniana as biostimulants on maize plants. Algal Res. 2021, 60, 102515. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Lilley, C.J.; Urwin, P.E. Identification of genes involved in the rof Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol. 2013, 162, 2028–2041. [Google Scholar] [CrossRef] [Green Version]
- Kissoudis, C.; Van De Wiel, C.; Visser, R.G.F.; Van Der Linden, G. Enhancing crop resilience to combined abiotic and biotic stress through the dissection of physiological and molecular crosstalk. Front. Plant Sci. 2014, 5, 207. [Google Scholar] [CrossRef] [Green Version]
- Minocha, R.; Majumdar, R.; Minocha, S.C. Polyamines and abiotic stress in plants: A complex relationship. Front Plant Sci. 2014, 5, 175. [Google Scholar] [CrossRef] [Green Version]
- Parađiković, N.; Vinković, T.; Vinković Vrček, I.; Žuntar, I.; Bojić, M.; Medić-Šarić, M. Effect of natural biostimulants on yield and nutritional quality: An example of sweet yellow pepper (Capsicum annuum L.) plants. J. Sci. Food Agric. 2011, 91, 2146–2152. [Google Scholar] [CrossRef]
- Petrozza, A.; Santaniello, A.; Summerer, S.; Di Tommaso, G.; Di Tommaso, D.; Paparelli, E.; Cellini, F. Physiological responses to Megafol® treatments in tomato plants under drought stress: A phenomic and molecular approach. Sci. Hortic. 2014, 174, 185–192. [Google Scholar] [CrossRef]
- Malik, A.; Mor, V.S.; Tokas, J.; Punia, H.; Malik, S.; Malik, K.; Sangwan, S.; Tomar, S.; Singh, P.; Singh, N.; et al. Biostimulant-Treated Seedlings under Sustainable Agriculture: A Global Perspective Facing Climate Change. Agronomy 2021, 11, 14. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- Kunicki, E.; Grabowska, A.; Sękara, A.; Wojciechowska, R. The effect of cultivar type, time of cultivation, and biostimulant treatment on the yield of spinach (Spinacia oleracea L.). Folia Hortic. 2010, 22, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Ferrante, A.; Branca, F.; Romano, D. Enhancing the Quality of Two Species of Baby Leaves Sprayed with Moringa Leaf Extract as Biostimulant. Agronomy 2021, 11, 1399. [Google Scholar] [CrossRef]
- Romano, D.; La Fornara, G.; Tribulato, A.; Toscano, S. Can Moringa Leaf Spray Treatment Increase the Nutraceutical Properties of Radish Baby Leaf? Horticulturae 2022, 8, 671. [Google Scholar] [CrossRef]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant Applications in Low Input Horticultural Cultivation Systems. Italus Hortus 2018, 25, 27–36. [Google Scholar] [CrossRef]
- Rehim, A.; Amjad Bashir, M.; Raza, Q.-U.-A.; Gallagher, K.; Berlyn, G.P. Yield Enhancement of Biostimulants, Vitamin B12, and CoQ10 Compared to Inorganic Fertilizer in Radish. Agronomy 2021, 11, 697. [Google Scholar] [CrossRef]
