Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch
Abstract
:1. Introduction
2. Materials and Methods
2.1. Information on Experimental Design, Soil, and Weather
2.2. Sampling and Measurements
2.3. Data Analysis
3. Results
3.1. Soil Water Content under DI
3.2. Root Growth
3.2.1. Shoot, Root Biomass, and Root-to-Shoot Ratio
3.2.2. Root Distribution Pattern
3.2.3. Root Bleeding Rate
3.3. Photosynthesis-Associated Parameters
3.4. Yield, Yield Component, Harvest Index, and Water Productivity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belder, P. Water Saving in Lowland Rice Production: An Experimental and Modelling Study. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 15 June 2005. Available online: https://edepot.wur.nl/121681 (accessed on 23 August 2023).
- Bouman, B.A.M. A Conceptual Framework for the Improvement of Crop Water Productivity at Different Spatial Scales. Agric. Syst. 2007, 93, 43–60. [Google Scholar] [CrossRef]
- Asian Development Bank. Asian Water Development Outlook 2020: Advancing Water Security across Asia and the Pacific; Asian Development Bank: Manila, Philippines, 2020. [Google Scholar] [CrossRef]
- He, H.; Ma, F.; Yang, R.; Chen, L.; Jia, B.; Cui, J.; Fan, H.; Wang, X.; Li, L. Rice Performance and Water Use Efficiency under Plastic Mulching with Drip Irrigation. PLoS ONE 2013, 8, e83103. [Google Scholar] [CrossRef]
- Fawibe, O.O.; Honda, K.; Taguchi, Y.; Park, S.; Isoda, A. Greenhouse Gas Emissions from Rice Field Cultivation with Drip Irrigation and Plastic Film Mulch. Nutr. Cycl. Agroecosystems 2019, 113, 51–62. [Google Scholar] [CrossRef]
- Ortíz-Castro, R.; Contreras-Cornejo, H.A.; Macías-Rodríguez, L.; López-Bucio, J. The Role of Microbial Signals in Plant Growth and Development. Plant Signal. Behav. 2009, 4, 701–712. [Google Scholar] [CrossRef]
- Jung, J.K.H.; McCouch, S. Getting to the Roots of It: Genetic and Hormonal Control of Root Architecture. Front. Plant Sci. 2013, 4, 186. [Google Scholar] [CrossRef]
- Islam, M.D.D.; Price, A.H.; Hallett, P.D. Contrasting Ability of Deep and Shallow Rooting Rice Genotypes to Grow through Plough Pans Containing Simulated Biopores and Cracks. Plant Soil. 2021, 467, 515–530. [Google Scholar] [CrossRef]
- Kassam, A.; Stoop, W.; Uphoff, N. Review of SRI Modifications in Rice Crop and Water Management and Research Issues for Making Further Improvements in Agricultural and Water Productivity. Paddy Water Environ. 2011, 9, 163–180. [Google Scholar] [CrossRef]
- Chu, G.; Chen, T.; Wang, Z.; Yang, J.; Zhang, J. Morphological and Physiological Traits of Roots and Their Relationships with Water Productivity in Water-Saving and Drought-Resistant Rice. Field Crop. Res. 2014, 162, 108–119. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Y.; Liang, B.; Chen, G.; Feng, L.; Pu, T.; Sun, X.; Yong, T.; Liu, W.; Liu, J.; et al. Coordination of Density and Nitrogen Fertilization Improves Stalk Lodging Resistance of Strip-Intercropped Maize with Soybeans by Affecting Stalk Quality Traits. Agriculture 2023, 13, 1009. [Google Scholar] [CrossRef]
- Zhan, A.; Lynch, J.P. Reduced Frequency of Lateral Root Branching Improves N Capture from Low-N Soils in Maize. J. Exp. Bot. 2015, 66, 2055–2065. [Google Scholar] [CrossRef]
- Kou, X.; Han, W.; Kang, J. Responses of Root System Architecture to Water Stress at Multiple Levels: A Meta-Analysis of Trials under Controlled Conditions. Front. Plant Sci. 2022, 13, 1085409. [Google Scholar] [CrossRef]
- Miyazaki, A.; Arita, N. Deep Rooting Development and Growth in Upland Rice NERICA Induced by Subsurface Irrigation. Plant Prod. Sci. 2020, 23, 211–219. [Google Scholar] [CrossRef]
- Feddes, R.A.; Raats, P.A.C. Parameterizing the Soil—Water—Plant Root System. In Unsaturated-Zone Modeling, Progress, Challenges and Applications; Wageningen UR Frontis Series; Kluwer: Dordrecht, The Netherlands, 2004; Volume 6, pp. 95–141. Available online: https://edepot.wur.nl/35358 (accessed on 23 August 2023).
