Effect of Calcium Fertilization on Calcium Uptake and Its Partitioning in Citrus Trees
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Conditions and Plant Material
2.2. Ca Uptake Assay
2.3. Collection and Extraction of Plants
2.4. Calcium Analysis
2.5. Separation and Analysis of Ca Fractions
2.6. Calcium-Labeled Analysis
2.7. Statistical Analysis
3. Results and Discussion
3.1. Effect of Ca Fertilization on Ca Content Distribution in Citrus Trees
3.2. Labeled Ca Distribution
3.3. Effect of Ca Fertilization on Ca Partitioning in Different Forms in Citrus Trees
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hepler, P.K.; Wayne, R.O. Calcium and plant development. Annu. Rev. Plant Physiol. 1985, 36, 397–439. [Google Scholar] [CrossRef]
- White, P.J.; Broadley, M.R. Calcium in plants. Ann. Bot. 2003, 92, 487–511. [Google Scholar] [CrossRef]
- Thor, K. Calcium—Nutrient and messenger. Front. Plant Sci. 2019, 10, 440. [Google Scholar] [CrossRef] [PubMed]
- Medvedev, S.S. Calcium signalling system in plants. Russ. J. Plant Physiol. 2005, 52, 249–270. [Google Scholar] [CrossRef]
- Case, R.M.; Eisner, D.; Gurney, A.; Jones, O.; Muallem, S.; Verkhratsky, A. Evolution of calcium homeostasis: From birth of the first cell to an omnipresent signalling system. Cell Calcium 2007, 42, 345–350. [Google Scholar] [CrossRef] [PubMed]
- White, P.J. The pathways of calcium movement to the xylem. J. Exp. Bot. 2001, 52, 891–899. [Google Scholar] [CrossRef] [PubMed]
- Gilliham, M.; Dayod, M.; Hocking, B.J.; Xu, B.; Conn, S.J.; Kaiser, B.N.; Leigh, R.A.; Tyerman, S.D. Calcium delivery and storage in plant leaves: Exploring the link with water flow. J. Exp. Bot. 2011, 62, 2233–2250. [Google Scholar] [CrossRef]
- McAinsh, M.R.; Pittman, J.K. Shaping the calcium signature. New Phytol. 2009, 181, 275–294. [Google Scholar] [CrossRef]
- Ravi, B.; Sanyal, S.K.; Pandey, G.K. Calcium decoders and their targets: The holy alliance that regulate cellular responses in stress signaling. Adv. Prot. Chem. Struct. Biol. 2023, 134, 371–439. [Google Scholar] [CrossRef]
- Tuteja, N.; Mahajan, S. Ca signaling network in plants: An overview. Plant Signal. Behav. 2007, 2, 79–85. [Google Scholar] [CrossRef]
- Berridge, M.J.; Lipp, P.; Bootman, M.D. The versatility and universality of calcium signalling. Nat. Rev. Mol. Cell Biol. 2000, 1, 11–21. [Google Scholar] [CrossRef]
- Lionetti, V.; Francocci, F.; Ferrari, S.; Volpi, C.; Bellincampi, D.; Galletti, R.; Ovidio, R.; Lorenzo, G.; Cervone, F. Engineering the cell wall by reducing de-methyl-esterified homogalacturonan improves saccharification of plant tissues for bioconversion. Proc. Natl. Acad. Sci. USA 2010, 107, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Pandey, N. Role of plant nutrients in plant growth and physiology. In Plant Nutrients and Abiotic Stress Tolerance; Hasanuzzaman, M., Fujita, M., Oku, H., Nahar, K., Hawrylak-Nowak, B., Eds.; Springer Nature Ltd.: Singapore, 2018; pp. 51–93. [Google Scholar] [CrossRef]
- Daverkausen-Fischer, L.; Pröls, F. Regulation of calcium homeostasis and flux between the endoplasmic reticulum and the cytosol. J. Biol. Chem. 2022, 298, 102061. [Google Scholar] [CrossRef] [PubMed]
