Seed Priming of Rice Varieties with Decoyinine Improve Their Resistance against the Brown Planthopper Nilaparvata lugens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Insect and Plant Treatment
2.2. Survival, Development, and Reproduction
2.3. Honeydew and Weight Measurement
2.4. Feeding and Oviposition Choice Test
2.5. Life Table Analysis
2.6. Statistical Analysis
3. Results
3.1. Biological Parameters
3.2. Population Life Table Parameters
3.3. Honeydew Production and BPH Weight
3.4. Feeding and Oviposition Preference
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xue, J.; Zhou, X.; Zhang, C.X.; Yu, L.L.; Fan, H.W.; Wang, Z.; Xu, H.J.; Xi, Y.; Zhu, Z.R.; Zhou, W.W.; et al. Genomes of the rice pest brown planthopper and its endosymbionts reveal complex complementary contributions for host adaptation. Genome Biol. 2014, 15, 521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.E.; Zheng, Y.Y.; Xu, C.X.; Jiao, Q.Q.; Ye, C.L.; Chen, T.T.; Yu, X.P.; Pang, K.; Hao, P.Y. Rice defense against brown planthopper partially by suppressing the expression of transferrin family genes of brown planthopper. J. Agric. Food Chem. 2022, 70, 2839–2850. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Ang, L.; Weilin, Z. Current understanding of the molecular players involved in resistance to rice planthoppers. Pest Manag. Sci. 2019, 75, 2566–2574. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.C.; Ge, L.Q.; Liu, F.; Song, Q.S.; Stanley, D. Pesticide-induced planthopper population resurgence in rice cropping systems. Annu. Rev. Entomol. 2020, 65, 409–429. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Johnson, R.; Puthur, J.T. Seed priming: A cost-effective strategy to impart abiotic stress tolerance. In Plant Performance Under Environmental Stress: Hormones, Biostimulants and Sustainable Plant Growth Management; Husen, A., Ed.; Springer International Publishing: Cham, Switzerland, 2021; pp. 459–480. [Google Scholar]
- Paul, S.; Dey, S.; Kundu, R. Seed priming: An emerging tool towards sustainable agriculture. Plant Growth Regul. 2021, 97, 215–234. [Google Scholar] [CrossRef]
- Worrall, D.; Holroyd, G.H.; Moore, J.P.; Glowacz, M.; Croft, P.; Taylor, J.E.; Paul, N.D.; Roberts, M.R. Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytol. 2012, 193, 770–778. [Google Scholar] [CrossRef] [Green Version]
- Berglund, T.; Lindström, A.; Aghelpasand, H.; Stattin, E.; Ohlsson, A.B. Protection of spruce seedlings against pine weevil attacks by treatment of seeds or seedlings with nicotinamide, nicotinic acid and jasmonic acid. Forestry 2015, 89, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Song, J.; Wu, X.B.; Deng, Q.Q.; Zhu, Z.Y.; Ren, M.J.; Ye, M.; Zeng, R.S. Seed priming with calcium chloride enhances wheat resistance against wheat aphid Schizaphis graminum Rondani. Pest Manag. Sci. 2021, 77, 4709–4718. [Google Scholar] [CrossRef]
- Disi, J.O.; Kloepper, J.W.; Fadamiro, H.Y. Seed treatment of maize with Bacillus pumilus strain INR-7 affects host location and feeding by Western corn rootworm, Diabrotica virgifera virgifera. J. Pest Sci. 2018, 91, 515–522. [Google Scholar] [CrossRef]