- Tatsumi, Y.; Murakami, S.; Ishibashi, Y.; Iwaya-Inoue, M. Characteristics for Deep Root System of a Drought Tolerant Cowpea Cultivar. Cryobiology and Cryotechnology, Japan, 1 September 2009. Available online: https://www.jstage.jst.go.jp/article/cryobolcryotechnol/65/1/65_31/_pdf (accessed on 1 September 2023).
- Wu, X.H.; Wang, W.; Yin, C.M.; Hou, H.J.; Xie, K.J.; Xie, X.L. Water Consumption, Grain Yield, and Water Productivity in Response to Field Water Management in Double Rice Systems in China. PLoS ONE 2017, 12, e0189280. [Google Scholar] [CrossRef]
- Fawibe, O.O.; Hiramatsu, M.; Taguchi, Y.; Wang, J.; Isoda, A. Grain Yield, Water-Use Efficiency, and Physiological Characteristics of Rice Cultivars under Drip Irrigation with Plastic-Film-Mulch. J. Crop. Improv. 2020, 34, 414–436. [Google Scholar] [CrossRef]
- Wang, J.; Fawibe, O.O.; Fawibe, K.O.; Isoda, A. Water Productivity, Sink Production and Varietal Differences in Panicle Structure of Rice (Oryza sativa L.) under Drip Irrigation with Plastic-Film Mulch. Field Crop. Res. 2023, 291, 108790. [Google Scholar] [CrossRef]
- Tajima, R.; Kato, Y. [Short Report] A Quick Method to Estimate Root Length in Each Diameter Class Using Freeware ImageJ. Plant Prod. Sci. 2013, 16, 9–11. [Google Scholar] [CrossRef]
- Araki, R.; Yamanaka, M.D.; Murata, F.; Hashiguchi, H.; Oku, Y.; Sribimawati, T.; Kudsy, M.; Renggono, F. Seasonal and Interannual Variations of Diurnal Cycles of Wind and Cloud Activity Observed at Serpong, West Jawa, Indonesia. J. Meteorol. Soc. Jpn. Ser II 2006, 84A, 171–194. [Google Scholar] [CrossRef]
- Luo, Z.; Fan, J.; Shao, M.; Hu, W.; Yang, Q.; Zhang, S. Soil Water Dynamics and Groundwater Evolutions of Check Dams under Natural Rainfall Reduction in Semi-Arid Areas. J. Hydrol. 2023, 617, 129099. [Google Scholar] [CrossRef]
- Gabriel, C.E.; Kellman, L. Examining moisture and temperature sensitivity of soil organic matter decomposition in a temperate coniferous forest soil. Biogeosciences Discuss. 2011, 8, 1369–1409. [Google Scholar] [CrossRef]
- Wu, Y.; Du, T.; Li, F.; Li, S.; Ding, R.; Tong, L. Quantification of Maize Water Uptake from Different Layers and Root Zones under Alternate Furrow Irrigation Using Stable Oxygen Isotope. Agric. Water Manag. 2016, 168, 35–44. [Google Scholar] [CrossRef]
- Alam, M.K.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) Establishment Techniques and Their Implications for Soil Properties, Global Warming Potential Mitigation and Crop Yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Bouman, B.A.M.; Yang, X.; Wang, H.; Wang, Z.; Zhao, J.; Chen, B. Performance of Aerobic Rice Varieties under Irrigated Conditions in North China. Field Crop. Res. 2006, 97, 53–65. [Google Scholar] [CrossRef]