- Paiva, E.A.S. Are calcium oxalate crystals a dynamic calcium store in plants? New Phytol. 2009, 223, 1707–1711. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, S.V.; McConnell, D.B.; Gower, L.B.; Kane, M.E.; Lucansky, T. Periplasmic cuticular calcium oxalate crystal deposition in Dracaena sanderiana. New Phytol. 2001, 149, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Hudgins, J.W.; Krekling, T.; Franceschi, V.R. Distribution of calcium oxalate crystals in the secondary phloem of conifers: A constitutive defense mechanism? New Phytol. 2003, 159, 677–690. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Pandith, S.A.; Shah, M.A.; Reshi, Z.A. Calcium Oxalate Crystals, the Plant ‘Gemstones’: Insights into Their Synthesis and Physiological Implications in Plants. Plant Cell Physiol. 2023, 64, 1124–1138. [Google Scholar] [CrossRef] [PubMed]
- Volk, G.M.; Goss, L.J.; Franceschi, V.R. Calcium channels are involved in calcium oxalate crystal formation in specialized cells of Pistia stratiotes L. Ann. Bot. 2004, 93, 741–753. [Google Scholar] [CrossRef]
- Nakata, P.A. Advances in our understanding of calcium oxalate crystal formation and function in plants. Plant Sci. 2003, 164, 901–909. [Google Scholar] [CrossRef]
- Nakata, P.A. Plant calcium oxalate crystal formation, function, and its impact on human health. Front. Biol. 2012, 7, 254–266. [Google Scholar] [CrossRef]
- Schneider, A. The probable function of calcium oxalate crystals in plants. Bot. Gaz. 1901, 32, 142–144. [Google Scholar] [CrossRef]
- Storey, R.; Treeby, M.T. Nutrient uptake into navel oranges during fruit development. J. Hort. Sci. Biotechnol. 2002, 77, 91–99. [Google Scholar] [CrossRef]
- Treeby, M.T.; Storey, R. Calcium-spray treatments for ameliorating albedo breakdown in navel oranges. Aust. J. Exp. Agric. 2002, 42, 495–502. [Google Scholar] [CrossRef]
- Quiñones, A.; Martínez-Alcántara, B.; Primo-Millo, E.; Legaz, F. Fertigation: Concept and application in citrus. In Advances in Citrus Nutrition; Springer: Dordrecht, The Netherlands, 2012; pp. 281–301. [Google Scholar] [CrossRef]
- Zekri, M.; Obreza, T.A. Calcium (Ca) and Sulfur (S) for Citrus Trees; The Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida: Gainesville, FL, USA, 2013. [Google Scholar]
- Juan, L.I.; Jiezhong, C.H.E.N. Citrus fruit-cracking: Causes and occurrence. Hortic. Plant J. 2017, 3, 255–260. [Google Scholar] [CrossRef]
- Pham, T.T.M.; Singh, Z.; Behboudian, M.H. Different surfactants improve calcium uptake into leaf and fruit of ‘Washington navel’ sweet orange and reduce albedo breakdown. J. Plant Nutr. 2012, 35, 889–904. [Google Scholar] [CrossRef]
- Meena, M.K.; Jain, M.C.; Singh, J.; Sharma, M.; Shing, B.; Maurya, I.B. Effect of pre-harvest spray of calcium nitrate, boric acid and zinc sulphate on yield and quality of Nagpur mandarin (Citrus reticulata Blanco). Int. J. Hortic. Sci. 2016, 22, 23–28. [Google Scholar] [CrossRef]
- Wiggenhauser, M.; Moore, R.E.; Wang, P.; Bienert, G.P.; Laursen, K.H.; Blotevogel, S. Stable isotope fractionation of metals and metalloids in plants: A review. Front. Plant Sci. 2022, 13, 840941. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.R.; Fernández, C.; Legaz, F.; Quiñones, A. Production of 15N-Labelled liquid organic fertilisers based on manure and crop residue for use in fertigation studies. PLoS ONE 2016, 11, e0150851. [Google Scholar] [CrossRef]