- Qin, X.; Zhao, X.; Huang, S.S.; Deng, J.; Li, X.B.; Luo, Z.B.; Zhang, Y.J. Pest management via endophytic colonization of tobacco seedlings by the insect fungal pathogen Beauveria bassiana. Pest Manag. Sci. 2021, 77, 2007–2018. [Google Scholar] [CrossRef] [PubMed]
- Jisha, K.C.; Puthur, J.T. Seed priming with beta-amino butyric acid improves abiotic stress tolerance in rice seedlings. Rice Sci. 2016, 23, 242–254. [Google Scholar] [CrossRef] [Green Version]
- Sheteiwy, M.S.; Gong, D.; Gao, Y.; Pan, R.; Hu, J.; Guan, Y. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ. Exp. Bot. 2018, 153, 236–248. [Google Scholar] [CrossRef]
- Moulick, D.; Santra, S.C.; Ghosh, D. Rice seed priming with Se: A novel approach to mitigate as induced adverse consequences on growth, yield and as load in brown rice. J. Hazard. Mater. 2018, 355, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.K.; Mukherjee, A.K.; Chakraborty, K. Seed priming alleviates stress tolerance in rice (Oryza sativa L.). In Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants; Hasanuzzaman, M., Fotopoulos, V., Eds.; Springer Singapore: Singapore, 2019; pp. 181–204. [Google Scholar]
- Dhillon, B.S.; Kumar, V.; Sagwal, P.; Kaur, N.; Singh Mangat, G.; Singh, S. Seed priming with potassium nitrate and gibberellic acid enhances the performance of dry direct seeded rice (Oryza sativa L.) in north-western India. Agronomy 2021, 11, 849. [Google Scholar] [CrossRef]
- Wang, Y.; Shen, C.; Jiang, Q.; Wang, Z.; Gao, C.; Wang, W. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. Plant Sci. 2022, 323, 111381. [Google Scholar] [CrossRef]
- Pal, G.; Mehta, D.; Singh, S.; Magal, K.; Gupta, S.; Jha, G.; Bajaj, A.; Ramu, V.S. Foliar application or seed priming of cholic acid-glycine conjugates can mitigate/prevent the rice bacterial leaf blight disease via activating plant defense genes. Front. Plant Sci. 2021, 12, 746912. [Google Scholar] [CrossRef]
- Niu, H.T.; Sun, Y.; Zhang, Z.C.; Zhao, D.X.; Wang, N.; Wang, L.H.; Guo, H.F. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol. Res. 2022, 256, 126956. [Google Scholar] [CrossRef]
- Yuntsen, H.; Yonehara, H.; Ui, H. Studies on a new antibiotic, angustmycin. I. J. Antibiot. 1954, 7, 113–115. [Google Scholar]
- Yu, L.; Zhou, W.; She, Y.; Ma, H.; Cai, Y.S.; Jiang, M.; Deng, Z.; Price, N.P.J.; Chen, W. Efficient biosynthesis of nucleoside cytokinin angustmycin A containing an unusual sugar system. Nat. Commun. 2021, 12, 6633. [Google Scholar] [CrossRef]
- Bianchi-Smiraglia, A.; Wawrzyniak, J.A.; Bagati, A.; Marvin, E.K.; Ackroyd, J.; Moparthy, S.; Bshara, W.; Fink, E.E.; Foley, C.E.; Morozevich, G.E.; et al. Pharmacological targeting of guanosine monophosphate synthase suppresses melanoma cell invasion and tumorigenicity. Cell Death. Differ. 2015, 22, 1858–1864. [Google Scholar] [CrossRef] [Green Version]
- Gong, L. Effect of Combination of Wugufengsu and Yuhuangjin on Maize Growth and Yield; Northeast Agricultural University: Harbin, China, 2019. [Google Scholar]