- Kato, Y.; Okami, M. Root Growth Dynamics and Stomatal Behaviour of Rice (Oryza sativa L.) Grown under Aerobic and Flooded Conditions. Field Crop. Res. 2010, 117, 9–17. [Google Scholar] [CrossRef]
- Price, A.H.; Steele, K.A.; Gorham, J.; Bridges, J.M.; Moore, B.J.; Evans, J.L.; Richardson, P.; Jones, R.G.W. Upland Rice Grown in Soil-Filled Chambers and Exposed to Contrasting Water-Deficit Regimes I. Root Distribution, Water Use and Plant Water Status. Field Crop. Res. 2002, 76, 11–24. [Google Scholar] [CrossRef]
- Kato, Y.; Katsura, K. Rice Adaptation to Aerobic Soils: Physiological Considerations and Implications for Agronomy. Plant Prod. Sci. 2014, 17, 1–12. [Google Scholar] [CrossRef]
- Uga, Y.; Kitomi, Y.; Ishikawa, S.; Yano, M. Genetic Improvement for Root Growth Angle to Enhance Crop Production. Breed. Sci. 2015, 65, 111–119. [Google Scholar] [CrossRef]
- Kim, Y.; Chung, Y.S.; Lee, E.; Tripathi, P.; Heo, S.; Kim, K.-H. Root Response to Drought Stress in Rice (Oryza sativa L.). Int. J. Mol. Sci. 2020, 21, 1513. [Google Scholar] [CrossRef]
- Ajmera, I.; Henry, A.; Radanielson, A.M.; Klein, S.P.; Ianevski, A.; Bennett, M.J.; Band, L.R.; Lynch, J.P. Integrated Root Phenotypes for Improved Rice Performance under Low Nitrogen Availability. Plant Cell Environ. 2022, 45, 805–822. [Google Scholar] [CrossRef]
- Kato, Y.; Kamoshita, A.; Yamagishi, J.; Imoto, H.; Abe, J. Growth of Rice (Oryza sativa L.) Cultivars Under Upland Conditions with Different Levels of Water Supply3. Root System Development, Soil Moisture Changeand Plant Water Status. Plant Prod. Sci. 2007, 10, 3–13. [Google Scholar] [CrossRef]
- Matsuo, N.; Mochizuki, T. Growth and Yield of Six Rice Cultivars under Three Water-Saving Cultivations. Plant Prod. Sci. 2009, 12, 514–525. [Google Scholar] [CrossRef]
- Brodersen, C.R.; McElrone, A.J. Maintenance of Xylem Network Transport Capacity: A Review of Embolism Repair in Vascular Plants. Front. Plant Sci. 2013, 4, 108. [Google Scholar] [CrossRef] [PubMed]
- Lamarque, L.J.; Corso, D.; Torres-Ruiz, J.M.; Badel, E.; Brodribb, T.J.; Burlett, R.; Charrier, G.; Choat, B.; Cochard, H.; Gambetta, G.A.; et al. An Inconvenient Truth about Xylem Resistance to Embolism in the Model Species for Refilling Laurus Nobilis L. Ann. For. Sci. 2018, 75, 88. [Google Scholar] [CrossRef]
- Vilagrosa, A.; Chirino, E.; Peguero-Pina, J.J.; Barigah, T.S.; Cochard, H.; Gil-Pelegrín, E. Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems. In Plant Responses to Drought Stress; Aroca, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 63–109. [Google Scholar] [CrossRef]
- Kulkarni, M.; Soolanayakanahally, R.; Ogawa, S.; Uga, Y.; Selvaraj, M.G.; Kagale, S. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency. Front. Chem. 2017, 5, 106. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, X.; Lu, Y.; Ren, R.; Cui, B.; Si, B. Growing Deep Roots Has Opposing Impacts on the Transpiration of Apple Trees Planted in Subhumid Loess Region. Agric. Water Manag. 2021, 258, 107207. [Google Scholar] [CrossRef]
