Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation
Abstract
:1. Introduction
2. Material and Methods
2.1. Characterization of the Study Area
2.2. Delimitation of Installments
2.3. Soil Sampling and Analysis
2.4. Precipitation and Temperature Data
2.5. Dendrometric Variables of Tara Individuals
2.6. Grouping of Variables
2.7. Statistical Analysis
3. Results
3.1. Temperature and Rainfall
3.2. Soil Properties of Tara Forests
3.3. Tara Dendrometry in a Natural and Agroforestry System
3.4. Tree Temperature-Altitude-Soil-Dendrometry Interaction
4. Discussion
4.1. Temperature and Precipitation
4.2. Soil Properties of Natural Environments of Tara
4.3. Dendrometric Variables of Tara in Natural and Agroforestry Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, M.K.; Hemp, A.; Appelhans, T.; Becker, J.N.; Behler, C.; Classen, A.; Detsch, F.; Ensslin, A.; Ferger, S.W.; Frederiksen, S.B.; et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 2019, 568, 88–92, 2020. [Google Scholar] [CrossRef] [PubMed]
- Cordero, I.; Ruíz-Diez, B.; Balaguer, L.; Richter, A.; Pueyo, J.J.; Rincón, A. Rhizospheric microbial community of Caesalpinia spinosa (Mol.) Kuntze in conserved and deforested zones of the Atiquipa fog forest in Peru. Appl. Soil Ecol. 2017, 114, 132–141. [Google Scholar] [CrossRef]
- Castro, A.J.; Ramos, N.J.; Juárez, J.R.; Ruiz, J.R.; Choquesillo, F.F.; Ponce, J.J.; Santa María, O.H.; Castillo, A.A.; García, D.A.; Escudero, J.; et al. Composición química del aceite esencial de Caesalpinia spinosa “Tara”, Evaluación antioxidante y efecto antibacteriano frente a Streptococcus mutans. Cienc. E Investig. 2016, 19, 89–94. [Google Scholar] [CrossRef]
- Hadzich, A.; Flores, S.; Caprari, J.; Romagnoli, R. Study of zinc tannates prepared with Tara powder (Caesalpinia spinosa) as anticorrosive pigments in alkyd paints and wash primer formulations. Prog. Org. Coat. 2018, 117, 35–46. [Google Scholar] [CrossRef]
- Valeriano-Mamani, J.J.; Matos-Chamorro, R.A. Influencia de la goma de tara (Caesalpinia spinosa) como ayudante en el proceso de coagulación-floculación para la remoción de turbidez de una suspensión artificial de bentonita. Inf. Tecnológica 2019, 30, 299–308. [Google Scholar] [CrossRef] [Green Version]
- Ponce, S.; Chavarría, M.; Norabuena, F.; Chumpitaz, D.; Gutarra, A. Cellulose microfibres obtained from agro-industrial tara waste for dye adsorption in water. Water AirSoil Pollut. 2020, 231, 518. [Google Scholar] [CrossRef]
- Rigano, L.; Deola, M.; Zaccariotto, F.; Colleoni, T.; Lionetti, N. A New gelling agent and rheology modifier in cosmetics: Caesalpinia spinosa gum. Cosmetics 2019, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Santos, M.B.; De Carvalho, C.W.P.; García-Rojas, E.E. Microencapsulation of vitamin D3 by complex coacervation using carboxymethyl tara gum (Caesalpinia spinosa) and gelatin A. Food Chem. 2020, 343, 128529. [Google Scholar] [CrossRef]
- Cordero, I.; Jiménez, M.D.; Delgado, J.A.; Villegas, L.; Balaguer, L. Spatial and demographic structure of tara stands (Caesalpinia spinosa) in Peru: Influence of present and past forest management. For. Ecol. Manag. 2016, 377, 71–82. [Google Scholar] [CrossRef]
- De la Cruz, L.P. Aprovechamiento integral y racional de la tara Caesalpinia spinosa-Caesalpinia tinctoria. Rev. Inst. Investig. Fac. Ing. Geológica Min. Met. Geográfica 2004, 7, 64–73. [Google Scholar]
- Sollen-Norrlin, M.; Ghaley, B.B.; Rintoul, N.L.J. Agroforestry benefits and challenges for adoption in Europe and beyond. Sustainability 2020, 12, 7001. [Google Scholar] [CrossRef]
- Scatena, F.N.; Bruijnzeel, L.A.; Bubb, P.; Das, S. Setting the stage. In Tropical Montane Cloud Forests: Science for Conservation and Management; Scatena, F.N., Bruijnzeel, L.A., Hamilton, L.S., Eds.; Cambridge University Press: Cambridge, UK, 2010; pp. 3–14. [Google Scholar]