- Sun, K.X. Effects of a New Plant Growth Regulator, Wufengfengsu on Seed Germination, Growth, Yield and Quality of Nanning Rice Variety “Baixiang 139” in Guangxi Province; Northeast Agricultural University: Harbin, China, 2020. [Google Scholar]
- Zhou, R. Effects of WGF Soaking Seed on Growth and Yield of Direct Seedling Rice “Guangliangxiang 2”; Northeast Agricultural University: Harbin, China, 2021. [Google Scholar]
- Shah, A.Z.; Ma, C.; Zhang, Y.Y.; Zhang, Q.X.; Xu, G.; Yang, G.Q. Decoyinine induced resistance in rice against small brown planthopper Laodelphax striatellus. Insects 2022, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Zhang, Y.Y.; Gui, W.; Zhang, Q.X.; Xu, G.; Yang, G.Q. Priming of rice seed with decoyinine enhances resistance against the brown planthopper Nilparvata lugens. Crop Prot. 2022, 157, 105970. [Google Scholar] [CrossRef]
- Lin, Y.B.; Lin, X.H.; Ding, C.H.; Xia, M.; Xue, R.R.; Sun, Z.X.; Chen, D.Q.; Zhu-Salzman, K.Y.; Zeng, R.S.; Song, Y.Y. Priming of rice defense against a sap-sucking insect pest brown planthopper by silicon. J. Pest Sci. 2022, 95, 1371–1385. [Google Scholar] [CrossRef]
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. Timing of control based on the stage structure of pest populations: A simulation approach. J. Econ. Entomol. 1990, 83, 1143–1150. [Google Scholar] [CrossRef]
- Chi, H.; You, M.S.; Atlihan, R.; Smith, C.L.; Kavousi, A.; Ozgokce, M.S.; Guncan, A.; Tuan, S.J.; Fu, J.W.; Xu, Y.Y.; et al. Age-Stage, two-sex life table: An introduction to theory, data analysis, and application. Entomol. Gen. 2020, 40, 103–124. [Google Scholar] [CrossRef]
- Bose, B.; Kumar, M.; Singhal, R.K.; Mondal, S. Impact of seed priming on the modulation of physico-chemical and molecular processes during germination, growth, and development of crops. In Advances in Seed Priming; Rakshit, A., Singh, H.B., Eds.; Springer: Singapore, 2018; pp. 23–40. [Google Scholar]
- Li, X.M.; Zhao, M.H.; Huang, F.; Shang, F.G.; Zhang, Y.H.; Liu, C.M.; He, S.J.; Wu, G. Effects of elevated CO2 on the fitness of three successive generations of Lipaphis erysimi. Insects 2022, 13, 333. [Google Scholar] [CrossRef]
- Altaf, N.; Idrees, A.; Ullah, M.I.; Arshad, M.; Afzal, A.; Afzal, M.; Rizwan, M.; Li, J. Biotic potential induced by different host plants in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 921. [Google Scholar] [CrossRef]
- Acharya, R.; Malekera, M.J.; Dhungana, S.K.; Sharma, S.R.; Lee, K.Y. Impact of rice and potato host plants is higher on the reproduction than growth of corn strain fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae). Insects 2022, 13, 256. [Google Scholar] [CrossRef]
- Zhang, Z.; Batuxi; Jiang, Y.N.; Li, X.R.; Zhang, A.H.; Zhu, X.; Zhang, Y.H. Effects of different wheat tissues on the population parameters of the fall armyworm (Spodoptera frugiperda). Agronomy 2021, 11, 2044. [Google Scholar] [CrossRef]