- Martínez-Alcántara, B.; Martínez-Cuenca, M.R.; Bermejo, A.; Legaz, F.; Quinones, A. Liquid organic fertilizers for sustainable agriculture: Nutrient uptake of organic versus mineral fertilizers in citrus trees. PLoS ONE 2016, 11, e0161619. [Google Scholar] [CrossRef]
- Craswell, E.T.; Chalk, P.M.; Kaudal, B.B. Role of 15N in tracing biologically driven nitrogen dynamics in soils amended with biochar: A review. Soil Biol. Biochem. 2021, 162, 108416. [Google Scholar] [CrossRef]
- Bonomelli, C.; Fernández, V.; Martiz, J.; Videla, X.; Arias, M.I.; Rojas-Silva, X.; Nario, A. Absorption and distribution of root, fruit, and foliar-applied 45Ca in ‘Clemenules’ mandarin trees. J. Sci. Food Agric. 2020, 100, 4643–4650. [Google Scholar] [CrossRef] [PubMed]
- Bonomelli, C.; Fernández, V.; Capurro, F.; Palma, C.; Videla, X.; Rojas-Silva, X.; Nario, A.; Mártiz, J. Absorption and Distribution of Calcium (45Ca) Applied to the Surface of Orange (Citrus sinensis) Fruits at Different Developmental Stages. Agronomy 2022, 12, 150. [Google Scholar] [CrossRef]
- MAPA. Métodos Oficiales de Análisis de Suelos y Aguas para el Riego. In Plantas, Productos Orgánicos Fertilizantes, Suelos, Aguas, Productos Fitosanitarios, Fertilizantes Inorgánicos; Ministerio de Agricultura, Pesca y Alimentación: Madrid, Spain, 1994; Volume 3, p. 662. [Google Scholar]
- Isaac, R.A.; Johnson, W.C., Jr. Elemental determination by inductively coupled plasma atomic emission spectrometry. In Handbook of Reference Methods for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 165–170. [Google Scholar]
- Campbell, C.R.; Plank, C.O. Preparation of plant tissue for laboratory analysis. In Handbook of Reference Method for Plant Analysis; Kalra, Y.P., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 37–49. [Google Scholar]
- Ohta, Y.; Yamamoto, K.; Deguchi, M. Chemical fractionation of calcium in the fresh leaf blade and influences of deficiency or over supply of calcium and age of leaf on the content of each calcium fraction. J. Sci. Soil Manure 1970, 41, 19–26. [Google Scholar]
- Minamide, T.; Goto, M.; Iwata, T. Forms of calcium compounds and their changes after harvest in fruits and vegetables. J. Jpn. Soc. Hort. Sci. 1986, 54, 507–513. [Google Scholar] [CrossRef]
- Stürup, S.; Bendahl, L.; Gammelgaard, B. Optimisation of dynamic reaction cell (DRC)-ICP-MS for the determination of 42Ca/43Ca and 44Ca/43Ca isotope ratios in human urine. J. Anal. At. Spectrom. 2006, 21, 297–304. [Google Scholar] [CrossRef]
- Mattos, D., Jr.; Quaggio, J.A.; Cantarella, H.; Alva, A.K. Nutrient content of biomass components of Hamlin sweet orange trees. Sci. Agric. 2003, 60, 155–160. [Google Scholar] [CrossRef]
- Hepler, P.K. Calcium: A central regulator of plant growth and development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Cao, X.; Chen, C.; Zhang, D.; Shu, B.; Xiao, J.; Xia, R. Influence of nutrient deficiency on root architecture and root hair morphology of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under sand culture. Sci. Hortic. 2013, 162, 100–105. [Google Scholar] [CrossRef]