- Siopongco, J.D.; Yamauchi, A.; Salekdeh, H.; Bennett, J.; Wade, L.J. Growth and Water Use Response of Doubled-Haploid Rice Linesto Drought and Rewatering during the Vegetative Stage. Plant Prod. Sci. 2006, 9, 141–151. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Monti, A. Deep Root Growth, ABA Adjustments and Root Water Uptake Response to Soil Water Deficit in Giant Reed. Ann. Bot. 2019, 124, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Parkash, V.; Singh, S. A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops. Sustainability 2020, 12, 3945. [Google Scholar] [CrossRef]
- Shi, L.; Guo, M.; Ye, N.; Liu, Y.; Liu, R.; Xia, Y.; Cui, S.; Zhang, J. Reduced ABA Accumulation in the Root System Is Caused by ABA Exudation in Upland Rice (Oryza sativa L. Var. Gaoshan1) and This Enhanced Drought Adaptation. Plant Cell Physiol. 2015, 56, 951–964. [Google Scholar] [CrossRef]
- Gowda, V.R.P.; Henry, A.; Yamauchi, A.; Shashidhar, H.E.; Serraj, R. Root Biology and Genetic Improvement for Drought Avoidance in Rice. Field Crop. Res. 2011, 122, 1–13. [Google Scholar] [CrossRef]
- Kato, Y.; Tajima, R.; Homma, K.; Toriumi, A.; Yamagishi, J.; Shiraiwa, T.; Mekwatanakarn, P.; Jongdee, B. Root Growth Response of Rainfed Lowland Rice to Aerobic Conditions in Northeastern Thailand. Plant Soil 2013, 368, 557–567. [Google Scholar] [CrossRef]
- Vadez, V.; Kholova, J.; Medina, S.; Kakkera, A.; Anderberg, H. Transpiration Efficiency: New Insights into an Old Story. J. Exp. Bot. 2014, 65, 6141–6153. [Google Scholar] [CrossRef]
- Aroca, R.; Porcel, R.; Ruiz-Lozano, J.M. Regulation of Root Water Uptake under Abiotic Stress Conditions. J. Exp. Bot. 2012, 63, 43–57. [Google Scholar] [CrossRef]
- Morita, S.; Okamoto, M.; Abe, J.; Yamagishi, J. Bleeding Rate of Field-Grown Maize with Reference to Root System Development. Jpn. J. Crop. Sci. 2000, 69, 80–85. [Google Scholar] [CrossRef]
- He, Z.; Xu, C.; Liu, B.; Yao, B.; Wang, H.; Chen, Z.Y.; Li, D.Y.; Bai, Z.Y.; Zhang, Z.A. Relationship between Photosynthesis, Bleeding-Sap Mass, and Bleeding Components in Maize Hybrids and Corresponding Parents in Northern China. Photosynthetica 2019, 57, 698–704. [Google Scholar] [CrossRef]
- Ansari, T.H.; Yamamoto, Y.; Yoshida, T.; Sakagami, K.; Miyazaki, A. Relation between Bleeding Rate during Panicle Formation Stage and Sink Size in Rice Plant. Soil Sci. Plant Nutr. 2004, 50, 57–66. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Tu, B.; Li, Y.; Chen, H.; Zhang, Q.; Liu, X. Root K Affinity Drivers and Photosynthetic Characteristics in Response to Low Potassium Stress in K High-Efficiency Vegetable Soybean. Front. Plant Sci. 2021, 12, 732164. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, L.; Liu, N.; Chen, S.; Shao, L.; Sekiya, N.; Zhang, X. Root Efficiency and Water Use Regulation Relating to Rooting Depth of Winter Wheat. Agric. Water Manag. 2022, 269, 107710. [Google Scholar] [CrossRef]
