Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Solvents and Reagents
2.3. Microwave-Assisted Equipment
2.4. Determining the Study Range to Be Considered for Each Factor
2.5. Optimizing the MAE According to a Box-Behnken Design
2.6. Optimum Extraction Time
2.7. Repeatability and Intermediate Precision
2.8. Identification of Anthocyanin by UHPLC-Q-ToF-MS
2.9. Anthocyanin Quantification by UHPLC-UV-Vis
3. Results and Discussion
3.1. Identification and Separation of Anthocyanins
3.2. Determining the Study Range to Be Considered for Each Factor
3.3. MAE Optimization
3.4. Optimal Extraction Time
3.5. Repeatability and Intermediate Precision
3.6. Aplication to Jabuticaba Commercially Available Products
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Donadio, L.C. Jabuticaba (Myrciaria Jaboticaba (Vell.) Berg); Funep: Jaboticabal, Brazil, 2000; ISBN 85-87632-10-8. [Google Scholar]
- Gadioli Tarone, A.; Keven Silva, E.; Dias de Freitas Queiroz Barros, H.; Baú Betim Cazarin, C.; Roberto Marostica Junior, M. High-Intensity Ultrasound-Assisted Recovery of Anthocyanins from Jabuticaba by-Products Using Green Solvents: Effects of Ultrasound Intensity and Solvent Composition on the Extraction of Phenolic Compounds. Food Res. Int. 2021, 140, 110048. [Google Scholar] [CrossRef]
- Morales, P.; Barros, L.; Dias, M.I.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Ramirez Asquieri, E.; Berrios, J.D.J. Non-Fermented and Fermented Jabuticaba (Myrciaria Cauliflora Mart.) Pomaces as Valuable Sources of Functional Ingredients. Food Chem. 2016, 208, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Yousefloo, A.; Babazadeh, R. Designing an Integrated Municipal Solid Waste Management Network: A Case Study. J. Clean. Prod. 2020, 244, 118824. [Google Scholar] [CrossRef]
- Gianico, A.; Gallipoli, A.; Gazzola, G.; Pastore, C.; Tonanzi, B.; Braguglia, C.M. A Novel Cascade Biorefinery Approach to Transform Food Waste into Valuable Chemicals and Biogas through Thermal Pretreatment Integration. Bioresour. Technol. 2021, 338, 125517. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Pereira, C.; Calhelha, R.C.; José Alves, M.; Abreu, R.M.V.; Barros, L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Jabuticaba Residues (Myrciaria Jaboticaba (Vell.) Berg) Are Rich Sources of Valuable Compounds with Bioactive Properties. Food Chem. 2020, 309, 125735. [Google Scholar] [CrossRef] [Green Version]
- Nunes Mattos, G.; Pessanha de Araújo Santiago, M.C.; Sampaio Doria Chaves, A.C.; Rosenthal, A.; Valeriano Tonon, R.; Correa Cabral, L.M. Anthocyanin Extraction from Jaboticaba Skin (Myrciaria Cauliflora Berg.) Using Conventional and Non-Conventional Methods. Foods 2022, 11, 885. [Google Scholar] [CrossRef]
- Fernández-Barbero, G.; Pinedo, C.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Palma, M.; García-Barroso, C. Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Jabuticaba (Myrciaria Cauliflora) Fruit through a Box-Behnken Experimental Design. Food Sci. Technol. 2019, 39, 1018–1029. [Google Scholar] [CrossRef] [Green Version]
