Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000–2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Average Summer UTCI for 1980–2020 for Slovenia at NUTS 2 Level
3.2. Average Monthly and Summer Values of Temperature and UTCI at 14:00
3.3. Temporal Distribution of Heat Stress Classes
3.4. Comparing UTCI to MHR and SW
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pogačar, T.; Casanueva, A.; Kozjek, K.; Ciuha, U.; Mekjavić, I.B.; Kajfež Bogataj, L.; Črepinšek, Z. The Effect of Hot Days on Occupational Heat Stress in the Manufacturing Industry: Implications for Workers’ Well-Being and Productivity. Int. J. Biometeorol. 2018, 62, 1251–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogačar, T.; Žnidaršič, Z.; Kajfež Bogataj, L.; Flouris, A.D.; Poulianiti, K.; Črepinšek, Z. Heat Waves Occurrence and Outdoor Workers’ Self-Assessment of Heat Stress in Slovenia and Greece. Int. J. Environ. Res. Public Health 2019, 16, 597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oudin Åström, D.; Schifano, P.; Asta, F.; Lallo, A.; Michelozzi, P.; Rocklöv, J.; Forsberg, B. The Effect of Heat Waves on Mortality in Susceptible Groups: A Cohort Study of a Mediterranean and a Northern European City. Environ. Health 2015, 14, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El Khayat, M.; Halwani, D.A.; Hneiny, L.; Alameddine, I.; Haidar, M.A.; Habib, R.R. Impacts of Climate Change and Heat Stress on Farmworkers’ Health: A Scoping Review. Front. Public Health 2022, 10, 782811. [Google Scholar] [CrossRef]
- Pogačar, T.; Črepinšek, Z.; Bogataj, L.K.; Nybo, L. Comprehension of Climatic and Occupational Heat Stress amongst Agricultural Advisers and Workers in Slovenia. Acta Agric. Slov. 2017, 109, 545–554. [Google Scholar] [CrossRef] [Green Version]
- Pogačar, T.; Bogataj, L.K.; Črepinšek, Z. Heat waves analysis and the heat load of agricultural workers during the heat waves in 2017 (using index WBGT). Acta Agric. Slov. 2018, 111, 647–659. [Google Scholar] [CrossRef] [Green Version]
- Blazejczyk, K.; Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Epstein, Y.; Psikuta, A.; Kampmann, B. An Introduction to the Universal Thermal Climate Index (UTCI). Geogr. Pol. 2013, 86, 5–10. [Google Scholar] [CrossRef] [Green Version]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with Selected Thermal Indices/Environmental Parameters during 12 Months of the Year. Weather. Clim. Extrem. 2018, 19, 49–57. [Google Scholar] [CrossRef]
- De Freitas, C.R.; Grigorieva, E.A. A Comparison and Appraisal of a Comprehensive Range of Human Thermal Climate Indices. Int. J. Biometeorol. 2017, 61, 487–512. [Google Scholar] [CrossRef]
- Ioannou, L.G.; Mantzios, K.; Tsoutsoubi, L.; Notley, S.R.; Dinas, P.C.; Brearley, M.; Epstein, Y.; Havenith, G.; Sawka, M.N.; Bröde, P.; et al. Indicators to assess physiological heat strain—Part 1: Systematic review. Temperature 2022, 9, 227–262. [Google Scholar] [CrossRef]
- de Freitas, C.R.; Grigorieva, E.A. A comprehensive catalogue and classification of human thermal climate indices. Int. J. Biometeorol. 2015, 59, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Fiala, D.; Havenith, G.; Bröde, P.; Kampmann, B.; Jendritzky, G. UTCI-Fiala Multi-Node Model of Human Heat Transfer and Temperature Regulation. Int. J. Biometeorol. 2012, 56, 429–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Climate-ADAPT. Indicators: Thermal Comfort Indices-Universal Thermal Climate Index, 1979–2020. Available online: https://climate-adapt.eea.europa.eu/#t-database (accessed on 9 May 2022).