- Eticha, D.; Kwast, A.; De Souza, C.T.R.; Horowitz, N.; Stützel, H. Calcium nutrition of orange and its impact on growth, nutrient uptake and leaf cell wall. Citrus Res. Technol. 2017, 38, 62–70. [Google Scholar] [CrossRef]
- Tadayon, M.S. The role of nutritional management in improving the symptoms of citrus decline. J. Plant Nutr. 2020, 43, 1555–1570. [Google Scholar] [CrossRef]
- Fan, Z.; Xiong, H.; Luo, Y.; Wang, Y.; Zhao, H.; Li, W.; He, X.; Wang, J.; Shi, X.; Zhang, Y. Fruit yields depend on biomass and nutrient accumulations in new shoots of citrus trees. Agronomy 2020, 10, 1988. [Google Scholar] [CrossRef]
- Storey, R.; Leigh, R.A. Processes modulating calcium distribution in citrus leaves. An investigation using X-ray microanalysis with strontium as a tracer. Plant Physiol. 2004, 136, 3838–3848. [Google Scholar] [CrossRef] [PubMed]
- Bonomelli, C.; Arias, M.I.; Villalobos, L. Adaptation and validation of a methodology for the measurement of calcium fractions in fruits. Commun. Soil Sci. Plant Anal. 2018, 49, 735–744. [Google Scholar] [CrossRef]
- Hirschi, K.D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 2004, 136, 2438–2442. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Xia, R.; Xiao, Z.; Wang, P.; Song, W. Effect of pre-harvest application of calcium and boron on dietary fibre, hydrolases, and ultrastructure in ‘Cara Cara’ navel orange (Citrus sinensis L. Osbeck) fruit. Sci. Hort. 2009, 121, 272–277. [Google Scholar] [CrossRef]
- Wilkinson, S.; Clephan, A.L.; Davies, W.J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 2001, 126, 1566–1578. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, X.Y.; Tang, Q.L.; Wang, G.X. Extracellular calcium is involved in stomatal movement through the regulation of water channels in broad bean. J. Plant Growth Regul. 2006, 50, 79–83. [Google Scholar] [CrossRef]
- Vilhena, N.Q.; Quinones, A.; Rodríguez, I.; Gil, R.; Fernández-Serrano, P.; Salvador, A. Leaf and fruit nutrient concentration in Rojo Brillante persimmon grown under conventional and organic management, and its correlation with fruit quality parameters. Agronomy 2022, 12, 237. [Google Scholar] [CrossRef]
- Krebs, J.; Agellon, L.B.; Michalak, M. Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochem. Biophys. Res. Commun. 2015, 460, 114–121. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, X.Y.; Wang, G.X. Cytosolic calcium oscillation signalling in guard cell. Plant Sci. 2004, 166, 549–556. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Horner, H.T. Calcium oxalate crystals in plants. Bot. Rev. 1980, 46, 361–427. [Google Scholar] [CrossRef]
- Schadel, W.E.; Walter, W.M., Jr. Calcium oxalate crystals in the roots of sweet potato. J. Am. Soc. Hortic. Sci. 1980, 105, 851–854. [Google Scholar] [CrossRef]
- Gouveia, C.S.; Ganança, J.F.; Lebot, V.; Pinheiro de Carvalho, M.A. Changes in oxalate composition and other nutritive traits in root tubers and shoots of sweet potato (Ipomoea batatas L. [Lam.]) under water stress. J. Sci. Food Agric. 2020, 100, 1702–1710. [Google Scholar] [CrossRef] [PubMed]
- Hepler, P.K.; Winship, L.J. Calcium at the cell wall-cytoplast interface. J. Integr. Plant Biol. 2010, 52, 147–160. [Google Scholar] [CrossRef]