- Still, C.J.; Foster, P.N.; Schneider, S.H. Simulating the effects of climate change on tropical montane cloud forests. Nature 1999, 398, 608–610. [Google Scholar] [CrossRef]
- Gotsch, S.G.; Asbjornsen, H.; Goldsmith, G.R. Plant carbon and water fluxes in tropical montane cloud forests. J. Trop. Ecol. 2016, 32, 404–420. [Google Scholar] [CrossRef]
- Fahey, T.; Sherman, R.; Tanner, E. Tropical montane cloud forest: Environmental drivers of vegetation structure and ecosystem function. J. Trop. Ecol. 2016, 32, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Holdridge, L.R. Life Zone Ecology; Tropical Science Center: San José, Costa Rica, 1967; 206p. [Google Scholar]
- Malizia, A.; Blundo, C.; Carilla, J.; Osinaga, A.O.; Cuesta, F.; Duque, A.; Aguirre, N.; Aguirre, Z.; Ataroff, M.; Báez, S.; et al. Elevation and latitude drives structure and tree species composition in Andean forests: Results from a large-scale plot network. PLoS ONE 2020, 15, e0231553. [Google Scholar] [CrossRef] [Green Version]
- Wilcke, W.; Yasin, S.; Abramowski, U.; Valarezo, C.; Zech, W. Nutrient storage and turnover in organic layers under tropical montane rain forest in Ecuador. Eur. J. Soil Sci. 2002, 53, 15–27. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, B.; Deslauriers, A.; Brauning, A. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 2014, 29, 25–34. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E. Convergent elevation trends in canopy chemical traits of tropical forests. Glob. Change Biol. 2016, 22, 2216–2227. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Anderson, C.B.; Kryston, K.; Vaughn, N.; Knapp, D.E.; Tupayachi, R. Scale dependence of canopy trait distributions along a tropical forest elevation gradient. New Phytol. 2017, 214, 973–988. [Google Scholar] [CrossRef]
- Bahar, N.H.; Ishida, F.Y.; Weerasinghe, L.K.; Guerrieri, R.; O’Sullivan, O.S.; Bloomfield, K.J.; Asner, G.P.; Martin, R.A.; Lloyd, J.; Malhi, Y.; et al. Leaf-level photosynthetic capacity in lowland Amazonian and high-elevation Andean tropical moist forests of Peru. New Phytol. 2017, 214, 1002–1018. [Google Scholar] [CrossRef]
- Badía, D.; Ruiz, A.; Girona, A.; Martí, C.; Casanova, J.; Ibarra, P.; Zufiaurre, R. The influence of elevation on soil properties and forest litter in the Siliceous Moncayo Massif, SW Europe. J. Mt. Sci. 2016, 13, 2155–2169. [Google Scholar] [CrossRef]
- Kassa, H.; Dondeyne, S.; Poesen, J.; Frankl, A.; Nyssen, J. Agro-ecological implications of forest and agroforestry systems conversion to cereal-based farming systems in the White Nile Basin, Ethiopia. Agroecol. Sustain. Food Syst. 2018, 42, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, L.; Suárez, J.C.; Rodríguez, W.; Artunduaga, K.J.; Lavelle, P. Agroforestry systems impact soil macroaggregation and enhance carbon storage in Colombian deforested Amazonia. Geoderma 2021, 384, 114810. [Google Scholar] [CrossRef]
- Aybar-Camacho, C.; Lavado-Casimiro, W.; Sabino, E.; Ramírez, S.; Huerta, J.; Felipe-Obando, O. Atlas de Zonas de Vida del Perú–Guía Explicativa; Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI), Dirección de Hidrología: Lima, Peru, 2017; 30p. [Google Scholar]
- EMBRAPA. Adubação e Correção do Solo: Procedimentos a Serem Adotados em Função dos Resultados da Análise do Solo; 63 Circular Técnica: Campina Grande, Brasil, 2002; 32p, Available online: https://www.embrapa.br/busca-de-publicacoes/-/publicacao/275844/adubacao-e-correcao-do-solo-procedimentos-a-serem-adotados-em-funcao-dos-resultados-da-analise-do-solo (accessed on 25 November 2021).
- SENAMHI-Servicio Nacional de Meteorología e Hidrología del Perú. Available online: https://www.senamhi.gob.pe/?p=estaciones (accessed on 20 January 2021).
- Jolliffe, I.T. Discarding variables in a principal component analysis, I: Artificial data. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1972, 21, 160–173. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 12 January 2021).
