Oat (Avena sativa L.) In Vitro Cultures: Prospects and Challenges for Breeding
Abstract
:1. Introduction
2. Callus Culture, Organogenesis, Somatic Embryogenesis, and Cell Suspension of Oat (Avena sativa L.)
2.1. Effect of Explant on Callus Production
2.2. Factors Affecting Organogenesis and Somatic Embryogenesis
2.3. Oat (Avena sativa L.) Cell Suspension Culture
3. Androgenesis of Oat (Avena sativa L.)
3.1. Effect of Panicle Pretreatment and Media Composition on ELS Formation
3.2. The Developmental Stage of Microspores Affects ELS Formation
3.3. Impact of Cu2+, Zn2+ or Ag+ Ions on ELS Formation
4. Wide Crossing of Oat (Avena sativa L.) with Chosen Species from Poaceae Family
4.1. Induction of Haploid Embryos
4.2. Embryo Rescue Technique
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Davies, P.A.; Sidhu, P.K. Oat doubled haploids following maize pollination. In Oats: Methods in Molecular Biology; Gasparis, S., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1536, pp. 23–30. [Google Scholar]
- Seguí-Simarro, J.M.; Jacquier, N.M.A.; Widiez, T. Overview of in vitro and in vivo doubled haploid technologies, In Doubled Haploid Technology, Vol. 1: General Topics, Alliaceae, Cereals, Methods in Molecular Biology; Segui-Simarro, J.M., Ed.; Humana Press: New York, NY, USA, 2021; Volume 2287, pp. 3–22. [Google Scholar]
- Morikawa, T. Protocol for Producing Synthetic Polyploid Oats. In Oat: Methods in Molecular Biology; Gasparis, S., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1536, pp. 43–52. [Google Scholar]
- Gasparis, S. Agrobacterium-Mediated Transformation of Leaf Base Segments. In Oat: Methods in Molecular Biology; Gasparis, S., Ed.; Humana Press: New York, NY, USA, 2017; Volume 1536, pp. 95–111. [Google Scholar]
- Kasha, K.J.; Kao, K.N. High frequency haploid production in barley (Hordeum vulgare L.). Nature 1970, 225, 874–876. [Google Scholar] [CrossRef]
- Ishii, T.; Tanaka, H.; Eltayeb, A.E.; Tsujimoto, H. Wide hybridization between oat and pearl millet belonging to different subfamilies of Poaceae. Plant Reprod. 2013, 26, 25–32. [Google Scholar] [CrossRef]
- Laurie, D.A.; Bennett, M.D. Cytological evidence for fertilization in hexaploid wheat × sorghum crosses. Plant Breed. 1988, 100, 73–82. [Google Scholar] [CrossRef]
- Laurie, D.A.; Bennett, M.D. The timing of chromosome elimination in hexaploid wheat × maize crosses. Genome 1989, 32, 953–961. [Google Scholar] [CrossRef]
- Riera-Lizarazu, O.; Rines, H.W.; Phillips, R.L. Cytological and molecular characterization of oat x maize partial hybrids. Theor. Appl. Genet. 1996, 93, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Mochida, K.; Tsujimoto, H.; Sasakuma, T. Confocal analysis of chromosome behavior in wheat × maize zygotes. Genome 2004, 47, 199–205. [Google Scholar] [CrossRef]
- Ishii, T.; Ueda, T.; Tanaka, H.; Tsujimoto, H. Chromosome elimination by wide hybridization between Triticeae or oat plant and pearl millet: Pearl millet chromosome dynamics in hybrid embryo cells. Chromosome Res. 2010, 18, 821–831. [Google Scholar] [CrossRef]
- Kynast, R.G.; Davis, D.W.; Phillips, R.L.; Rines, H.W. Gamete formation via meiotic nuclear restitution generates fertile amphiploid F1 (oat × maize) plants. Sex. Plant Reprod. 2012, 25, 111–122. [Google Scholar] [CrossRef]
- Okagaki, R.J.; Kynast, R.G.; Livingston, S.M.; Russell, C.D.; Rines, H.W.; Phillips, R.L. Mapping maize sequences to chromosome using oat-maize chromosome addition materials. Plant Phys. 2001, 125, 1228–1235. [Google Scholar] [CrossRef]
- Jin, W.; Melo, J.R.; Nagaki, K.; Talbert, P.B.; Henikoff, S.; Dawe, R.K.; Jiang, J. Maize centromeres: Organization and functional adaptation in the genetic background of oat. Plant Cell 2004, 16, 571–581. [Google Scholar] [CrossRef]
- Kowles, R.V.; Walch, M.D.; Minnerath, J.M.; Bernacchi, C.J.; Stec, A.O.; Rines, H.W.; Phillips, R.L. Expression of C4 photosynthetic enzymes in oat-maize chromosome addition lines. Maydica 2008, 53, 69–78. [Google Scholar]
- Carter, O.; Yamada, Y.; Takahashi, E. Tissue culture of oats. Nature 1967, 214, 1029–1030. [Google Scholar] [CrossRef]
- Lörz, H.; Harms, C.T.; Potrykus, I. Regeneration of plants from callus in Avena sativa L. Z. Pflanzenzuechtg 1976, 77, 257–259. [Google Scholar]
- Cummings, D.P.; Green, C.E.; Stuthman, D.D. Callus induction and plant regeneration in oats. Crop Sci. 1976, 16, 465–470. [Google Scholar] [CrossRef]
- Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension cultures of soybean root cells. Exp. Cell Res. 1968, 50, 151–158. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Maddock, S.E. Cell culture, somatic embryogenesis and plant regeneration in wheat, barley, oats, rye and triticale. In Cereal Tissue and Cell Culture. Advances in Agricultural Biotechnology; Bright, S.W.J., Jones, M.G.K., Eds.; Springer: Dordrecht, The Netherlands, 1985; Volume 15. [Google Scholar] [CrossRef]