- Barroso, T.; Sganzerla, W.; Rosa, R.; Castro, L.; Maciel-Silva, F.; Rostagno, M.; Forster-Carneiro, T. Semi-Continuous Flow-through Hydrothermal Pretreatment for the Recovery of Bioproducts from Jabuticaba (Myrciaria Cauliflora) Agro-Industrial by-Product. Food Res. Int. 2022, 158, 111547. [Google Scholar] [CrossRef] [PubMed]
- Barroso, T.L.C.T.; da Rosa, R.G.; Sganzerla, W.G.; Castro, L.E.N.; Maciel-Silva, F.W.; Rostagno, M.A.; Forster-Carneiro, T. Hydrothermal Pretreatment Based on Semi-Continuous Flow-through Sequential Reactors for the Recovery of Bioproducts from Jabuticaba (Myrciaria Cauliflora) Peel. J. Supercrit. Fluids 2022, 191, 105766. [Google Scholar] [CrossRef]
- González-de-Peredo, A.V.; Vázquez-Espinosa, M.; Espada-Bellido, E.; Ferreiro-González, M.; Carrera, C.; Barbero, G.F.; Palma, M. Extraction of Antioxidant Compounds from Onion Bulb (Allium Cepa L.) Using Individual and Simultaneous Microwave-Assisted Extraction Methods. Antioxidants 2022, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Rehman, M.U.; Abdullah; Khan, F.; Niaz, K. Introduction to Natural Products Analysis. In Recent Advances in Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–15. [Google Scholar]
- Zhou, H.-Y.; Liu, C.-Z. Microwave-Assisted Extraction of Solanesol from Tobacco Leaves. J. Chromatogr. A 2006, 1129, 135–139. [Google Scholar] [CrossRef]
- Miliauskas, G.; Venskutonis, P.R.; van Beek, T.A. Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. Food Chem. 2004, 85, 231–237. [Google Scholar] [CrossRef]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Park, J.-S.; Han, J.-M.; Surendhiran, D.; Chun, B.-S. Physicochemical and Biofunctional Properties of Sargassum Thunbergii Extracts Obtained from Subcritical Water Extraction and Conventional Solvent Extraction. J. Supercrit. Fluids 2022, 182, 105535. [Google Scholar] [CrossRef]
- Lachos-Perez, D.; Baseggio, A.M.; Mayanga-Torres, P.C.; Maróstica, M.R.; Rostagno, M.A.; Martínez, J.; Forster-Carneiro, T. Subcritical Water Extraction of Flavanones from Defatted Orange Peel. J. Supercrit. Fluids 2018, 138, 7–16. [Google Scholar] [CrossRef]
- Vázquez-Espinosa, M.; Espada-Bellido, E.; González de Peredo, A.V.; Ferreiro-González, M.; Carrera, C.; Palma, M.; Barroso, C.G.; Barbero, G.F. Optimization of Microwave-Assisted Extraction for the Recovery of Bioactive Compounds from the Chilean Superfruit (Aristotelia Chilensis (Mol.) Stuntz). Agronomy 2018, 8, 240. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Espinosa, M.; González-de-Peredo, A.V.; Carrera, C.; Palma, M.; Barbero, G.F.; Aliaño-González, M.J. Ultrasound-Assisted Extraction of Betalains from Opuntia Fruit Pulp of Different Color Varieties. Agronomy 2022, 12, 2604. [Google Scholar] [CrossRef]
- Rodrigues, S.; Fernandes, F.A.N.; de Brito, E.S.; Sousa, A.D.; Narain, N. Ultrasound Extraction of Phenolics and Anthocyanins from Jabuticaba Peel. Ind. Crops Prod. 2015, 69, 400–407. [Google Scholar] [CrossRef]