- Albrecht, J.; Classen, A.; Vollstädt, M.G.R.; Mayr, A.; Mollel, N.P.; Costa, D.S.; Dulle, H.I.; Fischer, M.; Hemp, A.; Howell, K.M.; et al. Plant and animal functional diversity drive mutualistic network assembly across an elevational gradient. Nat. Commun. 2018, 9, 3177. [Google Scholar] [CrossRef] [Green Version]
- Báez, S.; Malizia, A.; Carilla, J.; Blundo, C.; Aguilar, M.; Aguirre, N.; Aguirre, Z.; Álvarez, E.; Cuesta, F.; Duque, A.; et al. Large-scale patterns of turnover and basal area change in Andean forests. PLoS ONE 2015, 10, e0126594. [Google Scholar] [CrossRef]
- Balaguer, L.; Arroyo-García, R.; Jimenez, P.; Jimenez, M.D.; Villegas, L.; Cordero, I.; De Casas, R.R.; Fernández-Delgado, F.; Ron, M.E.; Manrique, E.; et al. Forest restoration in a fog oasis: Evidence indicates need for cultural awareness in constructing the reference. PLoS ONE 2011, 6, e23004. [Google Scholar] [CrossRef] [Green Version]
- De la Cruz-Arango, J.; Gómez-Carrión, J.; Chanco-Estela, M.; Carrillo-Fuentes, E.P.; Aucasime-Medina, L. Flora y vegetación de la provincia de Huamanga (Ayacucho-Perú). J. Selva Andin. Biosph. 2020, 8, 3–18. [Google Scholar] [CrossRef]
- Prezotti, L.C.; Guarçoni, M.A. Guia de Interpretação de Análise de Solo e Foliar; Instituto Capixaba de Pesquisa, Assistencia Técnica e Extensão Rural: Espiritu Santo, Vitória, 2013; 106p. [Google Scholar]
- Sylvester, S.P.; Heitkamp, F.; Sylvester, M.D.; Jungkunst, H.F.; Sipman, H.J.; Toivonen, J.M.; Kessler, M. Relict high-Andean ecosystems challenge our concepts of naturalness and human impact. Sci. Rep. 2017, 7, 3334. [Google Scholar] [CrossRef] [Green Version]
- Hassink, J.; Bouwman, L.A.; Zwart, K.B.; Bloem, J.; Brussaard, L. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils. In Soil Structure/Soil Biota Interrelationships; Elsevier: Amsterdam, The Netherlands, 1993; pp. 105–128. [Google Scholar] [CrossRef]
- Murga-Orrillo, H.; Coronado, J.M.F.; Abanto-Rodríguez, C.; Lobo, A.F. Altitudinal gradient and its influence on the edaphoclimatic characteristics of tropical forests. Madera Bosques 2021, 27, e2732271. [Google Scholar] [CrossRef]
- Homeier, J.; Leuschner, C. Factors controlling the productivity of tropical Andean forests: Climate and soil are more important than tree diversity. Biogeosciences 2021, 18, 1525–1541. [Google Scholar] [CrossRef]
- Slik, J.F.; Raes, N.; Aiba, S.I.; Brearley, F.Q.; Cannon, C.H.; Meijaard, E.; Wulffraat, S. Environmental correlates for tropical tree diversity and distribution patterns in Borneo. Divers. Distrib. 2009, 15, 523–532. [Google Scholar] [CrossRef]