- Chen, H.; Xu, G.; Loschke, D.C.; Tomaska, L.; Rolfe, B. Efficient callus formation and plant regeneration from leaves of oats (Avena sativa L.). Plant Cell Rep. 1995, 14, 393–397. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Zhang, M.B. Production of multiple shoots from shoot apical meristems of oat (Avena sativa L.). J. Plant Physiol. 1996, 148, 667–671. [Google Scholar] [CrossRef]
- Nuutila, A.M.; Villiger, C.; Oksman-Caldentey, K.M. Embryogenesis and regeneration of green plantlets from oat (Avena sativa L.) leaf-base segments: Influence of nitrogen balance, sugar and auxin. Plant Cell Rep. 2002, 20, 1156–1161. [Google Scholar] [CrossRef]
- Jähne, A.; Lazzeri, P.A.; Jäger-Gussen, M.; Lörz, H. Plant regeneration from embryogenic suspensions derived from anther cultures of barley (Hordeum vulgare L.). Theor. Appl. Genet. 1991, 82, 74–80. [Google Scholar] [CrossRef]
- Gless, C.; Lörz, H.; Jähne-Gärtner, A. Establishment of a highly efficient regeneration system from leaf base segments of oat (Avena sativa L.). Plant Cell Rep. 1998, 17, 441–445. [Google Scholar] [CrossRef]
- Rines, H.W.; McCoy, T.J. Culture initiation and plant regeneration in hexaploid species of oats. Crop Sci. 1981, 6, 837–842. [Google Scholar] [CrossRef]
- Silveira, V.; de Vita, A.M.; Macedo, A.F.; Dias, M.F.R.; Floh, E.S.; Santa-Catarina, C. Morphological and polyamine content changes in embryogenic and non-embryogenic callus of sugarcane. Plant Cell Tissue Organ Cult. 2013, 114, 351–364. [Google Scholar] [CrossRef]
- Rines, H.W.; Luke, H.H. Selection and regeneration of toxin-insensitive plants from tissue cultures of oats (Avena sativa) susceptible to Helminthosporium victoriae. Theor. Appl. Genet. 1985, 71, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Bregitzer, P.; Somers, D.A.; Rines, H.W. Development and characterization of friable, embryogenic oat callus. Crop Sci. 1989, 29, 798–803. [Google Scholar] [CrossRef]
- Bregitzer, P.P.; Milach, S.K.; Rines, H.W.; Somers, D.A. Somatic embryogenesis in oat (Avena sativa L.). In Somatic Embryogenesis and Synthetic Seed II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 53–62. [Google Scholar]
- Rines, H.W.; Phillips, R.L.; Somers, D.A. Application of tissue cultures to oat improvement. In Oat Science and Technology Marshall; Marshall, H.G., Sorrells, M.E., Eds.; American Society of Agronomy: Madison, WI, USA, 1992; pp. 777–791. [Google Scholar]
- Somers, D.A. Transgenic cereals: Avena sativa (oat). In Molecular Improvement of Cereal Crops. Advances in Cellular and Molecular Biology of Plants; Vasil, I.K., Ed.; Springer: Dordrecht, The Netherlands, 1999; Volume 5, pp. 317–339. [Google Scholar] [CrossRef]
- Torbert, K.A.; Rines, H.W.; Somers, D.A. Transformation of oat using mature embryo-derived tissue cultures. Crop Sci. 1998, 38, 226–231. [Google Scholar] [CrossRef]
- King, I.P.; Thomas, H.; Dale, P.J. Callus induction and plant regeneration from oat cultivars. In Proceedings of the Second International Oats Conference: The University College of Wales, Welsh Plant Breeding Station, Aberystwyth, UK, 15–18 July 1985; Springer: Dordrecht, The Netherlands, 1985; pp. 46–47. [Google Scholar]
- Chen, Z.; Klockare, R.; Sundqvist, C. Origin of somatic embryogenesis is proliferating root primordia in seed derived oat callus. Hereditas 1994, 120, 211–216. [Google Scholar] [CrossRef]
- Kelley, R.Y.; Zipf, A.E.; Wesenberg, D.E.; Sharma, G.C. Putrescine-enhanced somatic embryos and plant numbers from elite oat (Avena spp. L.) and reciprocal crosses. Vitr. Cell. Dev. Biol. Plant 2002, 38, 508–512. [Google Scholar] [CrossRef]
- Borji, M.; Bouamama-Gzara, B.; Chibani, F.; Teyssier, C.; Ammar, A.B.; Milki, A.; Zekri, S.; Ghorbel, A. Micromorphology, structural and ultrastructural changes during somatic embryogenesis of a Tunisian oat variety (Avena sativa L. var ‘Meliane’). Plant Cell Tissue Organ Cult. 2018, 132, 329–342. [Google Scholar] [CrossRef]
- Gana, J.A.; Sharma, G.C.; Zipf, A.; Saha, S.; Roberts, J.; Wesenberg, D.M. Genotype effects on plant regeneration in callus and suspension cultures of Avena. Plant Cell Tissue Organ Cult. 1995, 40, 217–224. [Google Scholar] [CrossRef]
- Wise, M.L.; Sreenath, H.K.; Skadsen, R.W.; Kaeppler, H.F. Biosynthesis of avenanthramides in suspension cultures of oat (Avena sativa). Plant Cell Tissue Organ Cult. 2009, 97, 81–90. [Google Scholar] [CrossRef]
- Islam, S.; Tuteja, N. Enhancement of androgenesis by abiotic stress and other pretreatments in major crop species. Plant Sci. 2012, 182, 134–144. [Google Scholar] [CrossRef]
- Forster, B.P.; Heberle-Bors, E.; Kasha, K.J.; Touraev, A. The resurgence of haploids in higher plants. Trends Plant Sci. 2007, 12, 368–375. [Google Scholar] [CrossRef]
- Testillano, P.S. Microspore embryogenesis: Targeting the determinant factors of stress induced cell reprogramming for crop improvement. J. Exp. Bot. 2019, 70, 2965–2978. [Google Scholar] [CrossRef] [PubMed]