- Gosling, S.N.; Bryce, E.K.; Dixon, P.G.; Gabriel, K.; Gosling, E.Y.; Hanes, J.M.; Hondula, D.M.; Liang, L.; Mac Lean, P.A.B.; Muthers, S.; et al. A glossary for biometeorology. Int. J. Biometeorol. 2014, 58, 277–308. [Google Scholar] [CrossRef] [PubMed]
- Błażejczyk, K. UTCI—10 Years of Applications. Int. J. Biometeorol. 2021, 65, 1461–1462. [Google Scholar] [CrossRef]
- Jendritzky, G.; Bröde, P.; Fiala, D.; Havenith, G.; Weihs, P.; Batchvarova, E.; de Dear, R. Universal Thermal Climate Index UTCI. In Proceedings of the 7th Conference on Biometeorology, Freiburg, Germany, 12–14 April 2010; Matzarakis, A., Mayer, H., Chmielewski, F.M., Eds.; Albert-Ludwigs-University of Freiburg: Freiburg, Germany, 2010; pp. 184–188. [Google Scholar]
- Levy, B.; Roelofs, C. Impacts of Climate Change on Workers’ Health and safety. Oxford Research Encyclopedia of Global Public health. Available online: https://oxfordre.com/publichealth/display/10.1093/acrefore/9780190632366.001.0001/acrefore-9780190632366-e-39;jsessionid=72FC7F26D49158BCF75B00D89D787CC6 (accessed on 11 January 2023). [CrossRef]
- ILO (International Labour Office/Organization). World Employment and Social Outlook; ILO: Trends, Geneva, 2018. [Google Scholar]
- ILO (International Labour Office/Organization). Guidelines on Occupational Safety and Health Management Systems, Safety and Health in Agriculture Convention; ILO-OSH 2001; ILO: Trends, Geneva, 2001. [Google Scholar]
- Tigchelaar, M.; Battisti, D.S.; Spector, J.T. Work Adaptations Insufficient to Address Growing Heat Risk for U.S. Agricultural Workers. Environ. Res. Lett. 2020, 15, 094035. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Baranowski, J.; Jendritzky, G.; Błażejczyk, A.; Bröde, P.; Fiala, D. Regional features of the bioclimate of Central and Southern Europe against the background of the Köppen-Geiger climate classification. Geogr. Pol. 2015, 88, 439–453. [Google Scholar] [CrossRef] [Green Version]
- Ioannou, L.G.; Foster, J.; Morris, N.B.; Piil, J.F.; Havenith, G.; Mekjavic, I.B.; Kenny, G.P.; Nybo, L.; Flouris, A.D. Occupational Heat Strain in Outdoor Workers: A Comprehensive Review and Meta-Analysis. Temperature 2022, 9, 67–102. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Twardosz, R. Long-Term Changes of Bioclimatic Conditions in Cracow (Poland). In The Polish Climate in the European Context: An Historical Overview; Przybylak, E., Ed.; Springer: Dordrecht, The Netherlands, 2010; Chapter 10; pp. 235–246. [Google Scholar] [CrossRef]
- Poulianiti, K.P.; Havenith, G.; Flouris, A.D. Metabolic Energy Cost of Workers in Agriculture, Construction, Manufacturing, Tourism, and Transportation Industries. Ind. Health 2019, 57, 283–305. [Google Scholar] [CrossRef]
- Kjellström, T.; Maître, N.; Saget, C.; Otto, M.; Karimova, T. International Labour Organization, Research Department. Working on a Warmer Planet: The Impact of Heat Stress on Labour Productivity and Decent Work, 1st ed.; International labour Office: Geneva, Switzerland, 2019; 103p. [Google Scholar]
- Cegnar, T.; Matzarakis, A. Trends of thermal bioclimate and their applications for tourism in Slovenia In Advances in tourism climatology, Matzarakis, A., De Freitas, C.R., Scott, D., Eds.; Berichte Des Meteorologischen Institutes der Universität Freiburg: Freiburg, Germany, 2004; pp. 66–73. [Google Scholar]
- Zaninović, K.; Matzarakis, A.; Cegnar, T. Thermal Comfort Trends and Variability in the Croatian and Slovenian Mountains. Meteorol. Z. 2006, 15, 243–251. [Google Scholar] [CrossRef]