- Unger, M.; Homeier, J.; Leuschner, C. Effects of soil chemistry on tropical forest biomass and productivity at different elevations in the equatorial Andes. Oecologia 2012, 170, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Wang, N.; Zhang, J.; Hu, Y.; Cai, D.; Guo, J.; Wu, D.; Sun, G. Soil physicochemical properties and the rhizosphere soil fungal community in a mulberry (Morus alba L.)/Alfalfa (Medicago sativa L.) intercropping system. Forests 2019, 10, 167. [Google Scholar] [CrossRef] [Green Version]
- Bashir, K.; Ishimaru, Y.; Shimo, H.; Nagasaka, S.; Fujimoto, M.; Takanashi, H.; Tsutsumi, N.; An, G.; Nakanishi, H.; Nishizawa, N.K. The rice mitochondrial iron transporter is essential for plant growth. Nat. Commun. 2011, 2, 322. [Google Scholar] [CrossRef] [Green Version]
- Abadía, J.; Vázquez, S.; Rellán-Álvarez, R.; El-Jendoubi, H.; Abadía, A.; Álvarez-Fernández, A.; López-Millán, A.F. Towards a knowledge-based correction of iron chlorosis. Plant Physiol. Biochem. 2011, 49, 471–482. [Google Scholar] [CrossRef]
- Rombolá, A.D.; Tagliavini, M. Iron Nutrition of Fruit Tree Crops; Iron Nutrition in Plants and Rhizospheric Microorganisms; Barton, L.L., Abadia, J., Eds.; Springer: Dordrecht, The Netherland, 2006. [Google Scholar] [CrossRef]
- Abbaszadeh-Dahaji, P.; Masalehi, F.; Akhgar, A. Improved growth and nutrition of sorghum (Sorghum bicolor) plants in a low-fertility calcareous soil treated with plant growth–promoting rhizobacteria and Fe-EDTA. J. Soil Sci. Plant Nutr. 2020, 20, 31–42. [Google Scholar] [CrossRef]
- Duchesne, L.; Moore, J.D.; Ouimet, R. Partitioning the effect of release and liming on growth of sugar maple and American beech saplings. North. J. Appl. For. 2013, 30, 28–36. [Google Scholar] [CrossRef]
- Hippler, F.W.R.; Boaretto, R.M.; Quaggio, J.A.; Azevedo, R.A.; Mattos, J.R.D. Towards soil management with Zn and Mn: Estimates of fertilization efficacy of Citrus trees. Ann. Appl. Biol. 2015, 166, 484–495. [Google Scholar] [CrossRef]
Station | 𝜙 | z | Station | 𝜙 | z | ||
---|---|---|---|---|---|---|---|
San Marcos | 7.3 | 78.2 | 2293 | Chancaybaños | 6.6 | 78.9 | 1639 |
Cajabamba | 7.6 | 78.1 | 2626 | Cutervo | 6.4 | 78.8 | 2622 |
Huamachuco | 7.8 | 78.0 | 3186 | Cochabamba | 6.5 | 78.9 | 1653 |
Augusto Weberbauer | 7.2 | 78.5 | 2673 | Llama | 6.5 | 79.1 | 2096 |
Asunción | 7.3 | 78.5 | 2270 | - | - | - | - |
Altitude * | MAT | Latitude | Longitude | Clay | Silt | Sand | Texture |
---|---|---|---|---|---|---|---|
m | °C | % | |||||
Natural–agroforestry environments | |||||||
2021 (n = 1) | 19.8 | 7.5 | 78.2 | 34.0 | 21.0 | 45.0 | LCS |