- De Cesaro, T.; Baggio, M.I.; Zanetti, S.A.; Suzin, M.; Augustin, L.; Brammer, S.P.; Iorczeski, E.J.; Milach, S.C.K. Haplodiploid androgenetic breeding in oat: Genotypic variation in anther size and microspore development stage. Sci. Agric. 2009, 66, 118–122. [Google Scholar] [CrossRef]
- Oleszczuk, S.; Zimny, J. Mikrospory zbóż w kulturach in vitro. Biotechnologia 2001, 2, 142–161. (In Polish) [Google Scholar]
- Ferrie, A.M.R.; Irmen, K.I.; Beattie, A.D.; Rossnagel, B.G. Isolated microspore culture of oat (Avena sativa L.) for the production of doubled haploids: Effect of pre-culture and post-culture conditions. Plant Cell Tissue Organ Cult. 2014, 116, 89–96. [Google Scholar] [CrossRef]
- Murovec, J.; Bohanec, B. Haploids and doubled haploids in plant breeding. In Plant Breeding; Abdurakhmonov, I., Ed.; InTech Europe: Rijeka, Croatia, 2012; pp. 87–106. [Google Scholar]
- Małuszyński, M.; Kasha, K.J.; Forster, B.P.; Szarejko, I. Doubled Haploid Production in Crop Plants: A Manual; Kluwer: Dordrecht, The Netherlands; Boston, MA, USA; London, UK, 2003; p. 428. [Google Scholar]
- Makowska, K.; Oleszczuk, S.; Zimny, A.; Czaplicki, A.; Zimny, J. Androgenic capability among genotypes of winter and spring barley. Plant Breed. 2015, 134, 668–674. [Google Scholar] [CrossRef]
- Rines, H.W. Oat anther culture: Genotype effects on callus initiation and the production of haploid plant. Crop Sci. 1983, 23, 268–272. [Google Scholar] [CrossRef]
- Kiviharju, E.; Pehu, E. The effect of cold and heat pretreatments on anther culture response of Avena sativa and A. sterilis. Plant Cell Tissue Organ Cult. 1998, 54, 97–104. [Google Scholar] [CrossRef]
- Ślusarkiewicz-Jarzina, A.; Ponitka, A. The effect of physical medium state on anther culture response in polish cultivated oat (Avena sativa L.). Acta Biol. Crac. Ser. Bot. 2007, 49, 27–31. [Google Scholar]
- Chu, C.; Wang, C.; Sun, C.; Hsu, C.; Yin, K.; Chu, C.; Bi, F. Establishment of an efficient medium for another culture of rice through comparative experiments on the nitrogen sources. Sci. Sin. 1975, 18, 223–231. [Google Scholar]
- Ouyang, T.W.; Jia, S.E.; Zhang, C.; Chen, X.; Feng, G. A New Synthetic Medium (W14) for Wheat Anther Culture. Annual Report. 1987–1988; Institute of Genetics Academia Sinica: Beijing, China, 1989; pp. 91–92. [Google Scholar]
- Wang, P.; Chen, Y. Preliminary study on production of height of pollen H2 generation in winter wheat grown in the field. Acta Agron. Sin. 1983, 9, 283–284. [Google Scholar]
- Ponitka, A.; Ślusarkiewicz-Jarzina, A. Regeneration of oat androgenic plants in relation to induction media and culture condition of embryo-like structures. Acta Soc. Bot. Pol. 2009, 78, 209213. [Google Scholar] [CrossRef]
- Skrzypek, E.; Stawicka, A.; Czyczyło-Mysza, I.; Pilipowicz, M.; Marcińska, I. Wpływ wybranych czynników na indukcję androgenezy owsa (Avena sativa L.). Zesz. Probl. Postępów Nauk. Rol. 2009, 534, 273–281. (In Polish) [Google Scholar]
- Kiviharju, E.; Moisander, S.; Laurila, J. Improved green plant regeneration rates from oat anther culture and the agronomic performance of some DH lines. Plant Cell Tissue Organ Cult. 2005, 81, 1–9. [Google Scholar] [CrossRef]
- Pechan, P.M.; Smykal, P. Androgenesis: Affecting the fate of male gametophyte. Physiol. Plant 2001, 111, 1–8. [Google Scholar] [CrossRef]
- Kruczkowska, H.; Pawłowska, H.; Skucińska, B. Próba indukcji androgenezy u polskich odmian owsa. Zesz. Probl. Postępów Nauk. Rol. 2007, 523, 137–142. (In Polish) [Google Scholar]
- Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Noga, A.; Kapłoniak, K.; Pilipowicz, M.; Skrzypek, E. Factors inducing regeneration response in oat (Avena sativa L.) anther culture. Vitr. Cell. Dev. Biol. Plant 2019, 55, 595–604. [Google Scholar] [CrossRef]
- Wang, X.Z.; Hu, H. The effect of potato II medium for 279 triticale anther culture. Plant Sci. Lett. 1984, 36, 237–239. [Google Scholar]
- Dahleen, L.S. Improved plant regeneration from barley callus cultures by increased copper levels. Plant Cell Tissue Organ Cult. 1995, 43, 267–269. [Google Scholar] [CrossRef]
- Echavarri, B.; Soriano, M.; Cistué, L.; Vallés, M.P.; Castillo, A.M. Zinc sulphate improved microspore embryogenesis in barley. Plant Cell Tissue Organ Cult. 2008, 93, 295–301. [Google Scholar] [CrossRef]
- Makowska, K.; Oleszczuk, S.; Zimny, J. The effect of copper on plant regeneration in barley microspore culture. Czech J. Genet. Plant Breed. 2017, 53, 17–22. [Google Scholar] [CrossRef]
- Warchoł, M.; Juzoń, K.; Dziurka, K.; Czyczyło-Mysza, I.; Kapłoniak, K.; Marcińska, I.; Skrzypek, E. The effect of zinc, copper and silver ions on oat (Avena sativa L.) androgenesis. Plants 2021, 10, 248. [Google Scholar] [CrossRef] [PubMed]
- Kiviharju, E.; Puolimatka, M.; Saastamoinen, M.; Hovinen, S.; Pehu, E. The effect of genotype on anther culture response of cultivated and wild oats. Agric. Food Sci. 1998, 7, 409–422. [Google Scholar] [CrossRef]