- Jarvis, M.C.; Briggs, S.P.H.; Knox, J.P. Intercellular adhesion and cell separation in plants. Plant Cell Environ. 2003, 26, 977–989. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Hassanpouraghdam, M.B.; Paliyath, G.; Farmani, B. The language of calcium in postharvest life of fruits, vegetables and flowers. Sci. Hortic. 2012, 144, 102–115. [Google Scholar] [CrossRef]
- Schmitt, A.D.; Borrelli, N.; Ertlen, D.; Gangloff, S.; Chabaux, F.; Osterrieth, M. Stable calcium isotope speciation and calcium oxalate production within beech tree (Fagus sylvatica L.) organs. Biogeochemistry 2018, 137, 197–217. [Google Scholar] [CrossRef]
- Giannopoulos, A.; Bresta, P.; Nikolopoulos, D.; Liakopoulos, G.; Fasseas, C.; Karabourniotis, G. Changes in the properties of calcium-carbon inclusions during leaf development and their possible relationship with leaf functional maturation in three inclusion-bearing species. Protoplasma 2019, 256, 349–358. [Google Scholar] [CrossRef]
- Kalve, S.; De Vos, D.; Beemster, G.T. Leaf development: A cellular perspective. Front. Plant Sci. 2014, 5, 362. [Google Scholar] [CrossRef]
- Boudsocq, M.; Lauriere, C. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol. 2005, 138, 1185–1194. [Google Scholar] [CrossRef]
- Costa, A.; Resentini, F.; Buratti, S.; Bonza, M.C. Plant Ca2+-ATPases: From biochemistry to signalling. Biochim. Biophys. Acta (BBA)-Mol. Cell Res. 2023, 1870, 119508. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zeng, H.; Xu, F.; Yan, F.; Xu, W. H+-ATPases in plant growth and stress responses. Ann. Rev. Plant Biol. 2022, 73, 495–521. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Liu, C.; Luo, Y.; Shi, H.; Li, Q.; PinChu, C.; Li, X.; Jang, J.; Fan, W. Oxalate in Plants: Metabolism, Function, Regulation, and Application. J. Agric. Food Chem. 2022, 70, 16037–16049. [Google Scholar] [CrossRef] [PubMed]
Tree Dose | March | April | May | June | July | August | September | October | Total |
---|---|---|---|---|---|---|---|---|---|
% monthly dose distribution | 5 | 10 | 15 | 20 | 20 | 15 | 10 | 5 | 100 |
mg N | 100 | 200 | 300 | 400 | 400 | 300 | 200 | 100 | 2000 |
mg 15N Z | 11.6 | 23.2 | 34.8 | 46.4 | 46.4 | 34.8 | 23.2 | 11.6 | 231.4 |
mg P2O5 | 35 | 70 | 105 | 140 | 140 | 105 | 70 | 35 | 700 |
mL Phosphoric acid Y | 0.03 | 0.06 | 0.09 | 0.13 | 0.13 | 0.09 | 0.06 | 0.03 | 0.64 |
mg K2O | 50 | 100 | 150 | 200 | 200 | 150 | 100 | 50 | 1000 |
g Potassium nitrate X | 108.7 | 217.4 | 361.1 | 434.8 | 434.8 | 361.1 | 217.4 | 108.7 | 2173.9 |
mg CaO | 105.5 | 211.0 | 316.5 | 422.0 | 422.0 | 316.5 | 211.0 | 105.5 | 2110.0 |
mg 44Ca W | 7.8 | 15.6 | 23.4 | 31.2 | 31.2 | 23.4 | 15.6 | 7.8 | 156.0 |
mg MgO | 75 | 150 | 225 | 300 | 300 | 225 | 150 | 75 | 1500 |
mg Magnesium sulphate V | 470 | 940 | 1410 | 1880 | 1880 | 1410 | 940 | 470 | 9400 |
mg Fe | 1.5 | 3.0 | 4.5 | 6.0 | 6.0 | 4.5 | 3.0 | 1.5 | 30.0 |
mg chelate U | 33 | 66 | 99 | 132 | 132 | 99 | 66 | 33 | 660 |
Tree Compartment | Biomass (g DW) | Ca (% DW) | Ca Content (mg) |
---|---|---|---|
Old leaves | 9.54 | 2.44 | 239.68 |
Old branches | 6.84 | 1.27 | 86.86 |
Trunk | 14.71 | 1.26 | 180.89 |
Coarse roots | 10.56 | 0.82 | 86.59 |
Fibrous roots | 4.07 | 1.06 | 43.27 |
TOTAL PLANT | 45.71 | 1.39 | 637.29 |
Tree Compartment | Dry Biomass (g DW) | Ca Concentration (% DW) | Ca Content (mg) | ||||||
---|---|---|---|---|---|---|---|---|---|