2185 ± 3 (n = 4) | 18.5 ± 0.2 | 7.4 ± 0.0 | 78.2 ± 0.0 | 26.8 ± 2.3 | 33.8 ± 6.4 | 39.4 ± 7.1 | L |
2388 ± 4 (n = 8) | 17.3 ± 0.20 | 7.3 ± 0.0 | 78.2 ± 0.0 | 27.3 ± 7.6 | 21.3 ± 4.5 | 51.5 ± 10.5 | LCS |
2546 ± 6 (n = 3) | 16.4 ± 0.4 | 7.4 ± 0.0 | 78.1 ± 0.0 | 29.3 ± 10.3 | 22.3 ± 3.1 | 48.3 ± 13.3 | LCS |
2680 ± 7 (n = 5) | 15.6 ± 0.3 | 7.4 ± 0.0 | 78.1 ± 0.1 | 29.2 ± 5.0 | 25.8 ± 1.1 | 45.0 ± 5.5 | LCS |
2798 ± 2 (n = 5) | 14.6 ± 0.3 | 7.3 ± 0.1 | 78.2 ± 0.1 | 33.2 ± 13.0 | 26.2 ± 3.4 | 40.6 ± 13.5 | LC |
3007 ± 7 (n = 4) | 13.4 ± 0.4 | 7.4 ± 0.0 | 78.1 ± 0.0 | 28.0 ± 2.8 | 28.5 ± 6.2 | 43.5 ± 5.0 | LC |
Natural environment | |||||||
2021 (n = 1) | 19.8 | 7.5 | 78.2 | 34.0 | 21.0 | 45.0 | LCS |
2185 ± 4 (n = 3) | 18.5 ± 0.2 | 7.4 ± 0.0 | 78.2 ± 0.0 | 25.3 ± 1.2 | 31.7 ± 1.2 | 43.0 ± 2.0 | L |
2388 ± 5 (n = 4) | 17.3 ± 0.3 | 7.3 ± 0.0 | 78.2 ± 0.0 | 27.5 ± 8.1 | 20.5 ± 5.3 | 52.0 ± 12.9 | LCS |
2546 ± 6 (n = 2) | 16.2 ± 0.5 | 7.4 ± 0.0 | 78.2 ± 0.0 | 28.0 ± 14.1 | 22.0 ± 4.2 | 50.0 ± 18.4 | LCS |
2680 ± 8 (n = 2) | 15.4 ± 0.3 | 7.4 ± 0.0 | 78.1 ± 0.1 | 25.0 ± 4.2 | 25.0 ± 0.0 | 50.0 ± 4.2 | LCS |
2798 ± 2 (n = 2) | 14.6 ± 0.4 | 7.3 ± 0.1 | 78.2 ± 0.1 | 31.0 ± 24.0 | 23.0 ± 0.0 | 46.0 ± 24.0 | LCS |
3007 (n = 1) | 13.7 | 7.4 | 78.2 | 26.0 | 29.0 | 45.0 | L |
Agroforestry environment | |||||||
2185 ± 4 (n = 2) | 18.5 ± 0.2 | 7.4 ± 0.0 | 78.2 ± 0.0 | 29.0 ± 1.4 | 37.0 ± 11.3 | 34.0 ± 9.9 | LC |
M. sativa, L. multiflorum | |||||||
2388 ± 3 (n = 4) | 17.3 ± 0.2 | 7.3 ± 0.0 | 78.2 ± 0.0 | 27.0 ± 8.3 | 22.0 ± 4.2 | 51.0 ± 9.4 | LCS |
Z. mays, P. vulgaris, T. aestivum | |||||||
2546 (n = 1) | 16.7 | 7.3 | 78.1 | 32.0 | 23.0 | 45.0 | LCS |
Z. mays, P. vulgaris | |||||||
2680 ± 6 (n = 3) | 15.7 ± 0.2 | 7.4 ± 0.0 | 78.1 ± 0.1 | 32.0 ± 3.5 | 26.3 ± 1.2 | 41.7 ± 3.1 | LC |
Z. mays, P. vulgaris, M. sativa, L. multiflorum | |||||||
2798 ± 2 (n = 3) | 14.6 ± 0.3 | 7.4 ± 0.1 | 78.2 ± 0.1 | 34.7 ± 6.4 | 28.3 ± 2.3 | 37.0 ± 5.3 | LC |
Z. mays, P. vulgaris | |||||||
3007 ± 8 (n = 3) | 13.4 ± 0.4 | 7.4 ± 0.0 | 78.1 ± 0.0 | 28.7 ± 3.1 | 28.3 ± 7.6 | 43.0 ± 6.0 | LC |
Z. mays, V. faba, L. usitatissimum |
Altitude * | CE | CaCO3 | pH | OM | N | P | K | B | Cu | Fe | Mn | Zn | CEC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
m | dS.m−1 | % | % | mg.dm−3 | cmolc.kg−1 | ||||||||
Natural-agroforestry environment | |||||||||||||
2021 (n = 1) | 0.39 | 3.1 | 7.7 | 4.2 | 0.28 | 24.9 | 452.0 | 1.35 | 0.80 | 47.7 | 0.80 | 4.6 | 15.0 |
2185 ± 3 (n = 4) | 0.32 ± 0.09 | 43.8 ± 12.3 | 8.0 ± 0.3 | 5.1 ± 3.1 | 0.29 ± 0.15 | 10.7 ± 5.0 | 241.2 ± 212.4 | 0.59 ± 0.24 | 0.30 ± 0.15 | 31.7 ± 15.1 | 2.40 ± 1.93 | 4.0 ± 0.7 | 18.0 ± 7.5 |