- Kiviharju, E.M.; Tauriainen, A.A. 2,4-Dichlorophenoxyacetic acid and kinetin in anther culture of cultivated and wild oats and their interspecific crosses: Plant regeneration from A. sativa L. Plant Cell Rep. 1999, 18, 582–588. [Google Scholar] [CrossRef]
- Kiviharju, E.; Puolimatka, M.; Saastamoinen, M.; Pehu, E. Extension of anther culture to several genotypes of cultivated oats. Plant Cell Rep. 2000, 19, 674–679. [Google Scholar] [CrossRef]
- Rines, H.W. Oat haploids from wide hybridization. In Double Haploid Production in Crop Plants; Małuszyński, M., Kasha, K.J., Forster, B.P., Szarejko, I., Eds.; Kluwer Acad Publishers: Dordrecht, The Netherlands, 2003; pp. 155–159. [Google Scholar]
- Zenkteler, M. In vitro fertilization and wide hybridization in higher plants. Crit. Rev. Plant Sci. 1990, 9, 267–279. [Google Scholar] [CrossRef]
- Mwangangi, I.M.; Muli, J.K.; Neondo, J.O. Plant hybridization as an alternative technique in plant breeding improvement. Asian J. Crop Sci. 2019, 4, 1–11. [Google Scholar] [CrossRef]
- Rines, H.W.; Dahleen, L.S. Haploid oat plants produced by application of maize pollen to emasculated oat florets. Crop Sci. 1990, 30, 1073–1078. [Google Scholar] [CrossRef]
- Matzk, F. Hybrids of crosses between oat and Andropogoneae or Paniceae species. Crop Sci. 1996, 36, 17–21. [Google Scholar] [CrossRef]
- Nowakowska, A.; Skrzypek, E.; Marcińska, I.; Czyczyło-Mysza, I.; Dziurka, K.; Juzoń, K.; Cyganek, K.; Warchoł, M. Application of chosen factors in the wide crossing method for the production of oat doubled haploids. Open Life Sci. 2015, 10, 112–118. [Google Scholar] [CrossRef]
- Rines, H.W.; Riera-Lizerazu, O.; Nunez, V.M.; Davis, D.W.; Phillips, R.L. Oat haploids from anther culture and from wide hybridizations. In In Vitro Haploid Production in Higher Plants; Jain, S.M., Sopory, S.K., Veilleux, R.E., Eds.; Kluwer Acad Publishers: Dordrecht, The Netherlands, 1997; pp. 205–221. [Google Scholar]
- Sidhu, P.K.; Howes, N.K.; Aung, T.; Zwer, P.K.; Davies, P.A. Factors affecting haploid production following oat × maize hybridization. Plant Breed. 2006, 125, 243–247. [Google Scholar] [CrossRef]
- Marcińska, I.; Nowakowska, A.; Skrzypek, E.; Czyczyło-Mysza, I. Production of double haploids in oat (Avena sativa L.) by pollination with maize (Zea mays L.). Cent. Eur. J. Biol. 2013, 8, 306–313. [Google Scholar] [CrossRef]
- Smit, M.E.; Weijers, D. The role of auxin signaling in early embryo pattern formation. Curr. Opin. Plant Biol. 2015, 28, 99–105. [Google Scholar] [CrossRef]
- Vondráková, Z.; Krajňáková, J.; Fischerová, L.; Vágner, M.; Eliášová, K. Physiology and role of plant growth regulators in somatic embryogenesis. In Vegetative Propagation of Forest Trees; Park, Y.S., Bonga, J., Moon, H.K., Eds.; National Institute of Forest Science: Seoul, Republic of Korea, 2016; pp. 123–169. [Google Scholar]
- Warchoł, M.; Skrzypek, E.; Nowakowska, A.; Marcińska, I.; Czyczyło-Mysza, I.; Dziurka, K.; Juzoń, K.; Cyganek, K. The effect of auxin and genotype on the production of Avena sativa L. doubled haploid lines. Plant Growth Regul. 2016, 78, 155–165. [Google Scholar] [CrossRef]
- Mahato, A.; Chaudhary, H.K. Auxin induced haploid induction in wide crosses of durum wheat. Cereal Res. Commun. 2019, 47, 552–565. [Google Scholar] [CrossRef]
- Baklouti, E.; Beulé, T.; Nasri, A.; Romdhane, A.B.; Drira, R.; Doulbeau, S.; Rival, A.; Drira, N.; Fki, L. 2,4-D induction of somaclonal variations in in vitro grown date palm (Phoenix dactylifera L. cv Barhee). Plant Cell Tissue Organ Cult. 2022, 150, 1–15. [Google Scholar] [CrossRef]
- Bronsema, F.B.F.; van Oostveen, W.J.F.; van Lammeren, A.A.M. Influence of 2,4-D, TIBA and 3,5-D on the growth response of cultured maize embryos. Plant Cell Tissue Organ Cult. 2001, 65, 45–56. [Google Scholar] [CrossRef]
- Juzoń, K.; Warchoł, M.; Dziurka, K.; Czyczyło-Mysza, I.; Marcińska, I.; Skrzypek, E. The effect of 2,4-dichlorophenoxyacetic acid on the production of oat (Avena sativa L.) doubled haploid lines through wide hybridization. PeerJ 2022, 10, e12854. [Google Scholar] [CrossRef]
- Sharma, D.R.; Kaur, R.; Kumar, K. Embryo rescue in plants—A review. Euphytica 1996, 89, 325–337. [Google Scholar] [CrossRef]
- Lulsdorf, M.M.; Ferrie, A.; Slater, S.M.H.; Yuan, H.Y. Methods and role of embryo rescue technique in alien gene transfer. In Alien Gene Transfer in Crop Plants, Innovations, Methods and Risk Assessment; Pratap, A., Kumar, J., Eds.; Springer: New York, NY, USA, 2014; Volume 1, pp. 77–103. [Google Scholar]
- Laibach, F. Das Taubwerden von Bastardsamen und die künstliche Aufzucht früh absterbender Bastardembryonen. Z. Bot. 1925, 17, 417–459. [Google Scholar]
- Bridgen, M.P. A review of plant embryo culture. Hort. Sci. 1994, 29, 1243–1246. [Google Scholar] [CrossRef]
- Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Dziurka, K.; Noga, A.; Skrzypek, E. The effect of genotype, media composition, pH and sugar concentrations on oat (Avena sativa L.) doubled haploid production through oat × maize crosses. Acta Physiol. Plant 2018, 40, 93. [Google Scholar] [CrossRef]
- Zhuang, J.J.; Xu, J. Increasing differentiation frequencies in wheat pollen callus. In Cell and Tissue Culture Techniques for Cereal Crop Improvement; Hu, H., Vega, M.R., Eds.; Science Press: Beijing, China, 1983; p. 431. [Google Scholar]
- Dziurka, K.; Dziurka, M.; Muszyńska, E.; Czyczyło-Mysza, I.; Warchoł, M.; Juzoń, K.; Laskoś, K.; Skrzypek, E. Anatomical and hormonal factors determining the development of haploid and zygotic embryos of oat (Avena sativa L.). Sci. Rep. 2022, 12, 548. [Google Scholar] [CrossRef]
- Gurtay, G.; Kutlu, I.; Avci, S. Production of haploids in ancient, local and modern wheat by anther culture and maize pollination. Acta Biol. Crac. Ser. Bot. 2021, 63, 43–53. [Google Scholar]
- Orlikowska, T.; Chrząstek, M. Kultury zarodków roślinnych in vitro i możliwości ich wykorzystania w hodowli. Postępy Nauk. Rol. 1979, 1, 27–42. (In Polish) [Google Scholar]
- Noga, A.; Skrzypek, E.; Warchoł, M.; Czyczyło-Mysza, I.; Dziurka, K.; Marcińska, I.; Juzoń, K.; Warzecha, T.; Sutkowska, A.; Nita, Z.; et al. Conversion of oat (Avena sativa L.) haploid embryos into plants in relation to embryo developmental stage and regeneration media. Vitr. Cell. Dev. Biol.-Plant 2016, 52, 590–597. [Google Scholar] [CrossRef]
- Skrzypek, E.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Nowakowska, A.; Dziurka, K.; Juzoń, K.; Noga, A. The effect of light intensity on the production of oat (Avena sativa L.) doubled haploids through oat × maize crosses. Cereal Res. Comm. 2016, 44, 490–500. [Google Scholar] [CrossRef]
- Dziurka, K.; Dziurka, M.; Warchoł, M.; Czyczyło-Mysza, I.; Marcińska, I.; Noga, A.; Kapłoniak, K.; Skrzypek, E. Endogenous phytohormone profile during oat (Avena sativa L.) haploid embryo development. Vitr. Cell. Dev. Biol.-Plant 2019, 55, 221–229. [Google Scholar] [CrossRef]
- Kynast, R.G.; Riera-Lizarazu, O.; Vales, M.I.; Okagaki, R.J.; Maquieira, S.B.; Chen, G.; Ananiev, E.V.; Odland, W.E.; Russel, C.D.; Stec, A.O.; et al. A complete set of maize individual chromosome additions of the oat genome. Plant Phys. 2001, 125, 1216–1227. [Google Scholar] [CrossRef]
- Skrzypek, E.; Warzecha, T.; Noga, A.; Warchoł, M.; Czyczyło-Mysza, I.; Dziurka, K.; Marcińska, I.; Kapłoniak, K.; Sutkowska, A.; Nita, Z.; et al. Complex characterization of oat (Avena sativa L.) lines obtained by wide crossing with maize (Zea mays L.). PeerJ 2018, 6, e5107. [Google Scholar] [CrossRef]
- Hilli, H.J.; Kapoor, R. An overview of breeding objectives to improve the economically important traits in oat. Curr. Agric. Res. J. 2023, 11, 18–27. [Google Scholar] [CrossRef]
- Gasparis, S.; Nadolska-Orczyk, A. Oat (Avena sativa L.). In Agrobacterium Protocols. Methods in Molecular Biology; Wang, K., Ed.; Springer: New York, NY, USA, 2015; Volume 1223. [Google Scholar] [CrossRef]
- Karimi-Ashtiyani, R.; Ishii, T.; Niessen, M.; Stein, N.; Heckmann, S.; Gurushidze, M.; Banaei-Moghaddam, A.M.; Fuchs, J.; Schubert, V.; Koch, K.; et al. Point mutation impairs centromeric CENH3 loading and induces haploid plants. Proc. Natl. Acad. Sci. USA 2015, 112, 11211–11216. [Google Scholar] [CrossRef]
A. sativa L. Genotype | Explant Used | Media/PGRs | Experimental Outcomes | References |
---|---|---|---|---|
cv. “Lodi”, cv. “Moore”, cv. “Lyon”, cv. “Benson”, cv. “Marathon”, cv. “Dal”, cv. “Stout”, cv. “Tippecanoe”, cv. “Lang”, cv. “Victorgrain”, cv. “Garry”, cv. “Hudson”, cv. “Terra”, cv. “0A338”, cv. “Victory”, cv. “Black”, cv. “Mesdag”, cv. “Victoria”, cv. “Selma”, cv. “AJ10915”, cv. “NP3/4”, cv. “Karin”, cv. “Rallus”, cv. “Coolabah” | immature embryos | MS/B5 medium with 2 mg L−1 2,4-D for initiation; MS/B5 medium with 1.0, 2.0 and 5.0 mg L−1 2,4-D for embryo regeneration | Tissue cultures capable of plant regeneration after more than 12 months in culture | [27] |
cv. “Victorgrain”, cv. “Victoria” GAF (A. sativa L. cv. “Garland” × A. fatua L.) × A. sativa L. cv. “Victoria” | 10- to 12-days old embryos | MS medium with 2 mg L−1 2,4-D; MS medium with 1 mg L−1 2,4-D and 5 units mL−1 victorin; MS medium with 2 mg L−1 NAA, and 0.2 mg L−1 BAP for regeneration | 12 of 65 immature embryos of the cv. “Victorgrain” and 2 of 21 embryos of cv. “Victoria” developed regenerable callus; without tissue growth or survival on a victorin-containing medium | [29] |
cv. “Trafalgar”, cv. “Rollo”, cv. “07408 in 111/2”, cv. “Rhiannon”, cv. “Dula”, cv. “Avalanche”, cv. “Caron”, cv. “Pennal”, cv. “Cabanna”, cv. “Margam” | embryos | MS medium with 2 mg L−1 2,4-D for callus initiation and growth; MS medium with 0.5 mg L−1 2,4-D followed by PGRs free MS medium for regeneration | The highest level of regeneration from 4–4.5 mm long embryos with the genotyping differences of plant regeneration | [35] |