- Fernandes, F.A.N.; Fonteles, T.V.; Rodrigues, S.; de Brito, E.S.; Tiwari, B.K. Ultrasound-Assisted Extraction of Anthocyanins and Phenolics from Jabuticaba (Myrciaria Cauliflora) Peel: Kinetics and Mathematical Modeling. J. Food Sci. Technol. 2020, 57, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zhou, W. Monte Carlo Modelling of Non-Isothermal Degradation of Two Cyanidin-Based Anthocyanins in Aqueous System at High Temperatures and Its Impact on Antioxidant Capacities. Food Chem. 2014, 148, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.; Bradley, R.L.; Edberg, S.; Krueger, D.A.; Lopez-Avila, V.; MacNeil, J.D. Peer-Verified Methods Advisory Committee. J. AOAC Int. 1996, 79, 324. [Google Scholar] [CrossRef] [Green Version]
- Muche, B.M.; Speers, R.A.; Rupasinghe, H.P.V. Storage Temperature Impacts on Anthocyanins Degradation, Color Changes and Haze Development in Juice of “Merlot” and “Ruby” Grapes (Vitis Vinifera). Front. Nutr. 2018, 5, 100. [Google Scholar] [CrossRef] [PubMed]
- Martinsen, B.K.; Aaby, K.; Skrede, G. Effect of Temperature on Stability of Anthocyanins, Ascorbic Acid and Color in Strawberry and Raspberry Jams. Food Chem. 2020, 316, 126297. [Google Scholar] [CrossRef] [PubMed]
- Nkurunziza, D.; Pendleton, P.; Sivagnanam, S.P.; Park, J.-S.; Chun, B.S. Subcritical Water Enhances Hydrolytic Conversions of Isoflavones and Recovery of Phenolic Antioxidants from Soybean Byproducts (Okara). J. Ind. Eng. Chem. 2019, 80, 696–703. [Google Scholar] [CrossRef]
Treatments | Codified Variables | Non-Codified Variables | ||||||
---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | Temperature (°C) | Methanol Percentage (%; v v−1) | pH | Ratio (mg mL−1) | |
MAE-1 | −1 | −1 | 0 | 0 | 50 | 10 | 5 | 8 |
MAE-2 | +1 | −1 | 0 | 0 | 100 | 10 | 5 | 8 |
MAE-3 | −1 | +1 | 0 | 0 | 50 | 60 | 5 | 8 |
MAE-4 | 1 | +1 | 0 | 0 | 100 | 60 | 5 | 8 |
MAE-5 | 0 | 0 | −1 | −1 | 75 | 35 | 2 | 4 |
MAE-6 | 0 | 0 | +1 | −1 | 75 | 35 | 8 | 4 |
MAE-7 | 0 | 0 | −1 | +1 | 75 | 35 | 2 | 12 |
MAE-8 | 0 | 0 | +1 | +1 | 75 | 35 | 8 | 12 |
MAE-9 | 0 | 0 | 0 | 0 | 75 | 35 | 5 | 8 |
MAE-10 | −1 | 0 | 0 | −1 | 50 | 35 | 5 | 4 |
MAE-11 | +1 | 0 | 0 | +1 | 100 | 35 | 5 | 4 |
MAE-12 | −1 | 0 | 0 | +1 | 50 | 35 | 5 | 12 |
MAE-13 | +1 | 0 | 0 | +1 | 100 | 35 | 5 | 12 |
MAE-14 | 0 | −1 | −1 | 0 | 75 | 10 | 2 | 8 |
MAE-15 | 0 | +1 | −1 | 0 | 75 | 60 | 2 | 8 |
MAE-16 | 0 | −1 | +1 | 0 | 75 | 10 | 8 | 8 |
MAE-17 | 0 | 1 | +1 | 0 | 75 | 60 | 8 | 8 |
MAE-18 | 0 | 0 | 0 | 0 | 75 | 35 | 5 | 8 |
MAE-19 | −1 | 0 | −1 | 0 | 50 | 35 | 2 | 8 |
MAE-20 | +1 | 0 | −1 | 0 | 100 | 35 | 2 | 8 |
MAE-21 | −1 | 0 | +1 | 0 | 50 | 35 | 8 | 8 |
MAE-22 | +1 | 0 | +1 | 0 | 100 | 35 | 8 | 8 |
MAE-23 | 0 | −1 | 0 | −1 | 75 | 10 | 5 | 4 |
MAE-24 | 0 | +1 | 0 | −1 | 75 | 60 | 5 | 4 |
MAE-25 | 0 | −1 | 0 | +1 | 75 | 10 | 5 | 12 |
MAE-26 | 0 | +1 | 0 | +1 | 75 | 60 | 5 | 12 |
MAE-27 | 0 | 0 | 0 | 0 | 75 | 35 | 5 | 8 |
Treatments | Total Anthocyanins (mg g−1) | Predicted Anthocyanins (mg g−1) |
---|---|---|
MAE-1 | 3.37 ± 0.60 | 3.62 |
MAE-2 | 1.76 ± 0.03 | 4.77 |
MAE-3 | 5.00 ± 0.33 | 4.13 |
MAE-4 | 4.85 ± 0.44 | 5.28 |
MAE-5 | 6.55 ± 0.52 | 8.32 |
MAE-6 | 7.36 ± 0.07 | 8.32 |
MAE-7 | 6.13 ± 0.23 | 8.32 |
MAE-8 | 6.66 ± 0.05 | 8.32 |