2388 ± 4 (n = 8) | 0.31 ± 0.16 | 10.1 ± 12.4 | 7.8 ± 0.2 | 3.3 ± 1.5 | 0.22 ± 0.06 | 9.9 ± 5.4 | 366.1 ± 237.7 | 0.78 ± 0.46 | 0.36 ± 0.18 | 31.5 ± 22.2 | 0.42 ± 0.31 | 3.7 ± 0.4 | 19.3 ± 4.4 |
2546 ± 6 (n = 3) | 0.29 ± 0.09 | 18.6 ± 15.5 | 7.9 ± 0.0 | 2.8 ± 2.0 | 0.22 ± 0.16 | 8.2 ± 2.9 | 387.7 ± 272.1 | 0.44 ± 0.34 | 0.32 ± 0.35 | 27.3 ± 21.0 | 1.79 ± 2.13 | 3.9 ± 0.5 | 19.4 ± 10.4 |
2680 ± 7 (n = 5) | 0.30 ± 0.04 | 21.3 ± 20.3 | 7.7 ± 0.2 | 5.0 ± 2.0 | 0.33 ± 0.12 | 10.4 ± 6.0 | 452.4 ± 83.7 | 0.77 ± 0.26 | 0.40 ± 0.20 | 47.6 ± 58.0 | 0.46 ± 0.43 | 4.0 ± 0.5 | 21.1 ± 5.1 |
2798 ± 2 (n = 5) | 0.27 ± 0.13 | 42.9 ± 14.4 | 7.9 ± 0.1 | 5.2 ± 3.4 | 0.39 ± 0.22 | 19.3 ± 13.9 | 226.2 ± 108.5 | 0.73 ± 0.25 | 0.55 ± 0.34 | 7.0 ± 0.8 | 0.40 ± 0.58 | 3.54 ± 0.22 | 25.7 ± 8.5 |
3007 ± 7 (n = 4) | 0.31 ± 0.10 | 35.2 ± 12.3 | 7.9 ± 0.0 | 4.5 ± 2.6 | 0.33 ± 0.13 | 21.7 ± 12.2 | 280.3 ± 203.4 | 0.97 ± 0.76 | 0.52 ± 0.30 | 45.1 ± 54.7 | 1.20 ± 1.00 | 3.5 ± 0.4 | 23.5 ± 9.8 |
Natural environment | |||||||||||||
2021 (n = 1) | 0.39 | 3.10 | 7.72 | 4.2 | 0.28 | 24.9 | 452.0 | 1.35 | 0.80 | 47.7 | 0.80 | 4.6 | 15.0 |
2185 ± 4 (n = 3) | 0.31 ± 0.11 | 47.4 ± 14.5 | 8.0 ± 0.4 | 5.2 ± 4.0 | 0.32 ± 0.18 | 12.6 ± 6.0 | 303.7 ± 271.8 | 0.69 ± 0.29 | 0.21 ± 0.05 | 36.5 ± 9.9 | 3.73 ± 0.88 | 4.4 ± 0.7 | 17.2 ± 8.8 |
2388 ± 5 (n = 4) | 0.23 ± 0.11 | 14.9 ± 16.9 | 7.9 ± 0.2 | 3.5 ± 1.5 | 0.23 ± 0.06 | 8.4 ± 1. 6 | 315.3 ± 125.1 | 0.89 ± 0.28 | 0.44 ± 0.21 | 17.7 ± 9.9 | 0.26 ± 0.21 | 3.7 ± 0.4 | 17.6 ± 4.14 |
2546 ± 6 (n = 2) | 0.25 ± 0.07 | 18.8 ± 21.9 | 7.9 ± 0.0 | 3.3 ± 2.6 | 0.27 ± 0.19 | 9.6 ± 2.5 | 434.0 ± 367.7 | 0.59 ± 0.30 | 0.12 ± 0.06 | 15.3 ± 3.4 | 2.44 ± 2.55 | 3.9 ± 0.8 | 20.7 ± 14.4 |
2680 ± 8 (n = 2) | 0.30 ± 0.06 | 17.5 ± 24.5 | 7.8 ± 0.0 | 4.4 ± 3.5 | 0.25 ± 0.14 | 7.6 ± 0.3 | 425.5 ± 99.7 | 0.92 ± 0.30 | 0.44 ± 0.17 | 20.7 ± 4.1 | 0.16 ± 0.00 | 3.2 ± 0.3 | 17.3 ± 5.0 |
2798 ± 2 (n = 2) | 0.29 ± 0.20 | 42.2 ± 13.2 | 7.9 ± 0.2 | 6.1 ± 4.9 | 0.46 ± 0.34 | 12.2 ± 8.7 | 233.0 ± 91.9 | 0.71 ± 0.30 | 0.68 ± 0.28 | 6.9 ± 0.4 | 0.12 ± 0.06 | 3.6 ± 0.4 | 24.8 ± 9.7 |
3007 (n = 1) | 0.24 | 18.10 | 7.83 | 4.6 | 0.40 | 7.5 | 139.0 | 0.16 | 0.56 | 125.3 | 1.36 | 3.5 | 36.5 |
Agroforestry environment | |||||||||||||
2185 ± 4 (n = 2) | 0.34 ± 0.07 | 38.4 ± 9.1 | 7.9 ± 0.4 | 5.0 ± 2.7 | 0.26 ± 0.12 | 7.9 ± 1.7 | 147.5 ± 58.7 | 0.45 ± 0.08 | 0.44 ± 0.17 | 24.5 ± 23.2 | 0.40 ± 0.23 | 3.5 ± 0.1 | 19.2 ± 8.2 |
M. sativa, L. multiflorum | |||||||||||||
2388 ± 3 (n = 4) | 0.39 ± 0.16 | 5.4 ± 3.4 | 7.7 ± 0.1 | 3.1 ± 1.6 | 0.22 ± 0.07 | 11.4 ± 7.8 | 417.0 ± 330.6 | 0.67 ± 0.63 | 0.28 ± 0.10 | 45.1 ± 23.5 | 0.58 ± 0.34 | 3.8 ± 0.4 | 21.0 ± 4.5 |