GAF (A. sativa L. cv. “Garland” × A. fatua L.) × A. sativa L. cv. “Victoria” lines GAF-18, GAF-30, GAF-30, GAF-30/”Park” and GAF-30/Park//GAF-30 | immature embryos | MS medium with 4 mg L−1 2,4-D for callus initiation; MS medium with 2 mg L−1 2,4-D for callus maintenance; MS medium with 2 mg L−1 NAA and 0.2 mg L−1 BAP for shoot differentiation; MS medium free of PGRs for rooting | Embryogenic cultures maintained the ability to regenerate plants for more than 78 weeks | [30] |
cv. “Risto”, cv. “Sang”, cv. “Sanna”, cv. “Vital”, cv. “Sol” | Embryos | MS medium with 2 mg L−1 2,4-D for embryos; MS medium with 0.01 mg L−1 ABA and 6% sucrose for germination | Suppressed root elongation, promoted secondary root initiation and proliferation of embriogenic cells with 2,4-D in the medium | [36] |
cv. “Coolabah”, cv. “Cooba”, cv. “Blackbutt”, cv. “Mortlock”, cv. “Victorgrain”, cv. “HVR” | Immature embryos, leaf segments | MS medium with 2 mg L−1 2,4-D for callus induction and growth; N6 medium (Chu et al. 1975) with 2 mg L−1 KIN, and 2 mg L−1 NAA for shoot regeneration; MS medium with 0.3 mg L−1 KIN for root regeneration | callus formation from the leaf segments and plant regeneration are comparable to that of the immature embryos; plants were grown to maturity | [22] |
line GAF, line GAF/Park | Immature zygotic embryos | MS medium with 2 mg L−1 2,4-D for embryos; MS medium with 6% sucrose for embryo maturation, and sucrose reduction for bipolar plant development | Friable embryogenic callus inoculated into liquid medium will produce rapidly growing dedifferentiated suspension cultures | [31] |
cv. “Corbit”, cv. “Dark Husk”, cv. “Winter Turf”, cv. “Monida”, cv. “SO87213”, cv. “Dal” | Embryos | MS medium with 2 mg L−1 2,4-D for callus initiation/proliferation; CIP medium with 0.5 mg L−1 picloram, and 5 mg L−1 KIN for plant regeneration | High level of plant regeneration | [39] |
cv. “Prairie”, cv. “Porter”, cv. “Pacen”, cv. “Ogle” | Apical meristems, leaf primordia, leaf bases | MS medium with 2,4-D (0 and 0.5 mg L−1) and BA (0, 1.0, 2.0, 4.0, and 8.0 mg L−1) | Multiple shoot differentiation from shoot apical meristems on medium with 0.5 mg L−1 2,4-D, and 2.0 or 4.0 L−1 BA | [23] |
cv. “Fuchs”, cv. “Jumbo”, cv. “Gramena”, cv. “Bonus”, cv. “Alfred” | Leaf bases of young seedlings | L3 medium for callus induction; 2.5 mg L−1 2,4-D for plant regeneration | for cv. “Jumbo” average of 50 regenerants per explant could be regenerated, whereas for cv. “Gramena”, only 3–4 plants per explant could be regenerated | [26] |
cv. “GP-1” | Mature embryos | MS medium with 2 mg L−1 2,4-D for callus induction and shoot proliferation; after 6 weeks, 0.5 or 1.0 mM of putrescine was applied | Significant regeneration of plants in presence of 0.5 mM putrescine | [37] |
cv. “Aslak”, cv. “Velik” | Leaf based segments from 3- to 4-days old seedlings | L3 or MS medium for callus induction; L3 or MS medium with 0.2 mg L−1 for regeneration | Optimization of nitrogen, sugar, and auxin in media | [24] |
cv. “Belle” | Shoot apical meristem | MS medium with 2 mg L−1 2,4-D for liquid cultures | suspension cultures produced large quantities of aventhramides A and aventramides G in response to 0.25 mg mL−1 chitin (poly-N-acetyl glucosamine) elicitation | [40] |
cv. “Meliane” | Mature caryopses | MS medium with 3 mg L−1 2,4-D for callus induction; MS medium with 1 mg L−1 2,4-D and 0.5 mg L−1 BAP for embryogenic callus induction and somatic embryos differentiation; MS medium with 0.5 mg L−1 IAA for rooting | Ultrastructural changes and cytological modifications of oat somatic embryogenesis | [38] |
A. sativa L. Genotype | Culture Conditions | Experimental Outcomes | Reference |
---|---|---|---|
cv. “Clintford”, cv. “Stout” | 4 or 8 °C cold pretreatment | The highest anthers callusing initiation on MS medium with 10% saccharose and no hormones | [50] |
Line WW 18019, cv. “Stout” | 4 °C in the dark cold pretreatment for anthers from the main culm; 4 °C in the dark for cold pre-treatment for tillers, and MS medium with no PGRs; 32 °C heat pre-treatment for anther cultures | The pretreatment of isolated anthers for 5 days at 32 °C, before culture at 25 °C, is the key point | [51] |
44 genotypes | 4 °C in the dark cold pretreatment for anthers from the main culm; MS medium with or without 5 mg L−1 2,4-D for ELS induction; | Callus growth, ELS * production rates and plant regeneration differed between naked oat, wild oat, and crosses | [67] |
Line WW 18019, cv. ‘Kolbu’ | 4 °C in the dark cold pretreatment for anthers from the main culm; MS medium with 2,4-D and KIN for anthers; MS medium with 1 mg L−1 KIN for embryo structures; 32 °C heat pre-treatment for anther cultures | High 2,4-D concentrations enhanced embryo induction with or without heat pre-treatment | [68] |