- Evans, R.G.; Sadler, E.J. Methods and Technologies to Improve Efficiency of Water Use: Increasing water use efficiencies. Water Resour. Res. 2008, 44. [Google Scholar] [CrossRef]
- Wang, S.; Li, L.; Zhou, D. Root Morphological Responses to Population Density Vary with Soil Conditions and Growth Stages: The Complexity of Density Effects. Ecol. Evol. 2021, 11, 10590–10599. [Google Scholar] [CrossRef]
- Foxx, A.J.; Fort, F. Root and Shoot Competition Lead to Contrasting Competitive Outcomes under Water Stress: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0220674. [Google Scholar] [CrossRef]
- Nadeem, M.; Wu, J.; Ghaffari, H.; Kedir, A.J.; Saleem, S.; Mollier, A.; Singh, J.; Cheema, M. Understanding the Adaptive Mechanisms of Plants to Enhance Phosphorus Use Efficiency on Podzolic Soils in Boreal Agroecosystems. Front. Plant Sci. 2022, 13, 804058. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Luu, M.T.; Minamikawa, K.; Yokoyama, S. Compatibility of Alternate Wetting and Drying Irrigation with Local Agriculture in An Giang Province, Mekong Delta, Vietnam. Trop. Agric. Develop. 2017, 61, 117–127. [Google Scholar] [CrossRef]
- Li, Y.; Niu, W.; Cao, X.; Wang, J.; Zhang, M.; Duan, X.; Zhang, Z. Effect of Soil Aeration on Root Morphology and Photosynthetic Characteristics of Potted Tomato Plants (Solanum lycopersicum) at Different NaCl Salinity Levels. BMC Plant Biol. 2019, 19, 331. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Lei, H.; Chen, J.; Xiao, Z.; Leghari, S.J.; Yuan, T.; Pan, H. Effect of Soil Aeration and Root Morphology on Yield under Aerated Irrigation. Agronomy 2023, 13, 369. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, A.; Liu, F.; Niu, W.; Siddique, K.H.M. Effect of Film Mulching on Crop Yield and Water Use Efficiency in Drip Irrigation Systems: A Meta-Analysis. Soil Tillage Res. 2022, 221, 105392. [Google Scholar] [CrossRef]
Cultivar | An (μmolm−2s−1) | gs (mmolm−2s−1) | E (mmolm−2s−1) | ||||||
---|---|---|---|---|---|---|---|---|---|
CF | DI | CF | DI | CF | DI | ||||
Norin | 16.4b | 20.0a | *a | 315ab | 328a | ns | 5.4ab | 6.0a | * |
Mitsu | 21.4a | 17.4b | * | 319a | 311b | ns | 5.8a | 5.3b | ns |
Hoku | 18.2b | 18.2b | ns | 301b | 307b | ns | 5.2b | 5.3b | ns |
Koshi | 16.7b | 15.1c | * | 268c | 255c | * | 4.5c | 3.8c | * |
Mean | 18.2 | 17.7 | 301 | 300 | 5.2 | 5.1 | |||
Cultivar (C) | *** | *** | *** | ||||||
Irrigation Regime (IR) | ns | ns | ns | ||||||
C × IR | *** | * | *** |
Cultivar | Panicle Number (m−2) | Spikelets (panicle−1) | Ripening Ratio (%) | 1000-Grain Weight (g) | Harvest Index (%) | Grain Yield (t ha−1) | Water Productivity (kg m−3) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CF | DI | CF | DI | CF | DI | CF | DI | CF | DI | CF | DI | CF | DI | ||||||||