- Walch-Liu, P.; Liu, L.H.; Remans, T.; Tester, M.; Forde, B.G. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. Plant Cell Physiol. 2006, 47, 1045–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Repke, R.A.; Silva, D.M.R.; dos Santos, J.C.C.; de Almeida Silva, M. Alleviation of Drought Stress in Soybean by Applying a Biostimulant Based on Amino Acids and Macro- and Micronutrients. Agronomy 2022, 12, 2244. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Cheng, Q.; Sun, W. The Effects of Amino Acids, Phenols and Protein Hydrolysates as Biostimulants on Sustainable Crop Production and Alleviated Stress. Recent Pat. Biotechnol. 2022, 16, 319–328. [Google Scholar]
- Mano, Y.; Nemoto, K. The pathway of auxin biosynthesis in plants. J. Exp. Bot. 2012, 63, 2853–2872. [Google Scholar] [CrossRef] [Green Version]
- Loconsole, D.; Sdao, A.E.; Cristiano, G.; De Lucia, B. Different Responses to Adventitious Rhizogenesis under Indole-3-Butyric Acid and Seaweed Extracts in Ornamental’s Cuttings: First Results in Photinia × fraseri ‘Red Robin’. Agriculture 2023, 13, 513. [Google Scholar] [CrossRef]
- Izadi, Z.; Rezaei Nejad, A.; Abadía, J. Iron Chelate Improves Rooting in Indole-3-Butyric Acid-Treated Rosemary (Rosmarinus officinalis) Stem Cuttings. Agriculture 2022, 12, 210. [Google Scholar] [CrossRef]
- Crouch, I.J.; van Staden, J. Evidence for the presence of plant growth regulators in commercial seaweed products. Plant Growth Regul. 1993, 13, 21–29. [Google Scholar] [CrossRef]
- Mertz, I.T.; Christians, N.E.; Thoms, A.W. Utilizing branched-chain amino acids for increasing shoot density and establishment rate in creeping bentgrass. HortTechnology 2020, 30, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Proietti, S.; Scariot, V.; De Pascale, S.; Paradiso, R. Flowering Mechanisms and Environmental Stimuli for Flower Transition: Bases for Production Scheduling in Greenhouse Floriculture. Plants 2022, 11, 432. [Google Scholar] [CrossRef] [PubMed]
- De Silva, T.S.; Silva, A.P.S.; de Almeida, S.A.; Ribeiro, K.G.; Souza, D.C.; Bueno, P.A.A.; Marques, M.M.M.; Almeida, P.M.; Peron, A.P. Cytotoxicity, Genotoxicity, and Toxicity of Plant Biostimulants Produced in Brazil: Subsidies for Determining Environmental Risk to Non-Target Species. Water Air Soil Pollut. 2020, 231, 233. [Google Scholar] [CrossRef]
- Niu, C.; Wang, G.; Sui, J.; Liu, G.; Ma, F.; Bao, Z. Biostimulants alleviate temperature stress in tomato seedlings. Sci. Hortic. 2022, 293, 110712. [Google Scholar] [CrossRef]
- Ozbay, N.; Demirkiran, A.R. Enhancement of growth in ornamental pepper (Capsicum annuum L.) Plants with application of a commercial seaweed product, Stimplex®. Appl. Ecol. Environ. Res. 2019, 17, 4361–4375. [Google Scholar] [CrossRef]
- Fan, H.M.; Wang, X.W.; Sun, X.; Li, Y.Y.; Sun, X.Z.; Zheng, C.S. Effects of Humic Acid Derived from Sediments on Growth, Photosynthesis and Chloroplast Ultrastructure in Chrysanthemum. Sci. Hortic. 2014, 177, 118–123. [Google Scholar] [CrossRef]