cv. “Lisbeth”, cv. “Virma”, cv. “Cascade”, cv. “Kolbu”, cv. “WW 18019”, cv. “OT 257”, cv. “Stout”, cv. “Sisu”, cv. “Katri”, cv. “Yty”, cv. “Sisko”, cv. “Talgai”, cv. “Roope”, cv. “Salo” | tillers pretreated at 4 °C for 7 days; double-layer induction medium MS or W14 with 10% maltose and PGRs; 32 °C heat pre-treatment for anther cultures | Regenerable-type embryos from heat-pretreated anthers on media containing 2, 3 or 5 mg L−1 mg 2,4-D and 0.2 or 0.5 mg L−1 KIN | [69] |
cv. “Lisbeth” | 4 °C for 7 days for the tillers; 32 °C heat pretreatment; W14 medium with 10% maltose and PGRs for anthers, W14 medium with 2 mg L−1 NAA, and 0.5 mg L−1 KIN for ELS and regeneration; MS with 0.2 L−1 NAA for rooting | Improved number of derived plants via application of W14 | [58] |
Oat hybrids 1705/05, 1717/05, 1725/05, 1780/05, 2038/05, 1889/05, 1893/05, 1903/05, 1944/05, 1954/05, 956/05, 1967/05, 1985/05, 1989/05, 1997/05 | 4 °C for 6–9 days for the tillers in N6 medium with 2 mg L−1 2,4-D; liquid, solid or double-layer W14 salts and vitamins, 5.0 mg L−1 2,4-D, and 0.5 mg L−1 BAP for ELS induction; | Development of ELS after 6 weeks of culture on liquid medium, and between the 7th and 8th weeks on solid and double-layer medium | [52] |
cv. “UPF 7”, cv. “UPF 18”, cv. “UFRGS 14”, cv. “Stout” | Samples were collected when the distance between the flag leaf and the last node was one third of the distance between the last node and flag leaf | The use of anther size for the identification of microspore developmental stage is inefficient selection criterion | [44] |
Cross combination of hexaploid oat: Lisbeth × Bendicoot, Flämingsprofi × Rajtar, Scorpion × Deresz, Aragon × Deresz, Deresz × POB7219/03, Bohun × Deresz, Krezus × Flämingsprofi, Krezus × POB10440/01, Cwał × Bohun | 4 °C for 6–9 days for the tillers in N6 medium with 2 mg L−1 2,4-D; C17 induction medium with W14 salts and vitamins, 5.0 mg L−1 2,4-D, and 0.5 mg L−1 BAP for ELS induction; 190-2 regeneration medium | The highest number of ELS on C17 medium; incubation at 22 °C in the dark for the first two weeks for the highest rate of green plants per 100 ELS | [56] |
Genotype 2000QiON43 (LA9326E86) | 0.3 M mannitol pretreatment of the tillers for 7 days; W14 medium and continuous incubation at 28 °C; W14 medium for embryos observed; 0.2% colchicine for 4 h for DH | Protocol for the production of microspore-derived embryos of oat, 80% of the plants were converted to DH | [46] |
cv. “Akt”, cv. “Bingo”, cv. “Bajka”, cv. “Chwat” | for tillers: 2 and 3 weeks at 4 °C, or 2 and 3 weeks at 4 °C followed by 32 °C for 24 h; for ELS induction: C17 medium with 0.5 mg L−1 picloram, 0.5 mg L−1 dicamba, and 0.5 mg L−1 KIN, or W14 medium with different concentrations of 2,4-D, NAA, and BAP | Cold pretreatment and high temperature enhanced the technique efficiency; W14 medium with 2 mg L−1 and 0.5 mg L−1 KIN for the highest number of ELS | [61] |
cv. “Bingo”, cv. “Chwat” | 2 weeks at 4 °C for tillers pretreatment in liquid medium alone or with Cu2+, Zn2+, or Ag+ ions followed by 32 °C for 24 h | ELS formation depended on cold pretreatment combined with Cu2+, Zn2+, or Ag+ | [66] |
Plant Material | Culture Conditions | Experimental Outcomes | Reference |
---|---|---|---|
Oat × maize Oat: cv. “Stout”, cv. “Starter”, cv. “Steele”, cv. “Black Mesdag” Maize: A188, B73, Honeycomb, A619 × W64A | Haploid plants recovered via embryo rescue following field-grown maize pollen application to emasculated florets of growth chamber-grown oat | Recovered haploids were from a different oat cultivar and different source of maize pollen—the process is not genotype unique | [73] |
Oat × maize Oat: genotypes AK-1, S093658, Carrolup, Dumont, Mortlock Maize: early extra sweet F1, and Kelvedon Glory F1 varieties | 100 mg L−1 GA3, 2,4-D, 3,6-dichloro-o-anisic acid (dicamba) or 4-amino-3,5,6,-trichloro-picolinic acid (picloram) applied after pollination; four different temperature regimes (32/24, 24/20, 21/17 and 17/14 °C day/night) applied before flowering | The highest number of caryopses produced with dicamba, but without effects on embryo production; genotype dependent temperature effects | [77] |
Oat × pearl millet Oat: cv. “Best Enbaku” Pearl millet: Pennisetum glaucum cv. “Ugandi” | 100 ppm 2,4-D dropped onto each floret 12 h after pollination; 100 ppm 2,4-D and 4% sucrose for the spike culture | Retention of all seven pearl millet chromosomes in embryos from the crosses with oat; oat haploid developed to a fertile adult plant | [6,11] |
Oat × maize Oat: lines Black Mesdag, GAF- Park, Kanota, MN97201-1, Preakness, Starter, Steele, Stout, Sun II, and F1 (MN97201-1 × MN841801-1) oat hybrid Maize: lines Seneca60, bz1-mum9, A188, B73, Mo17, and the F1 (A188 9 W64A) maize hybrid | 50 ppm 2,4-D and 50 ppm GA3 for embryo formation delay of endosperm collapse | Euhaploid plants with complete oat chromosome complements without maize chromosomes; aneuhaploid plants with complete oat chromosome complements and different numbers of retained individual maize chromosomes; uniparental genome loss during early steps of embryogenesis causing the elimination of maize chromosomes in the hybrid embryo | [98] |