- Ključevšek, N. Pregled Kazalcev za Spremljanje Vročine; Znanstveni Posvet o Vročinskih Valovih: Ljubljana, Vetrnica, 2017; pp. 14–28. [Google Scholar]
- Komac, B.; Ciglič, R.; Pavšek, M.; Kokalj, Ž. 2017. Naravne Nesreče v Mestih—Primer Mestnega Toplotnega Otoka. In Trajnostni Razvoj MEST in naravne Nesreče, Zorn, M.; Komac, B., Ciglič, R., Tičar, J., Eds.; Geografski inštitut Antona Melika ZRC SAZU: Ljubljana, Slovenia, 2017; pp. 51–68. [Google Scholar]
- Błażejczyk, K.; Błażejczyk, A. Assessment of Bioclimatic Variability on Regional and Local Scales in Central Europe Using UTCI; Scientific annals of “Alexandru Ioan Cuza”, University of IAŞI Geography: Iași, Romania, 2014; pp. 67–82. [Google Scholar]
- Di Napoli, C.; Pappenberger, F.; Cloke, H.L. Assessing Heat-Related Health Risk in Europe via the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2018, 62, 1155–1165. [Google Scholar] [CrossRef] [Green Version]
- Kozjek, K.; Dolinar, M.; Skok, G. Objective Climate Classification of Slovenia. Int. J. Climatol. 2017, 37, 848–860. [Google Scholar] [CrossRef]
- Vertačnik, G.; Bertalanič, R.; Draksler, A.; Dolinar, M.; Vlahović, Ž.; Frantar, P. Climate Change and Variability in Slovenia in the Period 1961–2011: Summary; Ministry of the Environment and Spatial Planning, Slovenian Environment Agency: Ljubljana, Slovenia, 2018; 23p. [Google Scholar]
- ARSO—Slovenian Environment Agency. Ocena Podnebnih Sprememb v Sloveniji do Konca 21; Stoletja, S.P., Dolinar, M., Eds.; ARSO: Ljubljana, Slovenia, 2018; 156p. [Google Scholar]
- ARSO—Slovenian Environment Agency, Data Archive. Available online: http://meteo.arso.gov.si/met/sl/archive/ (accessed on 20 April 2022).
- Błażejczyk, K. BioKlima—Universal Tool for Bioclimatic and Thermophysiological Studies. Available online: https://www.igipz.pan.pl/Bioklima-zgik.html (accessed on 4 May 2022).
- BioKlima 2.6 software package. Available online: https://www.igipz.pan.pl/bioklima-crd.html (accessed on 29 August 2022).
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to Selected Thermal Indices. Int. J. Biometeorol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Błażejczyk, K.; Bröde, P.; Fiala, D.; Havenith, G.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Kunert, A. Principles of the New Universal Thermal Climate Index (UTCI) and Its Application to Bioclimatic Research in European Scale. Misc. Geogr. 2010, 14, 91–102. [Google Scholar] [CrossRef] [Green Version]
- Statistical Regions in the European Union and Partner Countries—NUTS and Statistical Regions 2021. Available online: https://ec.europa.eu/eurostat/web/products-manuals-and-guidelines/-/ks-gq-20-092 (accessed on 4 May 2022).
- Błazejczyk, K. New climatological and physiological model of the Human Heat Balance outdoor (MENEX) and its applications in bioclimatological studies in different scales. Zesz. Inst. Geogr. I Przestrz. Zagospod. PAN 1994, 28, 27–58. [Google Scholar]
- ISO, International Organization for Standardization. Ergonomics of the Thermal Environment—Determination of Metabolic Rate. (ISO Standard No. 8996). Available online: https://www.iso.org/standard/74443.html (accessed on 4 May 2022).
- OSHA, Occupational Safety and Health Administration, United States Department of Labor. Metabolic Heat and Workload (Physical Activity Level). Available online: https://www.osha.gov/heat-exposure/hazards (accessed on 4 May 2022).