T1-Ca | T2 | SD Y | T1-Ca | T2 | SD | T1-Ca | T2 | SD | |
Mature fruit | 9.02 | 7.91 | NS | 0.54 | 0.27 | NS | 48.5 | 21.0 | NS |
Young leaves | 31.63 | 29.49 | NS | 2.25 | 2.57 | NS | 712.8 | 757.0 | NS |
Twigs | 10.09 | 9.54 | NS | 1.25 | 1.42 | NS | 125.9 | 135.2 | NS |
Above-ground young tissues X | 50.75 | 46.93 | * | 1.75 | 1.94 | NS | 887.2 | 913.2 | NS |
Abscised organs | 5.37 | 4.41 | NS | 4.15 | 2.20 | * | 222.8 | 96.9 | * |
Old leaves | 4.50 | 6.46 | NS | 4.26 | 3.97 | NS | 191.5 | 256.6 | NS |
Branches + Trunk | 29.38 | 25.65 | NS | 1.24 | 1.26 | NS | 363.0 | 322.3 | NS |
Above-ground old tissues W | 39.25 | 36.51 | NS | 1.98 | 1.85 | NS | 777.2 | 675.8 | NS |
Coarse roots | 25.30 | 23.29 | * | 1.19 | 1.00 | NS | 301.3 | 234.1 | * |
Fibrous roots | 12.88 | 11.09 | * | 3.26 | 3.03 | NS | 420.3 | 336.2 | * |
TOTAL PLANT | 128.18 | 117.83 | * | 1.86 | 1.83 | NS | 2386.0 | 2159.3 | * |
Tree Compartment | Biomass (DW) | Ca (% DW) | 44Ca (% in Excess) Y | 44Ca (mg) | CaUE (%) X |
---|---|---|---|---|---|
Mature fruit | 9.02 | 0.54 | 0.245 | 0.12 | 0.08 |
Autumn flush leaves | 10.08 a U | 1.38 a | 1.013 b | 1.41 b | 0.90 b |
Summer flush leaves | 14.58 b | 2.44 ab | 0.551 a | 1.96 c | 1.26 c |
Spring flush leaves | 6.98 a | 3.13 b | 0.342 a | 0.75 a | 0.48 a |
Young leaves | 31.64 | 2.25 | 0.577 | 4.11 | 2.70 |
Autumn flush twigs | 2.87 a | 0.82 a | 1.253 b | 0.30 a | 0.19 a |
Summer flush twigs | 3.72 a | 1.36 a | 0.886 ab | 0.45 a | 0.29 a |
Spring flush twigs | 3.51 a | 1.48 a | 0.643 a | 0.33 a | 0.21 a |
Twigs | 10.10 | 1.25 | 0.855 | 1.08 | 0.69 |
Above-ground young organs W | 50.76 B | 1.75 A | 0.598 B | 5.42 B | 3.47 B |
Abscised organs | 5.37 | 4.15 | 0.094 | 0.21 | 0.13 |
Old leaves | 4.50 | 4.26 | 0.247 | 0.47 | 0.30 |
Branches | 5.57 | 1.37 | 0.653 | 0.50 | 0.32 |
Trunk | 23.81 | 1.20 | 0.489 | 1.40 | 0.90 |
Above-ground old organs V | 39.25 A | 1.98 A | 0.332 A | 2.58 A | 1.66 A |
Coarse roots | 25.30 B | 1.19 A | 0.383 A | 1.15 A | 0.74 A |
Fibrous roots | 12.88 A | 3.26 B | 0.494 A | 2.07 B | 1.33 B |
TOTAL PLANT | 128.19 | 1.86 | 0.466 | 11.22 | 7.13 |
Tree Compartment | Fraction I NO3/Cl | Fraction II Pectate | Fraction III PO4/CO3 | Fraction IV Oxalate |
---|---|---|---|---|
Old leaves | 0.29 | 66.36 | 15.61 | 13.94 |
Old branches | 0.34 | 42.07 | 14.17 | 35.05 |
Trunk | 0.69 | 41.94 | 14.45 | 40.04 |
Coarse roots | 0.58 | 40.07 | 19.28 | 35.17 |
Fibrous roots | 0.38 | 32.94 | 34.72 | 20.58 |
Calcium Form Tree Compartment | Fraction I NO3/Cl | Fraction II Pectate | Fraction III PO4/CO3 | Fraction IV Oxalate | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
T1-Ca | T2 | SD | T1-Ca | T2 | SD | T1-Ca | T2 | SD | T1-Ca | T2 | SD | |
Mature fruit | 4.20 | 2.23 | NS Y | 41.95 | 56.05 | * | 18.38 | 21.3 | NS | 27.55 | 14.75 | * |
Autumn flush leaves | 2.72 | 0.57 | NS | 48.51 | 54.30 | * | 20.01 | 15.51 | NS | 21.55 | 23.96 | NS |
Summer flush leaves | 2.92 | 0.28 | * | 52.19 | 63.40 | * | 19.75 | 13.02 | * | 16.95 | 17.63 | NS |
Spring flush leaves | 1.24 | 0.34 | NS | 55.53 | 63.47 | * | 18.22 | 13.69 | * | 16.76 | 16.83 | NS |
Autumn flush twigs | 2.05 | 0.57 | * | 50.78 | 53.28 | NS | 18.67 | 13.12 | NS | 21.47 | 27.36 | NS |
Summer flush twigs | 2.39 | 0.73 | * | 52.67 | 49.22 | NS | 17.79 | 16.55 | NS | 19.25 | 27.85 | NS |