Oat × maize Oat: genotypes 80022, 80031, 81711, 81350, 81384, 81524, 81559, 82072, 82091, 82230, 82266, 83200, 83207, 83213, 83421, 83430, 85924, and 85931 Maize: Waza, Dobosz, and Wania | Oat florets pollinated with maize pollen after 0, 1 or 2 days; 100 mg L−1 2,4-D or 100 mg L−1 dicamba placed on the floret pistils 1, 2-, 3-, 4-, and 5-days following pollination | Genotype-dependent haploid embryo formation and plant regeneration; 2nd-day pollination together with auxin treatment was the most effective | [78] |
Oat × maize Oat: 80031—(Deresz × Szakal), 81350 (Krezus × STH 454), 82072 (Bajka × STH 454), 82091 (Bajka × STH 7706), 83213 (Flamingstern × Chwat) Maize: Zea mays L. var. saccharata, Oat × sorghum Sorghum: Sorghum bicolor (L.) Moench Oat × common millet Common millet: Panicum miliaceum L. | 100 mg L−1 dicamba one day after pollination; enlarged ovaries collected at 2, 3 and 4 weeks after pollination cultivated on 6 or 9% of maltose | 2.5—6.9% of HE * for genotypes pollinated with maize, 1.3% for sorghum, and 1.2% for millet; the highest frequency of HE germination and number of plants 3 weeks after pollination; 9% maltose for embryo formation, germination, and haploid plants development | [75] |
Oat × maize Oat: STH 4.8456/1, STH 4.8456/2, STH 4.8457/1, STH 4.8457/2, STH 5.8421, STH 5.8422, STH 5.8423, STH 5.8424, STH 5.8425, STH 5.8426, STH 5.8427, STH 5.8428, STH 5.8429, STH 5.8430, STH 5.8432, STH 5.8436, STH 5.8440, STH 5.8449, STH 5.8450, STH 5.8458, STH 5.8460 Maize: Waza | <0.5 mm HE, 0.5–0.9 mm HE, 1.0–1.4 mm HE, and ≥1.5 mm HE on 0.5 mg L−1 KIN and 0.5 mg L−1 NAA, or 1 mg L−1 ZEA and 0.5 mg L−1 NAA, or 1 mg L−1 dicamba, 1 mg L−1 picloram, and 0.5 mg L−1 KIN | Germination of HE ≥ 1.5 mm on medium with 0.5 mg L−1 NAA and 0.5 mg L−1 KIN | [95] |
Oat × maize 32 oat genotypes were pollinated with Zea mays L. var. saccharata (maize) genotypes: MPC4, Dobosz and Wania | Different light intensity during the growing period of donor plants and in vitro cultures | 9.4% HE formed in a greenhouse, 6.1% in a growth chamber; 38.9% of embryo germination, 36.4% conversion into plants, and 9.2% DH ** line production with 110 μmol m−2 s−1 light intensity | [96] |
Oat × maize Oat: F1 progeny of thirty-three oat genotypes Maize: Zea mays L. var. saccharata (maize) genotypes MPC4, Dobosz and Wania | Immersion of haploid plants for 7.5 h in a 0.1% colchicine, 40 g L−1 DMSO, 0.025 g L−1 GA3 at 25 °C and 80–100 µmol m−2 s−1 light intensity for chromosome doubling procedure | From 149 haploid plants 61 survived chromosome doubling procedure, 52 (85%) were fertile and produced seeds | [81] |
Not specified | Colchicine solution with DMSO for chromosome doubling | Detailed description of a method for DHs generation | [1] |
Oat × maize 80 oat genotypes pollinated with maize cv. “Waza” | Colchicine solution applied on HP roots for chromosome doubling | from 138 oat lines, the presence of maize chromatin was indicated in 66 lines from which 27 OMA lines were fertile and produced seeds | [99] |
Oat × maize Oat: F1 progeny of twenty-two oat genotypes pollinated with Zea mays L. var. saccharata (maize) genotypes MPC4, Dobosz and Wania | For chromosome doubling HP roots were immersed in a 0.1% colchicine with 4% DMSO, 0.025 g L−1 GA3, and 20 μL of Tween 20, left for 7.5 h at 25 °C and 80–100 μmol m−2 s−1 light intensity | 591 HE formed, 48 fertile DH plants producing in all 4878 seeds | [90] |
Oat × maize Oat: F1 progeny of twenty-nine oat genotypes pollinated with Zea mays L. var. saccharata (maize) genotypes MPC4, Dobosz and Wania | 9465 florets were pollinated with maize pollen 2 days after emasculation and treated with 2,4-D at 50 mg L−1 and 100 mg L−1; colchicine solution applied on HP roots for chromosome doubling | Higher 2,4-D concentration is more efficient in obtaining haploid/DH plants with better vitality and fertility | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Warchoł, M.; Skrzypek, E.; Juzoń-Sikora, K.; Jakovljević, D. Oat (Avena sativa L.) In Vitro Cultures: Prospects and Challenges for Breeding. Agronomy 2023, 13, 2604. https://doi.org/10.3390/agronomy13102604
Warchoł M, Skrzypek E, Juzoń-Sikora K, Jakovljević D. Oat (Avena sativa L.) In Vitro Cultures: Prospects and Challenges for Breeding. Agronomy. 2023; 13(10):2604. https://doi.org/10.3390/agronomy13102604
Chicago/Turabian StyleWarchoł, Marzena, Edyta Skrzypek, Katarzyna Juzoń-Sikora, and Dragana Jakovljević. 2023. "Oat (Avena sativa L.) In Vitro Cultures: Prospects and Challenges for Breeding" Agronomy 13, no. 10: 2604. https://doi.org/10.3390/agronomy13102604