- Messeri, A.; Morabito, M.; Bonafede, M.; Bugani, M.; Levi, M.; Baldasseroni, A.; Binazzi, A.; Gozzini, B.; Orlandini, S.; Nybo, L.; et al. Heat Stress Perception among Native and Migrant Workers in Italian Industries—Case Studies from the Construction and Agricultural Sectors. Int. J. Environ. Res. Public Health 2019, 16, 1090. [Google Scholar] [CrossRef] [Green Version]
- Pecelj, M.M.; Lukić, M.Z.; Filipović, D.J.; Protić, B.M.; Bogdanović, U.M. Analysis of the Universal Thermal Climate Index during Heat Waves in Serbia. Nat. Hazards Earth Syst. Sci. 2020, 20, 2021–2036. [Google Scholar] [CrossRef]
- Błażejczyk, K.; Kazandjiev, V.; Degórski, M.; Dimitrov, P. Assessment of Occupational Heat Stress Risk among Agriculture Workers in Poland and Bulgaria. Eur. XXI 2015, 29, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Pogačar, T.; Žnidaršič, Z.; Kajfež Bogataj, L.; Črepinšek, Z. Steps Towards Comprehensive Heat Communication in the Frame of a Heat Health Warning System in Slovenia. Int. J. Environ. Res. Public Health 2020, 17, 5829. [Google Scholar] [CrossRef]
- Spector, J.T.; Krenz, J.; Calkins, M.; Ryan, D.; Carmona, J.; Pan, M.; Zemke, A.; Sampson, P.D. Associations between Heat Exposure, Vigilance, and Balance Performance in Summer Tree Fruit Harvesters. Appl. Ergon. 2018, 67, 1–8. [Google Scholar] [CrossRef]
- Parsons, L.A.; Shindell, D.; Tigchelaar, M.; Zhang, Y.; Spector, J.T. Increased Labor Losses and Decreased Adaptation Potential in a Warmer World. Nat. Commun. 2021, 12, 7286. [Google Scholar] [CrossRef]
- Pal, G.; Patel, T.; Banik, T. Effect of Climate Change Associated Hazards on Agricultural Workers and Approaches for assessing Heat Stress and Its mitigation Strategies—Review of some Research Significances. Int. J. Curr. Microbiol. App. Sci. 2021, 10, 2947–2975. [Google Scholar]
- Saeed, F.; Schleussner, C.F.; Ashfaq, M. Deadly heat stress to become commonplace across South Asia already at 1.5 C of global warming. Geophys. Res. Lett. 2021, 48, e2020GL091191. [Google Scholar] [CrossRef]
T (°C) | f (%) | v (ms−1) | N (%) | |
---|---|---|---|---|
Bilje | 28.1 (±4.3) | 43.3 (±14.6) | 2.9 (±1.4) | 38.8 (±28.3) |
Črnomelj | 27.0 (±4.8) | 49.1 (±16.0) | 0.8 (±1.0) | 42.2 (±32.7) |
Ljubljana | 26.1 (±4.8) | 48.7 (±15.7) | 2.2 (±1.1) | 49.0 (±26.2) |
Maribor | 25.6 (±4.9) | 49.5 (±15.2) | 2.4 (±1.1) | 52.0 (±27.5) |
Novo mesto | 26.3 (±4.4) | 50.5 (±17.7) | 2.1 (±1.0) | 44.1 (±30.5) |
Portorož | 27.8 (±3.5) | 50.0 (±12.3) | 4.0 (±1.4) | 33.5 (±25.4) |
Postojna | 24.5 (±4.6) | 51.2 (±16.4) | 3.0 (±1.6) | 46.1 (±28.5) |
Rateče | 22.6 (±4.8) | 50.2 (±18.2) | 1.7 (±0.9) | 49.3 (±30.9) |
Slovenj Gradec | 24.2 (±4.7) | 50.9 (±17.1) | 2.2 (±1.4) | 50.3 (±28.1) |
UTCI (°C) | >46.0 | 38.1–46.0 | 32.1–38.0 | 26.1–32.0 | 9.1–26.0 * |
---|---|---|---|---|---|
stress category | extreme | very strong | strong | moderate | no |
heat stress | heat stress | heat stress | heat stress | thermal stress | |
class | 4 | 3 | 2 | 1 | 0 |
Activity Level | ||
---|---|---|
≤70 W/m2 | >70 W/m2 | |
acclimatized person | ||
warning SW value | 520 g/h | 780 g/h |