Z. mays, P. vulgaris, T. aestivum | |||||||||||||
2546 (n = 1) | 0.37 | 18.10 | 7.92 | 1.7 | 0.12 | 5.5 | 295.0 | 0.14 | 0.72 | 51.4 | 0.48 | 3.8 | 16.8 |
Z. mays, P. vulgaris | |||||||||||||
2680 ± 6 (n = 3) | 0.30 ± 0.03 | 23.9 ± 22.3 | 7.7 ± 0.3 | 5.4 ± 1.1 | 0.38 ± 0.08 | 12.2 ± 7.7 | 470.3 ± 88.5 | 0.67 ± 0.24 | 0.37 ± 0.24 | 65.5 ± 74.2 | 0.67 ± 0.46 | 3.8 ± 0.7 | 23.7 ± 3.9 |
Z. mays, P. vulgaris, M. sativa, L. multiflorum | |||||||||||||
2798 ± 2 (n = 3) | 0.26 ± 0.11 | 43.4 ± 18.0 | 8.0 ± 0.0 | 4.6 ± 3.2 | 0.35 ± 0.17 | 24.0 ± 16.3 | 221.7 ± 138.7 | 0.74 ± 0.29 | 0.46 ± 0.40 | 7.1 ± 1.1 | 0.59 ± 0.74 | 3.5 ± 0.1 | 26.2 ± 9.8 |
Z. mays, P. vulgaris | |||||||||||||
3007 ± 8 (n = 3) | 0.33 ± 0.11 | 40.8 ± 5.8 | 7.9 ± 0.1 | 4.5 ± 3.2 | 0.30 ± 0.15 | 26.4 ± 9.4 | 327.3 ± 220.8 | 1.23 ± 0.66 | 0.51 ± 0.36 | 18.4 ± 14.3 | 1.14 ± 1.21 | 3.5 ± 0.5 | 19.2 ± 5.6 |
Z. mays, V. faba, L. usitatissimum |
Altitude-Environment * | Density | Tree Height | Crown Height | Crown Diameter | Stem Diameter | Stem Number |
---|---|---|---|---|---|---|
pl/200 m2 | m | cm | ||||
Natural—Agroforestry (n′ = 287) | 9.3 ± 8.4 | 5.3 ± 1.7 | 3.0 ± 1.3 | 4.1 ± 1.8 | 13.0 ± 9.4 | 3.2 ± 3.4 |
2021 (n = 1, n’ = 10) | 10.0 | 5.3 ± 1.5 | 3.5 ± 1.0 | 3.7 ± 1.2 | 11.8 ± 6.0 | 2.9 ± 2.3 |
2185 ± 3 (n = 4, n′ = 72) | 14.4 ± 10.4 | 6.6 ± 1.3 | 3.3 ± 1.3 | 4.4 ± 1.9 | 13.1 ± 7.7 | 3.4 ± 3.8 |
2388 ± 4 (n = 8, n′ = 102) | 12.8 ± 9.5 | 5.3 ± 1.9 | 3.0 ± 1.3 | 3.6 ± 1.5 | 9.9 ± 6.0 | 4.2 ± 3.9 |
2546 ± 6 (n = 3, n′ = 41) | 13.7 ± 11.0 | 4.6 ± 1.4 | 2.8 ± 1.3 | 4.3 ± 1.6 | 13.8 ± 9.3 | 2.5 ± 2.7 |
2680 ± 7 (n = 5, n′ = 26) | 5.2 ± 2.8 | 5.1 ± 1.1 | 3.3 ± 0.8 | 5.4 ± 1.9 | 18.0 ± 8.3 | 2.1 ± 1.2 |
2798 ± 2 (n = 5, n′ = 29) | 5.8 ± 5.5 | 3.7 ± 0.9 | 2.0 ± 0.9 | 3.5 ± 2.0 | 15.1 ± 16.3 | 2.2 ± 2.2 |
3007 ± 7 (n = 4, n′ = 7) | 1.8 ± 1.0 | 4.9 ± 1.7 | 3.4 ± 1.5 | 5.7 ± 2.3 | 28.4 ± 13.3 | 2.0 ± 1.5 |
Natural (n′ = 226) | 15.1 ± 8.8 | 5.3 ± 1.7 | 2.8 ± 1.2 | 3.8 ± 1.5 | 12.0 ± 8.6 | 3.10 ± 3.22 |
2021 (n = 1, n′ = 10) | 10.0 | 5.3 ± 1.5 | 3.5 ± 1.0 | 3.7 ± 1.2 | 11.8 ± 6.0 | 2.9 ± 2.3 |
2185 ± 4 (n = 3, n′ = 64) | 21.3 ± 6.1 | 6.5 ± 1.2 | 3.1 ± 1.2 | 4.0 ± 1.6 | 12.1 ± 6.1 | 3.0 ± 3.4 |
2388 ± 5 (n = 4, n′ = 78) | 19.5 ± 9.3 | 5.2 ± 1.9 | 2.8 ± 1.3 | 3.4 ± 1.2 | 9.6 ± 5.9 | 3.9 ± 3.8 |
2546 ± 6 (n = 2, n′ = 36) | 18.0 ± 11.3 | 4.6 ± 1.5 | 2.7 ± 1.3 | 4.3 ± 1.5 | 13.0 ± 9.0 | 2.7 ± 2.8 |
2680 ± 8 (n = 2, n′ = 13) | 6.5 ± 5.0 | 4.5 ± 0.6 | 2.7 ± 0.4 | 4.7 ± 1.4 | 18.0 ± 7.3 | 1.9 ± 1.3 |
2798 ± 2 (n = 2, n′ = 23) | 11.5 ± 2.1 | 3.9 ± 0.9 | 2.1 ± 0.9 | 3.5 ± 2.0 | 14.9 ± 17.3 | 2.1 ± 1.9 |