2020 | |||||||||||||||||||||
Norin | 421.6 | 445.7ab | nsA | 67.5b | 115.6a | * | 84.0b | 76.9a | * | 20.1b | 18.7b | * | 0.34 | 0.35 | ns | 4.7b | 7.4a | * | 0.28 | 0.75a | * |
Mitsu | 342.1 | 373.6b | ns | 138.4a | 116.9a | ns | 88.6ab | 77.4a | * | 21.4a | 20.3a | * | 0.47 | 0.39 | ns | 9.4a | 6.9a | * | 0.50 | 0.57a | ns |
Hoku | 400.5 | 488.7a | * | 83.8ab | 129.4a | * | 91.2a | 59.4b | * | 20.5ab | 18.8b | * | 0.29 | 0.29 | ns | 6.4ab | 7.1a | ns | 0.34 | 0.59a | * |
Koshi | 366.0 | 405.1b | ns | 71.8b | 67.3b | ns | 85.0ab | 64.9ab | * | 20.1b | 19.4ab | ns | 0.35 | 0.35 | ns | 4.5b | 3.4b | * | 0.27 | 0.34b | * |
Mean | 382.6 | 428.3 | 90.4 | 107.3 | 87.2 | 69.7 | 20.5 | 19.3 | 0.36 | 0.35 | 6.3 | 6.2 | 0.35 | 0.56 | |||||||
2021 | |||||||||||||||||||||
Norin | 454.8a | 484.8ab | ns | 72.3c | 105.5a | * | 87.2b | 80.0a | * | 20.5b | 18.8bc | * | 0.38b | 0.40a | ns | 5.9c | 7.6a | * | 0.32c | 0.68a | * |
Mitsu | 350.2b | 392.2b | ns | 139.3a | 115.8a | * | 88.7b | 80.1a | * | 21.3a | 20.4a | * | 0.43a | 0.41a | * | 9.2a | 7.4a | * | 0.51a | 0.60b | * |
Hoku | 440.8a | 491.1a | * | 91.1b | 117.6a | * | 93.9a | 69.2b | * | 20.8ab | 18.2c | * | 0.33c | 0.34b | ns | 7.8b | 7.3a | ns | 0.39b | 0.59b | * |
Koshi | 378.3b | 414.3ab | * | 69.9c | 67.5b | ns | 85.7b | 74.9ab | * | 20.2b | 19.5b | * | 0.34c | 0.34b | ns | 4.6d | 4.1b | * | 0.28d | 0.36c | * |
Mean | 406.0 | 445.6 | 93.2 | 101.6 | 88.9 | 76.1 | 20.7 | 19.2 | 0.37 | 0.37 | 6.9 | 6.6 | 0.38 | 0.56 | |||||||
Year (Y) | ns | ns | ns | ns | ns | ns | ns | ||||||||||||||
Cultivar (C) | *** | *** | *** | *** | ** | *** | *** | ||||||||||||||
Irrigation Regime (IR) | ** | * | * | *** | ns | ns | *** | ||||||||||||||
Y × C | ns | ns | ns | ns | ns | ns | ns | ||||||||||||||
Y × IR | ns | ns | ns | ns | ns | ns | ns | ||||||||||||||
IR × C | ns | *** | *** | ** | ns | * | ns | ||||||||||||||
Y × IR × C | ns | ns | ns | ns | ns | ns | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Fawibe, O.O.; Isoda, A. Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch. Agronomy 2023, 13, 2872. https://doi.org/10.3390/agronomy13122872
Wang J, Fawibe OO, Isoda A. Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch. Agronomy. 2023; 13(12):2872. https://doi.org/10.3390/agronomy13122872
Chicago/Turabian StyleWang, Junfa, Oluwasegun Olamide Fawibe, and Akihiro Isoda. 2023. "Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch" Agronomy 13, no. 12: 2872. https://doi.org/10.3390/agronomy13122872
APA StyleWang, J., Fawibe, O. O., & Isoda, A. (2023). Varietal Differences in the Root Systems of Rice (Oryza sativa L.) under Drip Irrigation with Plastic Film Mulch. Agronomy, 13(12), 2872. https://doi.org/10.3390/agronomy13122872