hazardous value | 780 g/h | 1040 g/h |
non-acclimatized person | ||
warning SW value | 260 g/h | 520 g/h |
hazardous value | 390 g/h | 650 g/h |
UTCI (°C) for the Period 1980–2020 | |||||
---|---|---|---|---|---|
June | July | August | Summer | ||
East Slovenia | avg | 16.6 (±1.7) | 21.1 (±1.5) | 20.7 (±1.6) | 20.1 (±1.2) |
max | 23.4 | 24.2 | 24.1 | 23.2 | |
min | 15.8 | 18.0 | 17.7 | 18.0 | |
trend | 0.87 °C/decade | 0.60 °C/decade | 0.60 °C/decade | 0.69 °C/decade | |
West Slovenia | avg | 18.3 (±1.6) | 20.8 (±1.5) | 20.4 (±1.5) | 19.8 (±1.2) |
max | 22.9 | 23.7 | 23.6 | 22.9 | |
min | 15.6 | 17.7 | 17.5 | 17.7 | |
trend | 0.87 °C/decade | 0.57 °C/decade | 0.56 °C/decade | 0.67 °C/decade |
Mean T (°C) at 14:00 CEST | Mean UTCI (°C) at 14:00 CEST | Max T | Max UTCI | |||||
---|---|---|---|---|---|---|---|---|
June | July | August | June | July | August | Summer | Summer | |
Bilje | 26.6 | 28.7 | 28.8 | 27.6 | 30.4 | 30.6 | 38.8 | 44.4 |
Črnomelj | 25.7 | 27.7 | 27.4 | 30.0 | 32.2 | 31.7 | 40.3 | 47.0 |
Ljubljana | 24.9 | 26.8 | 26.4 | 26.3 | 29.1 | 28.7 | 39.6 | 44.3 |
Maribor | 24.4 | 26.2 | 26.0 | 25.2 | 27.7 | 27.7 | 39.7 | 42.8 |
N. mesto | 24.7 | 26.6 | 26.4 | 26.6 | 29.1 | 28.8 | 39.6 | 44.0 |
Portorož | 26.4 | 28.5 | 28.3 | 26.9 | 29.8 | 29.6 | 36.5 | 40.8 |
Postojna | 23.2 | 25.2 | 25.2 | 23.3 | 26.0 | 26.0 | 36.2 | 40.7 |
S. Gradec | 23.1 | 24.9 | 24.6 | 24.0 | 26.4 | 26.4 | 37.0 | 41.5 |
Rateče | 21.6 | 23.3 | 22.8 | 23.3 | 25.5 | 24.8 | 35.1 | 39.3 |
% of Summer Days with | Bilje | Črnomelj | Ljubljana | Maribor | N. mesto | Portorož | Postojna | Rateče | S. Gradec |
---|---|---|---|---|---|---|---|---|---|
no stress | 25.3 | 18.9 | 33.2 | 37.6 | 32.9 | 26.4 | 45.8 | 51.7 | 45.6 |
thermal comfort zone | 20.9 | 17.1 | 25.5 | 27.3 | 25.1 | 22.8 | 31.8 | 36.5 | 34.6 |
strong or very strong stress | 39.2 | 51.4 | 29.8 | 23.5 | 33.0 | 27.7 | 16.7 | 9.0 | 15.1 |
Number of Days | June | July | August | Summer |
---|---|---|---|---|
Minimum | 5 | 10 | 2 | 29 |
Maximum | 21 | 22 | 26 | 63 |
Average | 12 | 18 | 17 | 47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Črepinšek, Z.; Žnidaršič, Z.; Pogačar, T. Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000–2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers. Agronomy 2023, 13, 331. https://doi.org/10.3390/agronomy13020331
Črepinšek Z, Žnidaršič Z, Pogačar T. Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000–2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers. Agronomy. 2023; 13(2):331. https://doi.org/10.3390/agronomy13020331
Chicago/Turabian StyleČrepinšek, Zalika, Zala Žnidaršič, and Tjaša Pogačar. 2023. "Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000–2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers" Agronomy 13, no. 2: 331. https://doi.org/10.3390/agronomy13020331
APA StyleČrepinšek, Z., Žnidaršič, Z., & Pogačar, T. (2023). Spatio-Temporal Analysis of the Universal Thermal Climate Index (UTCI) for the Summertime in the Period 2000–2021 in Slovenia: The Implication of Heat Stress for Agricultural Workers. Agronomy, 13(2), 331. https://doi.org/10.3390/agronomy13020331