3007 (n = 1, n′ = 2) | 2.0 | 3.4 ± 1.3 | 1.8 ± 0.8 | 3.6 ± 0.4 | 16.6 ± 1.4 | 1.0 ± 0.0 |
Agroforestry (n′ = 61) | 3.8 ± 2.1 | 5.4 ± 1.8 | 3.7 ± 1.4 | 5.26 ± 2.25 | 16.8 ± 11.3 | 3.8 ± 3.8 |
2185 ± 4 (n = 2, n′ = 8) | 4.0 ± 0.0 | 7.2 ± 1.7 | 4.9 ± 1.4 | 7.2 ± 1.7 | 21.2 ± 13.6 | 6.1 ± 5.7 |
M. sativa, L. multiflorum | ||||||
2388 ± 3 (n = 4, n′ = 24) | 6.0 ± 2.0 | 5.5 ± 1.8 | 3.7 ± 1.4 | 4.4 ± 2.0 | 10.9 ± 6.3 | 4.9 ± 4.3 |
Z. mays, P. vulgaris, T. aestivum | ||||||
2546 (n = 1, n′ = 5) | 5.0 | 4.4 ± 1.4 | 3.2 ± 1.4 | 4.9 ± 2.0 | 19.4 ± 10.7 | 1.6 ± 0.9 |
Z. mays, P. vulgaris | ||||||
2680 ± 5 (n = 3, n′ = 13) | 4.3 ± 0.6 | 5.6 ± 1.2 | 3.8 ± 0.8 | 6.1 ± 2.2 | 18.1 ± 9.6 | 2.2 ± 1.2 |
Z. mays, P. vulgaris, M. sativa, L. multiflorum | ||||||
2798 ± 2 (n = 3, n′ = 6) | 2.0 ± 1.7 | 3.3 ± 0.9 | 1.7 ± 1.0 | 3.6 ± 2.0 | 15.9 ± 13.1 | 2.5 ± 3.2 |
Z. mays, P. vulgaris | ||||||
3007 ± 8 (n = 3, n′ = 5) | 1.7 ± 1.2 | 5.6 ± 1.5 | 4.0 ± 1.1 | 6.6 ± 2.2 | 33.1 ± 13.0 | 2.4 ± 1.7 |
Z. mays, V. faba, L. usitatissimum |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murga-Orrillo, H.; Abanto-Rodriguez, C.; Fernandes Silva Dionisio, L.; Chu-Koo, F.W.; Schwartz, G.; Nuñez Bustamante, E.; Stewart, P.M.; Santos Silva Amorim, R.; Vourlitis, G.L.; De Almeida Lobo, F.; et al. Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation. Agronomy 2023, 13, 282. https://doi.org/10.3390/agronomy13020282
Murga-Orrillo H, Abanto-Rodriguez C, Fernandes Silva Dionisio L, Chu-Koo FW, Schwartz G, Nuñez Bustamante E, Stewart PM, Santos Silva Amorim R, Vourlitis GL, De Almeida Lobo F, et al. Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation. Agronomy. 2023; 13(2):282. https://doi.org/10.3390/agronomy13020282
Chicago/Turabian StyleMurga-Orrillo, Hipolito, Carlos Abanto-Rodriguez, Luiz Fernandes Silva Dionisio, Fred William Chu-Koo, Gustavo Schwartz, Ever Nuñez Bustamante, Paul Michael Stewart, Ricardo Santos Silva Amorim, George Louis Vourlitis, Francisco De Almeida Lobo, and et al. 2023. "Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation" Agronomy 13, no. 2: 282. https://doi.org/10.3390/agronomy13020282
APA StyleMurga-Orrillo, H., Abanto-Rodriguez, C., Fernandes Silva Dionisio, L., Chu-Koo, F. W., Schwartz, G., Nuñez Bustamante, E., Stewart, P. M., Santos Silva Amorim, R., Vourlitis, G. L., De Almeida Lobo, F., & Bardales-Lozano, R. M. (2023). Tara (Caesalpinia spinosa) in Natural and Agroforestry Systems under an Altitudinal Gradient in the Peruvian Andes: Responses to Soil and Climate Variation. Agronomy, 13(2), 282. https://doi.org/10.3390/agronomy13020282