- Li, J.; Ding, T.B.; Chi, H.; Chu, D. Effects of Tomato chlorosis virus on the performance of its key vector, Bemisia tabaci, in China. J. Appl. Entomol. 2018, 142, 296–304. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Qi, F.J.; Tan, X.M.; Zhang, T.; Teng, Z.W.; Fan, Y.J.; Wan, F.H.; Zhou, H.X. Use of age-stage, two-sex life table to compare the fitness of Bactrocera dorsalis (Diptera: Tephritidae) on northern and southern host fruits in China. Insects 2022, 13, 258. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.F.; Zhang, L.; Liu, Y.Q.; Cheng, Y.X.; Su, J.Y.; Sappington, T.W.; Jiang, X.F. Population development, fecundity, and flight of Spodoptera frugiperda (Lepidoptera: Noctuidae) reared on three green manure crops: Implications for an ecologically based pest management approach in China. J. Econ. Entomol. 2022, 115, 124–132. [Google Scholar] [CrossRef]
- Zhu, J.H.; Liu, X.Q.; Zhu, K.M.; Zhou, H.Y.; Li, L.; Li, Z.X.; Qin, W.W.; He, Y.P. Knockdown of TRPV genes affects the locomotion and feeding behavior of Nilaparvata lugens (Hemiptera: Delphacidae). J. Insect Sci. 2020, 20, 9. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.; Chen, Y.; Yu, J.L.; Zhou, Y.K.; Shu, Z.L.; Ge, L.Q. Seed dressing with triflumezopyrim controls brown planthopper populations by inhibiting feeding behavior, fecundity and enhancing rice plant resistance. Pest Manag. Sci. 2021, 77, 2870–2886. [Google Scholar] [CrossRef]
- Xi, C.Y.; Ahmad, S.; Yu, J.L.; Zhang, J.Y.; Chen, Y.; Zhang, G.; Zhu, H.W.; Ge, L.Q.; Yu, X.Y.; Shu, Z.L. Seed coating with triflumezopyrim induces the rice plant’s defense and inhibits the brown planthopper’s feeding behavior. Agronomy 2022, 12, 1202. [Google Scholar] [CrossRef]
- Disi, J.; Simmons, J.; Zebelo, S. Plant growth-promoting rhizobacteria-induced defense against insect herbivores. In Field Crops: Sustainable Management by PGPR; Maheshwari, D.K., Dheeman, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 385–410. [Google Scholar]
- Bertea, C.M.; Casacci, L.P.; Bonelli, S.; Zampollo, A.; Barbero, F. Chemical, physiological and molecular responses of host plants to Lepidopteran egg-laying. Front. Plant Sci. 2020, 10, 1768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renwick, J.; Chew, F. Oviposition behavior in Lepidoptera. Annu. Rev. Entomol. 1994, 39, 377–400. [Google Scholar] [CrossRef]
- Carroll, M.J.; Schmelz, E.A.; Meagher, R.L.; Teal, P.E.A. Attraction of Spodoptera frugiperda larvae to volatiles from herbivore-damaged maize seedlings. J. Chem. Ecol. 2006, 32, 1911–1924. [Google Scholar] [CrossRef] [Green Version]
- Harun-Or-Rashid, M.; Kim, H.J.; Yeom, S.I.; Yu, H.A.; Manir, M.M.; Moon, S.S.; Kang, Y.J.; Chung, Y.R. Bacillus velezensis YC7010 enhances plant defenses against brown planthopper through transcriptomic and metabolic changes in rice. Front. Plant Sci. 2018, 9, 1904. [Google Scholar] [CrossRef] [PubMed]
Parameters | Control (0 mg/L) | DCY25 (25 mg/L) | DCY50 (50 mg/L) | DCY100 (100 mg/L) |
---|---|---|---|---|
1st instar (d) | 2.03 ± 0.02 b | 2.51 ± 0.07 a | 2.19 ± 0.07 b | 2.21 ± 0.07 b |
2nd instar (d) | 2.44 ± 0.06 a | 2.33 ± 0.06 a | 2.47 ± 0.07 a | 2.45 ± 0.07 a |
3rd instar (d) | 2.62 ± 0.06 a | 2.35 ± 0.06 b | 2.69 ± 0.06 a | 2.59 ± 0.07 a |