- Carvalho, M.E.A.; Castro, P.R.C.; Novembre, A.D.C.; Chamma, H. Seaweed extract improves the vigor and provides the rapid emergence of dry bean seeds. Am. J. Agric. Environ. Sci. 2013, 13, 1104–1107. [Google Scholar] [CrossRef]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, C.P.; Laschi, D.; Ono, E.O.; Rodrigues, J.D.; Mogor, Á.F. Aplicação Foliar do Extrato de Alga Ascophyllum nodosum e do Ácido Glutâmico no Desenvolvimento Inicial de Crisântemos (Dendranthema morifolium (Ramat.) Kitam.) em Vasos. J. Ornam. Hortic. 2010, 16, 179–181. [Google Scholar] [CrossRef] [Green Version]
- Cristofano, F.; El-Nakhel, C.; Pannico, A.; Giordano, M.; Colla, G.; Rouphael, Y. Foliar and root applications of vegetal-derived protein hydrolysates differentially enhance the yield and qualitative attributes of two lettuce cultivars grown in floating system. Agronomy 2021, 11, 1194. [Google Scholar] [CrossRef]
- Ottaiano, L.; Di Mola, I.; Cozzolino, E.; El-Nakhel, C.; Rouphael, Y.; Mori, M. Biostimulant Application under Different Nitrogen Fertilization Levels: Assessment of Yield, Leaf Quality, and Nitrogen Metabolism of Tunnel-Grown Lettuce. Agronomy 2021, 11, 1613. [Google Scholar] [CrossRef]
- Cabrera, R.I. Nitrogen balance for two container-grown woody ornamental plants. Sci. Hortic. 2003, 97, 297–308. [Google Scholar] [CrossRef]
- Xiao, Z.; Lei, H.; Jin, C.; Pan, H.; Lian, Y. Relationship between the Dynamic Characteristics of Tomato Plant Height and Leaf Area Index with Yield, under Aerated Drip Irrigation and Nitrogen Application in Greenhouses. Agronomy 2023, 13, 116. [Google Scholar] [CrossRef]
- Mosa, W.F.A.; Sas-Paszt, L.; Głuszek, S.; Górnik, K.; Anjum, M.A.; Saleh, A.A.; Abada, H.S.; Awad, R.M. Effect of Some Biostimulants on the Vegetative Growth, Yield, Fruit Quality Attributes and Nutritional Status of Apple. Horticulturae 2023, 9, 32. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Petropoulos, S.A. Biostimulants Application: A Low Input Cropping Management Tool for Sustainable Farming of Vegetables. Biomolecules 2021, 11, 698. [Google Scholar] [CrossRef]
- Bettoni, M.M.; Mogor, Á.F.; Pauletti, V.; Goicoechea, N.; Aranjuelo, I.; Garmendia, I. Nutritional quality and yield of onion as affected by different application methods and doses of humic substances. J. Food Compos. Anal. 2016, 51, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Huang, Y.; Caldwell, R.D. Best management practices for minimizing nitrate leaching from container-grown nurseries. Sci. World J. 2001, 1, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Radkowski, A.; Radkowska, I.; Bocianowski, J.; Sladkovska, T.; Wolski, K. The Effect of Foliar Application of an Amino Acid-Based Biostimulant on Lawn Functional Value. Agronomy 2020, 10, 1656. [Google Scholar] [CrossRef]
- Efthimiadou, A.; Sparangis, P.; Leonidakis, D.; Kasimatis, C.-N.; Kakabouki, I.; Mylonas, I.; Ninou, E.; Gianniotis, P.; Katsenios, N. Comparative Evaluation of Mineral and Organo-Mineral Nitrogen Fertilization and the Role of Amino Acids as Plant Growth Promoters in Maize Cultivation. Agronomy 2022, 12, 2638. [Google Scholar] [CrossRef]
- Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The use of organic biostimulants in hot pepper plants to help low input sustainable agriculture. Chem. Biol. Technol. Agric. 2015, 2, 1–10. [Google Scholar] [CrossRef] [Green Version]
Parameters | U.M. | GM |
---|---|---|
BD | g cm−3 | 0.33 ± 0.09 |
TP | % | 74.2 ± 4.8 |
WHC | % | 66.3 ± 4.0 |
Parameters | U.M. | GM |
---|---|---|
pH | 4.6 ± 0.2 | |
EC | dS m−1 | 0.14 ± 0.01 |
Organic N | g 100 g−1 | 0.65 ± 0.02 |
Organic C | g 100 g−1 | 41.5 ± 0.9 |
C/N ratio | 63.8 ± 12.1 | |
P-P2O5 | g 100 g−1 | 0.09 ± 0.01 |
Total Ca | g 100 g−1 | 1.2 ± 0.6 |
K-K2O | g 100 g−1 | 0.32 ± 0.02 |
Total Mg | g 100 g−1 | 0.08 ± 0.01 |
Total Na | g 100 g−1 | 0.5 ± 0.03 |
TMTS | Root | |||||
---|---|---|---|---|---|---|
Length (mm) | Surface Area (mm2) | Volume (mm3) | ||||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 5527 ± 75 b | 6144 ± 59 d | 1138 ± 27 d | 1891 ± 55 b | 1299 ± 52 f | 5482 ± 194 b |
T2 | 6050 ± 136 b | 7599 ± 223 c | 1513 ± 18 b | 2129 ± 137 b | 2824 ± 76 d | 5333 ± 144 b |
T3 | 6019 ± 204 b | 8252 ± 282 b | 1572 ± 78 b | 2408 ± 157 a | 3196 ± 44 c | 5757 ± 118 b |
T4 | 5650 ± 253 b | 8356 ± 224 b | 1593 ± 17 b | 2421 ± 55 a | 4154 ± 20 b | 5650 ± 216 b |
T5 | 6382 ± 78 a | 6617 ± 55 d | 1766 ± 19 a | 2197 ± 147 b | 4375 ± 59 a | 5302 ± 388 b |
T6 | 5448 ± 269 b | 9478 ± 100 a | 1266 ± 48 c | 2421 ± 79 a | 2113 ± 85 e | 6217 ± 59 a |
TMTS | Plant Above-Ground Traits | |||||||
---|---|---|---|---|---|---|---|---|
Leaves (n) | Leaf Area (cm2) | Leaf Fresh Weight (g) | Chlorophyll Index (SPAD) | |||||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 45 ± 1.2 bc | 52 ± 1.5 ab | 143 ± 2.9 b | 143 ± 1.0 a | 3.90 ± 0.10 bc | 6.26 ± 0.14 b | 409 ± 5.2 b | 366 ± 8.1 a |
T2 | 42 ± 1.0 c | 46 ± 2.5 b | 136 ± 0.6 c | 106 ± 3.7 c | 3.60 ± 0.05 c | 4.77 ± 0.12 e | 432 ± 1.3 ab | 344 ± 3.3 a |
T3 | 49 ± 0.9 ab | 52 ± 3.2 ab | 141 ± 2.9 b | 118 ± 4.8 bc | 4.03 ± 0.06 ab | 5.76 ± 0.12 c | 445 ± 3.5 a | 354 ± 3.0 a |
T4 | 44 ± 0.8 bc | 48 ± 0.5 b | 138 ± 3.7 bc | 120 ± 3.9 bc | 3.66 ± 0.06 bc | 5.36 ± 0.14 d | 426 ± 1.4 ab | 345 ± 5.4 a |
T5 | 51 ± 0.9 a | 54 ± 2.4 ab | 149 ± 2.6 a | 130 ± 6.0 ab | 4.23 ± 0.14 a | 6.46 ± 0.08 b | 431 ± 5.7 ab | 351 ± 4.4 a |
T6 | 45 ± 1.3 bc | 60 ± 3.1 a | 142 ± 2.3 b | 139 ± 5.5 a | 3.76 ± 0.07 bc | 6.91 ± 0.11 a | 442 ± 1.6 a | 365 ± 5.8 a |
TMTS | Dry Weight per Plant (g) | |||||
---|---|---|---|---|---|---|
Ground | Above-Ground | Root: Shoot | ||||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 0.26 ± 0.05 cd | 1.05 ± 0.06 b | 1.53 ± 0.03 b | 1.86 ± 0.03 b | 0.17 ± 0.02 a | 0.56 ± 0.02 b |
T2 | 0.24 ± 0.03 d | 0.98 ± 0.03 b | 1.40 ± 0.05 c | 1.40 ± 0.05 d | 0.17 ± 0.02 a | 0.70 ± 0.04 a |
T3 | 0.29 ± 0.05 b | 1.00 ± 0.05 b | 1.60 ± 0.05 b | 1.63 ± 0.03 c | 0.18 ± 0.01 a | 0.61 ± 0.05 b |
T4 | 0.27 ± 0.03 c | 1.06 ± 0.03 b | 1.36 ± 0.06 c | 1.73 ± 0.03 c | 0.20 ± 0.02 a | 0.61 ± 0.02 b |