Spring flush twigs | 1.55 | 0.39 | NS | 53.54 | 48.27 | NS | 16.36 | 15.01 | NS | 22.20 | 30.67 | * |
Abscised organs | 1.46 | 0.31 | NS | 39.47 | 54.99 | * | 28.60 | 23.32 | NS | 23.10 | 15.72 | NS |
Old leaves | 0.99 | 0.49 | NS | 59.29 | 62.71 | NS | 16.63 | 17.64 | NS | 14.99 | 13.50 | NS |
Old branches | 2.48 | 0.59 | NS | 50.36 | 46.91 | NS | 17.84 | 14.30 | NS | 22.35 | 32.53 | * |
Trunk | 2.66 | 0.42 | * | 45.58 | 39.21 | NS | 18.34 | 15.83 | NS | 25.45 | 38.88 | * |
Coarse roots | 2.07 | 0.47 | NS | 42.28 | 41.79 | NS | 20.90 | 20.77 | NS | 28.04 | 31.32 | NS |
Fibrous roots | 0.63 | 0.61 | NS | 29.87 | 36.88 | * | 40.38 | 41.30 | NS | 22.36 | 15.37 | NS |
Calcium Form Tree Compartment | Fraction I NO3/Cl | Fraction II Pectate | Fraction III PO4/CO3 | Fraction IV Oxalate | B: Fractions X | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mature fruits | 1.99 | A | A Y | 48.63 | C | ab | 20.37 | B | a | 25.73 | B | c | 0.0000 | * |
Autumn flush leaves | 1.05 | A | a | 55.89 | C | cd | 21.41 | B | ab | 18.27 | B | bc | 0.0000 | * |
Summer flush leaves | 1.88 | A | a | 55.78 | C | cd | 23.80 | B | ab | 14.94 | B | ab | 0.0000 | * |
Spring flush leaves | 0.90 | A | a | 58.24 | C | cd | 19.54 | B | a | 18.01 | B | bc | 0.0000 | * |
Autumn flush twigs | 0.74 | A | a | 59.94 | D | cd | 22.27 | C | ab | 13.53 | B | ab | 0.0000 | * |
Summer flush twigs | 1.56 | A | a | 62.04 | D | d | 21.18 | C | a | 11.84 | B | ab | 0.0000 | * |
Spring flush twigs | 1.55 | A | a | 62.61 | D | d | 19.42 | C | a | 13.93 | B | ab | 0.0000 | * |
Abscised organs | 1.03Y | A | a | 43.81 | C | a | 28.15 | B | cd | 23.97 | B | c | 0.0000 | * |
Old leaves | 0.81 | A | a | 58.69 | C | cd | 18.76 | B | a | 18.55 | B | abc | 0.0000 | * |
Old branches | 1.95 | A | a | 62.79 | D | d | 22.30 | C | ab | 9.71 | B | a | 0.0000 | * |
Trunk | 1.48 | A | a | 61.97 | D | d | 22.21 | C | ab | 11.25 | B | ab | 0.0000 | * |
Coarse roots | 0.88 | A | a | 57.46 | C | cd | 25.80 | B | bc | 13.16 | A | ab | 0.0000 | * |
Fibrous roots | 0.50 | A | a | 40.53 | D | a | 32.40 | C | d | 23.28 | B | c | 0.0000 | * |
A: organs X | 0.6438 | NS | 0.0001 | * | 0.0001 | * | 0.0082 | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, J.; Martínez-Alcántara, B.; Bermejo, A.; Millos, J.; Legaz, F.; Quiñones, A. Effect of Calcium Fertilization on Calcium Uptake and Its Partitioning in Citrus Trees. Agronomy 2023, 13, 2971. https://doi.org/10.3390/agronomy13122971
Morales J, Martínez-Alcántara B, Bermejo A, Millos J, Legaz F, Quiñones A. Effect of Calcium Fertilization on Calcium Uptake and Its Partitioning in Citrus Trees. Agronomy. 2023; 13(12):2971. https://doi.org/10.3390/agronomy13122971
Chicago/Turabian StyleMorales, Julia, Belén Martínez-Alcántara, Almudena Bermejo, Jorge Millos, Francisco Legaz, and Ana Quiñones. 2023. "Effect of Calcium Fertilization on Calcium Uptake and Its Partitioning in Citrus Trees" Agronomy 13, no. 12: 2971. https://doi.org/10.3390/agronomy13122971
APA StyleMorales, J., Martínez-Alcántara, B., Bermejo, A., Millos, J., Legaz, F., & Quiñones, A. (2023). Effect of Calcium Fertilization on Calcium Uptake and Its Partitioning in Citrus Trees. Agronomy, 13(12), 2971. https://doi.org/10.3390/agronomy13122971