4th instar (d) | 2.34 ± 0.06 a | 2.41 ± 0.07 a | 2.40 ± 0.07 a | 2.33 ± 0.06 a |
5th instar (d) | 2.49 ± 0.07 ab | 2.58 ± 0.08 a | 2.00 ± 0.02 c | 2.33 ± 0.06 b |
Total nymphal duration ofmales (d) | 11.82 ± 0.14 ab | 12.18 ± 0.11 a | 11.60 ± 0.08 b | 11.71 ± 0.08 b |
Total nymphal duration of females (d) | 12.13 ± 0.27 a | 12.14 ± 0.08 a | 12.05 ± 0.05 a | 12.25 ± 0.12 a |
Male longevity (d) | 18.37 ± 0.21 a | 17.94 ± 0.30 a | 16.98 ± 0.22 b | 17.66 ± 0.22 ab |
Female longevity (d) | 19.00 ± 0.32 a | 17.71 ± 0.54 ab | 16.91 ± 0.63 b | 16.00 ± 0.56 b |
Pre-oviposition period (d) | 3.22 ± 0.11 a | 3.71 ± 0.15 a | 3.64 ± 0.14 a | 3.60 ± 0.15 a |
Oviposition period (d) | 15.78 ± 0.37 a | 14.00 ± 0.53 ab | 12.91 ± 0.64 b | 12.30 ± 0.74 b |
Fecundity (eggs) | 186.91 ± 12.80 a | 90.71 ± 3.65 b | 96.64 ± 7.11 b | 73.25 ± 5.04 b |
Egg duration (d) | 7.08 ± 0.10 a | 7.11 ± 0.09 a | 7.16 ± 0.08 a | 7.07 ± 0.09 a |
Parameters | Control (0 mg/L) | DCY25 (25 mg/L) | DCY50 (50 mg/L) | DCY100 (100 mg/L) |
---|---|---|---|---|
1st instar (d) | 2.14 ± 0.05 a | 2.33 ± 0.06 a | 2.32 ± 0.06 a | 2.26 ± 0.06 a |
2nd instar (d) | 2.49 ± 0.06 a | 2.36 ± 0.06 a | 2.40 ± 0.06 a | 2.49 ± 0.07 a |
3rd instar (d) | 2.74 ± 0.06 a | 2.44 ± 0.07 b | 2.48 ± 0.06 b | 2.60 ± 0.06 ab |
4th instar (d) | 2.31 ± 0.06 a | 2.40 ± 0.06 a | 2.38 ± 0.07 a | 2.38 ± 0.06 a |
5th instar (d) | 2.33 ± 0.06 ab | 2.43 ± 0.06 a | 2.35 ± 0.06 ab | 2.18 ± 0.05 b |
Total nymphal duration ofmales (d) | 11.87 ± 0.09 a | 11.85 ± 0.09 a | 11.84 ± 0.07 a | 11.79 ± 0.08 a |
Total nymphal duration of females (d) | 12.28 ± 0.12 a | 12.18 ± 0.08 a | 12.10 ± 0.13 a | 12.19 ± 0.09 a |
Male longevity (d) | 17.71 ± 0.18 a | 17.33 ± 0.28 a | 17.25 ± 0.26 a | 17.60 ± 0.21 a |
Female longevity (d) | 19.48 ± 0.26 a | 17.05 ± 0.49 b | 16.95 ± 0.44 b | 16.33 ± 0.47 b |
Pre-oviposition period (d) | 3.42 ± 0.12 a | 3.59 ± 0.17 a | 3.47 ± 0.16 a | 3.43 ± 0.15 a |
Oviposition period (d) | 16.24 ± 0.29 a | 13.46 ± 0.51 b | 13.16 ± 0.28 b | 12.57 ± 0.52 b |
Fecundity (eggs) | 176.68 ± 11.67 a | 86.73 ± 4.72 b | 94.11 ± 6.07 b | 76.86 ± 4.57 b |
Egg duration (d) | 7.01 ± 0.08 a | 7.11 ± 0.09 a | 7.14 ± 0.08 a | 7.00 ± 0.08 a |
Parameters | DCY Treatment | Rice Variety | Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|
DF | F | p | DF | F | p | DF | F | p | |
1st instar | 3 | 10.36 | <0.0001 | 2 | 26.66 | <0.0001 | 6 | 2.227 | 0.0389 |
2nd instar | 3 | 1.105 | 0.3463 | 2 | 52.69 | <0.0001 | 6 | 0.5299 | 0.7857 |
3rd instar | 3 | 3.336 | 0.0191 | 2 | 67.74 | <0.0001 | 6 | 3.780 | 0.0010 |
4th instar | 3 | 2.007 | 0.1117 | 2 | 23.74 | <0.0001 | 6 | 1.283 | 0.2627 |
5th instar | 3 | 9.673 | <0.0001 | 2 | 486.4 | <0.0001 | 6 | 4.756 | <0.0001 |
Total nymphal duration of males | 3 | 10.59 | <0.0001 | 2 | 20.87 | <0.0001 | 6 | 3.017 | 0.0068 |
Total nymphal duration of females | 3 | 2.244 | 0.0835 | 2 | 22.39 | <0.0001 | 6 | 2.618 | 0.0175 |
Male longevity | 3 | 0.4504 | 0.7171 | 2 | 47.31 | <0.0001 | 6 | 0.7703 | 0.5936 |
Female longevity | 3 | 4.189 | 0.0064 | 2 | 92.57 | <0.0001 | 6 | 1.309 | 0.2531 |