MAE-9 | 7.80 ± 0.28 | 8.32 |
MAE-10 | 6.24 ± 0.44 | 5.90 |
MAE-11 | 8.08 ± 0.13 | 7.06 |
MAE-12 | 5.31 ± 0.16 | 5.90 |
MAE-13 | 6.65 ± 0.01 | 7.06 |
MAE-14 | 6.37 ± 0.02 | 6.04 |
MAE-15 | 6.31 ± 0.34 | 6.55 |
MAE-16 | 6.14 ± 0.19 | 6.04 |
MAE-17 | 5.63 ± 0.40 | 6.55 |
MAE-18 | 8.54 ± 0.27 | 8.32 |
MAE-19 | 4.00 ± 0.39 | 5.90 |
MAE-20 | 5.00 ± 0.17 | 7.06 |
MAE-21 | 4.95 ± 0.01 | 5.90 |
MAE-22 | 7.86 ± 0.01 | 7.06 |
MAE-23 | 5.77 ± 0.56 | 6.04 |
MAE-24 | 5.75 ± 0.27 | 6.55 |
MAE-25 | 5.95 ± 0.24 | 6.04 |
MAE-26 | 4.88 ± 0.13 | 6.55 |
MAE-27 | 8.01 ± 0.42 | 8.32 |
Factor | Factor Code | DF | Coefficients | Sum of Squares (1016) | Mean Square (1015) | F-Value | p-Value |
---|---|---|---|---|---|---|---|
Model | 14 | 7.992 | 77.725 | 5.5518 | 5.15 | 0.00 | |
A: Temperature | 1 | 0.424 | 4.3232 | 4.3232 | 4.0204 | 0.0519 | |
B: Solvent composition | 1 | 0.306 | 2.2489 | 2.2488 | 2.0913 | 0.1561 | |
C: pH | 1 | 0.350 | 2.9450 | 2.9450 | 2.7387 | 0.1059 | |
D: Sample-solvent ratio | 1 | -0.377 | 3.4071 | 3.4070 | 3.1684 | 0.0828 | |
AA | 1 | -1.798 | 34.4735 | 34.4734 | 32.0590 | 0.000002 | |
AB | 1 | 0.367 | 1.0758 | 1.0758 | 1.0004 | 0.3233 | |
AC | 1 | 0.536 | 2.2956 | 2.2956 | 2.1348 | 0.1519 | |
AD | 1 | -0.127 | 0.1302 | 0.1302 | 0.1211 | 0.7297 | |
BB | 1 | -2.005 | 42.8733 | 42.8733 | 39.8705 | 0.000001 | |
BC | 1 | -0.045 | 0.0167 | 0.0167 | 0.0155 | 0.9014 | |
BD | 1 | -0.175 | 0.2475 | 0.2474 | 0.2301 | 0.6341 | |
CC | 1 | -0.593 | 3.7467 | 3.7467 | 3.4843 | 0.0694 | |
CD | 1 | -0.072 | 0.0418 | 0.0418 | 0.0389 | 0.8446 | |
DD | 1 | -0.278 | 0.8270 | 0.8270 | 0.7691 | 0.3858 | |
Lack of fit | 10 | 36.317 | 3.6317 | 18.38 | 0.00 | ||
Pure error | 29 | 5.730 | 0.1976 | ||||
Total correlation | 53 | 119.772 |
Total Anthocyanins (mg g−1) | Antioxidant Activity (µM TE g−1) | |
---|---|---|
Jabuticaba jam | 0.03 ± 0.003 | 18.54 ± 0.27 |
Jabuticaba pulp | 0.32 ± 0.02 | 54.62 ± 1.68 |
Jabuticaba peel | 10.13 ± 0.23 | 57.07 ± 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, T.L.C.T.; Castro, L.E.N.; F. Barbero, G.; Palma, M.; Carrera, C.; Rostagno, M.A.; Forster-Carneiro, T. Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products. Agronomy 2023, 13, 556. https://doi.org/10.3390/agronomy13020556
Barroso TLCT, Castro LEN, F. Barbero G, Palma M, Carrera C, Rostagno MA, Forster-Carneiro T. Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products. Agronomy. 2023; 13(2):556. https://doi.org/10.3390/agronomy13020556
Chicago/Turabian StyleBarroso, Tiago L. C. T., Luiz E. N. Castro, Gerardo F. Barbero, Miguel Palma, Ceferino Carrera, Mauricio A. Rostagno, and Tânia Forster-Carneiro. 2023. "Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products" Agronomy 13, no. 2: 556. https://doi.org/10.3390/agronomy13020556
APA StyleBarroso, T. L. C. T., Castro, L. E. N., F. Barbero, G., Palma, M., Carrera, C., Rostagno, M. A., & Forster-Carneiro, T. (2023). Optimization of a Microwave-Assisted Extraction Method for the Recovery of the Anthocyanins from Jabuticaba By-Products. Agronomy, 13(2), 556. https://doi.org/10.3390/agronomy13020556