T5 | 0.33 ± 0.05 a | 1.13 ± 0.03 ab | 1.77 ± 0.06 a | 1.90 ± 0.05 b | 0.19 ± 0.01 a | 0.59 ± 0.05 b |
T6 | 0.24 ± 0.06 d | 1.27 ± 0.03 a | 1.57 ± 0.03 b | 2.20 ± 0.03 a | 0.15 ± 0.02 a | 0.58 ± 0.03 b |
TMTS | Nutrient Content (mg g−1 d.w.) | |||||
---|---|---|---|---|---|---|
N | P | K | ||||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 21.5 ± 0.01 a | 33.4 ± 0.16 a | 1.3 ± 0.01 a | 2.8 ± 0.01 a | 27.0 ± 0.03 a | 26.0 ± 0.01 ab |
T2 | 19.2 ± 0.01 b | 22.8 ± 0.08 b | 1.4 ± 0.01 a | 1.6 ± 0.01 b | 18.7 ± 0.01 c | 24.4 ± 0.01 b |
T3 | 19.3 ± 0.01 b | 21.7 ± 0.03 bc | 1.3 ± 0.01 a | 2.1 ± 0.01 b | 18.0 ± 0.01 c | 23.8 ± 0.01 b |
T4 | 19.3 ± 0.02 b | 19.1 ± 0.02 c | 1.0 ± 0.01 b | 1.8 ± 0.01 b | 15.3 ± 0.02 d | 24.8 ± 0.01 b |
T5 | 20.8 ± 0.02 a | 19.6 ± 0.05 c | 1.5 ± 0.01 a | 1.9 ± 0.03 b | 21.7 ± 0.04 b | 24.5 ± 0.08 b |
T6 | 20.9 ± 0.01 a | 23.0 ± 0.04 b | 1.6 ± 0.01 a | 2.0 ± 0.02 b | 26.2 ± 0.02 a | 28.4 ± 0.02 a |
TMTS | Nutrient Content (mg g−1 d.w.) | |||
---|---|---|---|---|
Ca | Mg | |||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 29.6 ± 0.04 b | 31.7 ± 0.04 ab | 5.6 ± 0.01 a | 5.1 ± 0.01 b |
T2 | 24.8 ± 0.03 c | 38.7 ± 0.07 ab | 3.3 ± 0.01 c | 5.4 ± 0.01 b |
T3 | 26.6 ± 0.02 c | 39.8 ± 0.01 ab | 3.6 ± 0.02 bc | 4.8 ± 0.01 bc |
T4 | 29.6 ± 0.04 b | 27.2 ± 0.07 b | 3.3 ± 0.01 c | 4.1 ± 0.01 c |
T5 | 26.4 ± 0.02 c | 35.3 ± 0.08 ab | 3.8 ± 0.01 b | 5.4 ± 0.01 b |
T6 | 36.3 ± 0.016 a | 41.7 ± 0.09 a | 4.8 ± 0.01 ab | 6.7 ± 0.01 a |
TMTS | Nitrogen Use Efficiency (NUE) | |||
---|---|---|---|---|
Physiological NUE (gg−1) | Agronomical NUE (gg−1) | |||
A. × grandiflora | L. camara | A. × grandiflora | L. camara | |
T1 | 48.8 ± 0.14 b | 29.9 ± 1.10 c | 90 ± 6.3 b | 163 ± 7.3 c |
T2 | 48.1 ± 0.33 b | 43.9 ± 1.49 c | 162 ± 18.8 ab | 251 ± 18.3 b |
T3 | 51.3 ± 0.40 a | 46.1 ± 0.70 b | 192 ± 16.5 a | 279 ± 16.7 b |
T4 | 51.2 ± 0.75 a | 52.4 ± 0.72 a | 162 ± 13.2 ab | 294 ± 9.0 ab |
T5 | 48.2 ± 0.46 b | 51.0 ± 1.08 a | 217 ± 11.7 a | 323 ± 12.9 ab |
T6 | 47.8 ± 0.20 b | 43.5 ± 0.75 b | 182 ± 7.4 a | 368 ± 15.2 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loconsole, D.; Cristiano, G.; De Lucia, B. Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants. Agronomy 2023, 13, 765. https://doi.org/10.3390/agronomy13030765
Loconsole D, Cristiano G, De Lucia B. Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants. Agronomy. 2023; 13(3):765. https://doi.org/10.3390/agronomy13030765
Chicago/Turabian StyleLoconsole, Danilo, Giuseppe Cristiano, and Barbara De Lucia. 2023. "Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants" Agronomy 13, no. 3: 765. https://doi.org/10.3390/agronomy13030765
APA StyleLoconsole, D., Cristiano, G., & De Lucia, B. (2023). Biostimulant Application, under Reduced Nutrient Supply, Enhances Quality and Sustainability of Ornamental Containerized Transplants. Agronomy, 13(3), 765. https://doi.org/10.3390/agronomy13030765