Pre-oviposition period | 3 | 4.595 | 0.0037 | 2 | 0.8806 | 0.4157 | 6 | 1.400 | 0.2146 |
Oviposition period | 3 | 6.959 | 0.0002 | 2 | 90.39 | <0.0001 | 6 | 1.324 | 0.2466 |
Fecundity | 3 | 52.47 | <0.0001 | 2 | 3.216 | 0.0417 | 6 | 1.821 | 0.0953 |
Egg duration | 3 | 0.8031 | 0.4925 | 2 | 1.489 | 0.2265 | 6 | 0.0741 | 0.9984 |
Parameters | Control (0 mg/L) | DCY25 (25 mg/L) | DCY50 50 mg/L) | DCY100 (100 mg/L) |
---|---|---|---|---|
R0 (offspring) | 63.221 ± 11.531 a | 32.288 ± 5.789 b | 31.731 ± 6.001 b | 23.254 ± 4.582 b |
T (d) | 27.075 ± 0.489 ab | 26.749 ± 0.265 b | 27.999 ± 0.266 a | 27.082 ± 0.470 ab |
rm (d−1) | 0.153 ± 0.007 a | 0.130 ± 0.007 b | 0.123 ± 0.007 b | 0.116 ± 0.007 b |
λ (d−1) | 1.166 ± 0.009 a | 1.139 ± 0.008 b | 1.131 ± 0.008 b | 1.123 ± 0.008 b |
DT (d) | 4.526 ± 0.228 b | 5.336 ± 0.306 a | 5.613 ± 0.331 a | 5.966 ± 0.410 a |
Parameters | Control (0 mg/L) | DCY25 (25 mg/L) | DCY50 (50 mg/L) | DCY100 (100 mg/L) |
---|---|---|---|---|
R0 (offspring) | 55.213 ± 9.849 a | 26.687 ± 5.426 b | 25.784 ± 4.779 b | 23.057 ± 4.422 b |
T (d) | 27.601 ± 0.287 ab | 28.081 ± 0.375 a | 26.822 ± 0.390 bc | 26.642 ± 0.254 c |
rm (d−1) | 0.145 ± 0.007 a | 0.116 ± 0.007 b | 0.122 ± 0.009 b | 0.118 ± 0.008 b |
λ (d−1) | 1.156 ± 0.008 a | 1.123 ± 0.008 b | 1.130 ± 0.010 b | 1.125 ± 0.009 b |
DT (d) | 4.770 ± 0.228 b | 5.989 ± 0.392 a | 5.661 ± 0.423 ab | 5.885 ± 0.410 a |
Indices | DCY Treatment | Rice Variety | Interaction | ||||||
---|---|---|---|---|---|---|---|---|---|
DF | F | p | DF | F | p | DF | F | p | |
Honeydew | 1 | 1864 | <0.0001 | 1 | 11.28 | 0.0011 | 1 | 0.2746 | 0.6012 |
1d weight | 1 | 82.08 | <0.0001 | 1 | 0.1722 | 0.6789 | 1 | 0.4393 | 0.5088 |
3d weight | 1 | 197.4 | <0.0001 | 1 | 0.7779 | 0.3796 | 1 | 0.0979 | 0.7549 |
5d weight | 1 | 223.4 | <0.0001 | 1 | 0.2950 | 0.5881 | 1 | 1.717 | 0.1927 |
7d weight | 1 | 174.8 | <0.0001 | 1 | 2.159 | 0.1451 | 1 | 0.0005 | 0.9824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, G.; She, S.; Gui, W.; Ma, C.; Zhang, Y.; Qian, M.; Yang, G. Seed Priming of Rice Varieties with Decoyinine Improve Their Resistance against the Brown Planthopper Nilaparvata lugens. Agronomy 2023, 13, 72. https://doi.org/10.3390/agronomy13010072
Xu G, She S, Gui W, Ma C, Zhang Y, Qian M, Yang G. Seed Priming of Rice Varieties with Decoyinine Improve Their Resistance against the Brown Planthopper Nilaparvata lugens. Agronomy. 2023; 13(1):72. https://doi.org/10.3390/agronomy13010072
Chicago/Turabian StyleXu, Gang, Shengyao She, Wei Gui, Chao Ma, Yuanyuan Zhang, Mingshi Qian, and Guoqing Yang. 2023. "Seed Priming of Rice Varieties with Decoyinine Improve Their Resistance against the Brown Planthopper Nilaparvata lugens" Agronomy 13, no. 1: 72. https://doi.org/10.3390/agronomy13010072
APA StyleXu, G., She, S., Gui, W., Ma, C., Zhang, Y., Qian, M., & Yang, G. (2023). Seed Priming of Rice Varieties with Decoyinine Improve Their Resistance against the Brown Planthopper Nilaparvata lugens. Agronomy, 13(1), 72. https://doi.org/10.3390/agronomy13010072